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Abstract. Session types are a means of statically encoding patterns
of interaction between two communicating parties. This paper explores
a distributed calculus with session types in which a number of fixed
sites interact. The reduction schemes describing the operational seman-
tics satisfy the locality principle: at most one site is involved. Both ses-
sion engagement and data communication are local and asynchronous.
Furthermore, our setting is a natural one in which the novel notion of
multipoint session types, sessions in which more than two parties may
be involved, can be introduced.

1 Introduction

We study a type based approach to structuring interaction between multiple
distributed parties. A natural way of specifying interactions is to describe them
in terms of sequences of types of the entities being sent or received. This is
the idea behind session types [Hon93, HKT94, HVK98]. We develop a theory of
session types for a core distributed calculus called DCMS (distributed calculus
with multipoint session types). Regarding the distributed nature of DCMS we
take, as fundamental working hypothesis, that the schemes defining its semantics
follow the locality principle [Bou03]: all such schemes should involve at most one
site.

In DCMS a site is an expression of the form n�e� where n is the name of the
site and e is a thread expression. In order for sites to communicate we assume they
share some set of global names which we refer to as ports given their similarity in
nature to TCP/IP port numbers. Before exchanging information, however, sites
must first establish a private channel through such a port. In all extant calculi
with session types this is achieved via some variation of the following reduction
scheme [HVK98]:

request a(k : s) {P} | accepta(k : s) {Q} −→ (νk)(P |Q)

Here a is the aforementioned port and s a session type indicating the commu-
nication pattern to be followed on the fresh private channel k. For example, s
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could be !int.!int.?int.end if the process to the left of the pipe were connecting to
an adding server (the process to the right) that receives two numbers and sends
back their sum. The output type !int is read as “send an int” and the input type
?int as “receive an int”. The session type s is the dual of s, in this case reading
?int.?int.!int.end and establishes the pattern to be followed by the server at its
own endpoint of the channel. Duality guarantees the absence of communication
errors.

If we assume these primitives are executed at different sites, then the locality
principle is seen to fail. We introduce an asynchronous connection mechanism
whereby the connection request on a is buffered at the local sites of all the parties
participating (as described below) in the session s. A similar treatment is given
to language expressions for sending/receiving values and selection/branching.
Before providing further details on how asynchronous connection is established,
we discuss what form session types take in DCMS.

Session types in DCMS are multipoint : a channel has one positive or master
endpoint and one or more negative or slave endpoints. Each input/output or
branch/select type (see Sec. 3) in the sequence that makes up a session type
is decorated with a label (a site name or site name variable) indicating the
referenced site. As an example, consider the system cl�e1� ‖ atm�e2� ‖ bk�e3�,
adapted from [BCG05], where cl , atm and bk stand for client, ATM and bank,
resp. Consider the following session type s for a:

?clint.&cl{
withdraw : ?clint.!bkint. ⊕bk {withdraw : !bkint.?bkint.!clint.end,

� balance : end},
� balance : !bkint. ⊕bk {balance : ?bkint.!clint.end,

� withdraw : end}
}

It reflects the pattern from the view of the atm and is the type assigned to the
master endpoint (the types of the other endpoints are discussed below). The
ATM first expects an integer from the client (an id) and then an indication as to
whether a withdrawal or a balance request is required. In the case of the former
(the latter is described similarly), the amount is expected from the client after
which this amount is sent to the bank followed by an indication that the client
has requested a withdrawal. Note that the type end for balance indicates that
this branch is not available for selection here. Other occurrences of the balance
branch may have a type different from end, however all different uses of this
branch should be compatible: any two non-end types should be the same. This
encoding of multiple uses of branches in multipoint session types allows a higher
degree of expressiveness not readily available in standard (binary) session types
without adding new features (cf.[BCG05]): indeed, although this example could
be presented using binary session types, it is at a loss in precision (for example,
after receiving a withdraw request from the client, the ATM could issue multiple
withdrawl requests from the bank without violating the patterns described by
the binary session types).
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� !bkint. ⊕bk {withdraw : !bk int.?bkint.end,
� balance : end} ,

!bk int. ⊕bk {balance : ?bk int.end,
� withdraw : end}

�

?atm int.&atm{withdraw : ?atm int.!atm int.end,
� balance : !atm int.end}

Fig. 1. Compatible session types

Returning to the discussion on connecting through ports, recall that the
request primitive buffers a request on port a at each of the participating sites
of the session type s. Each of these sites may agree to participate by issuing a
accept primitive on a with some session type s′. It should be mentioned that
we do not require that all participating sites issue an accept before engaging in
communication. This reduces the possibility of stuck systems due to the absence
or reluctance of a participating site to engage.

Suppose n is one of these participating sites (in our example, apart from atm ,
they are cl and bk as may be read off from s). In order to guarantee the absence
of communication errors, the part of s that pertains to n (called the restriction of
s to n) should be compared for duality with s′. This requires that all uses of the
same branch be compatible, as mentioned above. In our example the restriction
of s to bk yields the set of session types in Fig. 1(top) which, if compatible,
allows the desired restriction to be obtained (Fig. 1(bottom)). These concepts
are precised below.

Finally, the main ingredient in the proof of Communication Safety (Prop. 3)
and Subject Reduction (Prop. 1) is the notion of duality invariant. As execution
progresses session types pending consumption together with the values already
sent out and residing in buffers distributed over the system are synthesized into
sequences of types and values which we dub trace types. Trace types are com-
pared using a binary relation that takes into account the asynchronous nature
of communication. Subject Reduction is then formulated as the property that
this invariant is upheld during reduction.

Structure of the paper. Sec. 2 introduces the syntax of DCMS together with
its operational semantics. Types and typing rules are presented in Sec. 3. Here we
also discuss compatibility and duality. Sec. 4 introduces the duality invariant and
addresses Subject Reduction and Safety. Finally, we conclude and offer avenues
for further research.

2 Syntax and Operational Semantics

2.1 Syntax

The syntax of DCMS is presented in Fig. 2. A site n�e� has a name n which
ranges over a set of site names m, n, . . . and a thread expression e which is said
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to run at n. A system is a set of sites. For simplicity we assume all sites in a
system to have different site names. Expressions may be one of the following. An
identifier x; a value v (described below); a let expression let x = e1 in e2 with
the usual interpretation; a connection, communication or branching expression.
A connection expression can be of one of two kinds: request a(u : s){e} or
accept a(u : s, d){e}. The former requests asynchronously on port a that a new
multipoint channel be established for communication following pattern s. The
latter accepts such a request and replaces u with its corresponding endpoint
and d with the name of the requesting site. A communication expression can
be either send(u, λ, e) or receive(u, λ). The former sends the value resulting from
e over u to location λ, whereas the latter reads from its local buffer u a value
expected from λ. A branching expression can either be a select 〈u, λ〉 � l in {e}
or branch 〈u, λ〉�{l1 : e1 � . . .� ln : en} (abbreviated 〈u, λ〉�i=1,n {li = ei}). The
former selects a branch by sending (asynchronously) a label over u to site λ. The
latter reads a label from its local buffer u to see if λ has selected a branch. In
the case that the buffer is empty, execution is blocked until a label is received.

A value is the result of a computation. It can be either true, false or null,
the null expression. The additional run-time value ( shaded in the figure) l is
also possible. This value is not part of the user syntax but arises as a conse-
quence of the definition of the operational semantics. Connection request values
are discussed in Sec. 2.2. We write v (resp. r) for a sequence of values (resp.
connection request values) and ε for the empty such sequence. Also, vR is the
reverse sequence of v.

We write fv(e) for the free variables of e. In particular, let binds the declared
variable; in both request and accept u is bound in e, in accept d is also bound in
s and e. Also, e1; e2 is shorthand for let x = e1 in e2 with x /∈ fv(e2). We write
e{x 	→ v} for the capture-free substitution of all free occurrences of x in e by v.
Expressions are identified modulo renaming of bound variables.

2.2 Operational Semantics

The operational semantics of DCMS is described in terms of a global buffer. A
global buffer (written h) associates a mapping describing the contents of its local
port and local channel buffers to each location. We write hn for the mapping for
site n. A port buffer for a, denoted hn(a), is a sequence of connection request val-
ues k+@n. The expression k+@n in the port buffer indicates the request by a for-
eign party n to establish a session of type s. A channel buffer for kp

Fm, denoted
hn(kp

Fm), is a sequence of values received so far from location m via channel kp.
Reduction schemes are presented in two groups: Fig. 3 presents those for

expressions and Fig. 4 those for sites. A request expression adds a request to
the buffer for port a at each of the sites participating in session type s. This
set of sites is written Participants(s) and simply collects the set of all site
names occurring in s. Additionally, a new empty channel buffer is locally cre-
ated for each of the participating parties in preparation for receiving values
from them. Finally, note that k+ is required to be locally fresh in the sense
that it has not been used as the master endpoint of a previously established
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System S ::= n�e� site
| S ‖ S distributed sites

Thread Expression e ::= x | v | let x = e in e
| request a(u : s){e}
| accept a(u : s, d){e}
| send(u, λ, e)
| receive(u, λ)
| 〈u, λ〉 � l in {e}
| 〈u, λ〉 � {l1 : e1 � . . . � ln : en}

Site Name λ ::= m |n | . . . site name
| d site variable

Port a, b, . . .
Polarity p ::= + | −
(Polarized) Channel u ::= kp channel

| x | y | . . . channel variable

Value v ::= true | false | null | l

Conn. Request Value r ::= k+@n

Heap h ::= [] | h · [(m)(a) �→ r]

| h · [(m)(kp
Fn) �→ v]

Fig. 2. Syntax

connection at that site. We write h · [(mi)(a) 	→ ri]i∈1..o as a shorthand for
h · [(m1)(a) 	→ r1] . . . [(mo)(a) 	→ ro]. Likewise h · [(n)(kp

Fmi) 	→ ε]i∈1..o stands
for h · [(n)(kp

Fm1) 	→ ε] · . . . · [(n)(kp
Fmo) 	→ ε].

The accept expression requires a pending connection request to be available at
its local buffer for port a. It then creates a new local channel buffer for commu-
nication with the master endpoint and updates its local port buffer by removing
the request. The k− endpoint is assumed to be locally fresh for otherwise re-
duction blocks. The asynchronous send expression adds the value v to the local
channel buffer of the corresponding endpoint. The result of executing a send
expression is null. The receive expression blocks until a value is available at the
appropriate local buffer and then reads it. The schemes for select and branch
are similar to send and receive except that labels are sent or received rather than
arbitrary values (and the appropriate branch is selected). Finally, there are two
congruence schemes for reducing in the declaration part of a let expression and
inside the last argument of a send expression.

Reduction schemes for sites are standard. Note that, as usual, reduction is
modulo structural congruence (≡) rules.

3 Type System

Typing judgements for thread expressions and sites are Γ ; Σ �n e : t; Σ′ and
Γ ; Σ � S : Σ′, resp. The standard environment Γ maps standard types to
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[Request-R]
request a(u : s){e}, h · [(mi)(a) �→ ri]i∈1..k

−→n

e{u �→ k+}, h · [(mi)(a) �→ k+@n · ri]i∈1..k · [(n)(k+
Fmi) �→ ε]i∈1..k

where Participants(s) = {m1, . . . , mk} and k+ /∈ hn.

[Accept-R]
accept a(u : s, d){e}, h · [(n)(a) �→ r · k+@m]

−→n

e{u �→ k−}{d �→ m}, h · [(n)(a) �→ r] · [(n)(k−
Fm) �→ ε]

where k− /∈ hn.

[Send-R]
send(kp, m, v), h · [(m)(kp

Fn) �→ v]
−→n

null, h · [(m)(kp
Fn) �→ v · v]

[Rcv-R]
receive(kp, m), h · [(n)(kp

Fm) �→ v · v]
−→n

v, h · [(n)(kp
Fm) �→ v]

[Select-r]
kp@m � li in {e}, h · [(m)(kp

Fn) �→ v]
−→n

e, h · [(m)(kp
Fn) �→ li · v]

[Branch-R]
kp@m � {�i=1,nli : ei}, h · [(n)(kp

Fm) �→ v · li]
−→n

ei, h · [(n)(kp
Fm) �→ v]

[Let-R]
let x = v in e, h

−→n

e{x �→ v}, h

[CongLet-R]
e1, h −→n e′1, h

′

let x = e1 in e2, h −→n let x = e′1 in e2, h
′

[CongSend-R]
e, h −→n e′, h′

send(kp, m, e), h −→n send(kp, m, e′), h′

Fig. 3. Expression Reduction Schemes

term variables and ports and the session environment Σ maps located channels
(i.e. expressions of the form kp@m) to session types. Fig. 5 defines types and
environments. We assume a /∈ Dom(Γ ), x /∈ Dom(Γ ) and u /∈ Dom(Σ) (i.e.
u@m /∈ Dom(Σ) for any m). We write Σ{u 	→ kp} for substitution of channel
variable u by a channel kp in environment Σ. Likewise, Σ{d 	→ m} stands for
substitution of site variable d by a site name m in environment Σ. These notions
are standard and hence their definitions omitted.

The aforementioned judgements are defined in terms of typing rules (Fig. 7
and 6). We only describe the interesting ones. However, before doing so, we need
to provide a precise meaning to the part of a session type that pertains to a
specific site. As mentioned, this part can only be computed if different uses of
branches are compatible. Thus we first make this notion precise (Def. 2).
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S1 ‖ S2 ≡ S2 ‖ S1

S1 ‖ (S2 ‖ S3) ≡ (S1 ‖ S2) ‖ S3

S1 ≡ S2 ⇒ S ‖ S1 ≡ S ‖ S2

[Site-R]
e, h −→n e′, h′

n�e�, h −→ n�e′�, h′

[Par-R]
S, h −→ S′, h′

S ‖ S1, h −→ S′ ‖ S1, h
′

[Str-R]
S′

1 ≡ S1 S1, h −→ S2, h
′ S2 ≡ S′

2

S′
1, h −→ S′

2, h
′

Fig. 4. Site Reduction Schemes

Direction † ::= ? | !
Partial Session Type π ::= ε | †λ t.π

| &λ{l1 : s, . . . , ln : s}
| ⊕λ{l1 : s, . . . , ln : s}

Session Type s ::= π.end
Standard Type t ::= bool | cmd | s

Standard Env. Γ ::= ε |Γ, a : s |Γ, x : t
Channel Env. Σ ::= ε |Σ, u@n : s

Fig. 5. Types

Definition 1 (Compatible Set). A set of session types {s1, . . . , sn} is com-
patible if s1 � s2 � . . . � sn is defined, where � is the following commutative,
associative operation:

s � s = s
end � s = s
s � end = s

π.end � π′.end = (π � π′).end

π � π = π

?λt.π1 � ?λt.π2 = ?λt.(π1 � π2)
!λt.π1 � !λt.π2 = !λt.(π1 � π2)

&λ
i=1,n{li : si} � &λ

i=1,n{li : s′i} = &λ
i=1,n{li : si � s′i}

⊕λ
i=1,n{li : si} � ⊕λ

i=1,n{li : s′i} = ⊕λ
i=1,n{li : si � s′i}

A session type is compatible when it is compatible from the viewpoint of all
participating sites.

Definition 2 (Compatible session type). A session type s is compatible if
for all m ∈ Participants(s), Simplify(s ↓ m) is compatible, where
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Typing Rules for Values

[null]
Γ ;Σ �n null : cmd; Σ

e ∈ {true, false}
[True/False]

Γ ; Σ �n e : bool; Σ

Typing Rules for Sites

Γ ;Σ �n e : t; Σ′
[StartSite]

Γ ;Σ � n�e� : Σ′

Γ ; Σ � S1 : Σ′ Γ ;Σ′ � S2 : Σ′′
[ParSite]

Γ ; Σ � S1 ‖ S2 : Σ′′

Fig. 6. Typing Rules for Values and Sites

(π.end) ↓ m = (π ↓ m).end

(†λt.π) ↓ m =
{ †λt.(π ↓ m) if λ = m

π ↓ m otherwise

&λ
i=1,n{li : si} ↓ m =

{
&λ

i=1,n{li : si ↓ m} if λ = m
{s1 ↓ m, . . . , sn ↓ m} otherwise

⊕λ
i=1,n{li : si} ↓ m =

{⊕λ
i=1,n{li : si ↓ m} if λ = m

{s1 ↓ m, . . . , sn ↓ m} otherwise

where Simplify( ) rewrites its argument, in all subterms, using the following
term rewrite rule until a normal form is reached1.

†λt.{s1, . . . , sn} −→ {†λt.s1, . . . , †λt.sn}
Under the assumption of compatibility we can define the restriction of a ses-

sion type s to a site name m, for m ∈ Participants(s), as �(Simplify(s ↓ m))
and write s � m. Finally, we introduce the notion of dual session types, used to
type the accept expression. It is the standard notion that may be found in the
extant literature on the subject: session types s and s′ are dual (or (m, n)-dual
to be more precise) if the predicate Dual(s, s′) holds:

Dual(ε, ε) holds
Dual(π.end , π′.end) = Dual(π, π′)
Dual(?nt.π, !mt.π′) = Dual(π, π′)
Dual(!nt.π, ?mt.π′) = Dual(π, π′)

Dual(&n
i=1,p{li : si},⊕m

i=1,p{li : s′i}) =
∧

i=1,p Dual(si, s
′
i)

Dual(⊕n
i=1,p{li : si}, &m

i=1,p{li : si}) =
∧

i=1,p Dual(si, s
′
i)

The typing rules for values are standard, as are those for variables and let
expressions. Note that the session environment remains unmodified in the case
of values and variables given that these expressions themselves do not perform
operations involving channels. A request on port a requires the type of a to be

1 Uniqueness of normal forms follows from orthogonality and termination.
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[Var]
Γ, x : t; Σ �n x : t; Σ

Γ ; Σ �n e : t;Σ′ Γ, x : t; Σ′ �n e′ : t′; Σ′′

[Let]
Γ ; Σ �n let x = e in e′ : t′; Σ′′

Γ, a : s; Σ, u@n : s �n e : t;Σ′, u@n : end
[Request]

Γ, a : s; Σ �n request a(u : s){e} : t; Σ′

Dual(s � n, s′{d �→ m})
m fresh

Γ, a : s; Σ, u@n : s′ � e : t; Σ′, u@n : end
[Accept]

Γ, a : s; Σ �n accept a(u : s′, d){e} : t;Σ′

Γ ; Σ �n e : t; Σ′, u@n :!λt.s
[Send]

Γ ; Σ �n send(u, λ, e) : cmd; Σ′, u@n : s

[Receive]
Γ ; Σ, u@n :?λt.s �n receive(u, λ) : t; Σ, u@n : s

Γ ;Σ, u@n : si �n e : t; Σ′

[Select]
Γ ;Σ, u@n : ⊕λ

i=1,n{li : si}} �n 〈u, λ〉 � l in {e} : t; Σ′

Γ ; Σ, u@n : si �n ei : t; Σ′
[Branch]

Γ ; Σ, u@n : &λ
i=1,n{li : si} �n 〈u, λ〉 � {�i=1,nli = ei} : t;Σ′

Fig. 7. Typing Rules for Expressions

declared globally with some session type s. The session environment is aug-
mented with a new located channel (i.e. expression of the form u@n) before
typing the body e. The type of the request expression is that of its body. Finally,
the located channel is assumed to be completely consumed within this body. A
accept also augments the session environment before typing its body, however
it uses the declared type s′. A check is performed to verify whether the session
type of a restricted to n, the site hosting the accept expression, is dual to s′

(prior application of the substitution {d 	→ m}). Given that the name of the site
requesting the request is unknown, a fresh name is substituted for all occurrences
of the site name variable d in s′. A send(u, λ, e) expression requires that we first
type e. The resulting session environment should include a session type for u@n
with a output type expression at the head. The type of e and the one declared
in the output type should agree. Also, the label of the output type should agree
with the destination declared in the send expression. The remaining typing rules
may be understood along similar lines.

We conclude this section with a standard property of type systems also shared
by DCMS.
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Lemma 1 (Substitution Preserves Typing)

1. Γ ; Σ1 �n e : t; Σ2 and kp /∈ Σ1 implies Γ ; Σ1{u 	→ kp} �n e{u 	→ kp} :
t; Σ2{u 	→ kp}.

2. Γ ; Σ1 �n e : t; Σ2 and m = n implies Γ ; Σ1{d 	→ m} �n e{d 	→ m} :
t; Σ2{d 	→ m}.

4 Subject Reduction and Safety

This section addresses Subject Reduction (SR) and Safety. The latter states that
the type system guarantees the absence of communication errors while the former
ensures that reduction preserves this state of affairs. We consider a communica-
tion error to be an execution state where a site attempts to read a value from its
local buffer with the wrong type. In order to prove the absence of such errors,
we must take into consideration how the system evolves during computation.
During the course of reduction, values are sent out to local buffers distributed
throughout the system. Accordingly, the types of channels are consumed. There-
fore, both session types and the contents of buffers must be taken into account
in order to determine safety. Trace types merge session types and values and are
defined by the grammar on the left:

τ ::= end
| ε
| †t.τ
| v.τ
| &i=1,n{li : τi}
| ⊕i=1,n{li : τi}

O ::= �n∈N

| !t.O
| v.O
| ⊕i=1,n{li : Oi}

The absence of site names in †, & and ⊕ allows for a conciser presentation (cor-
respondence between site names is guaranteed by the typing rule for accept).
The grammar on the right defines trace-output contexts. In an asynchronous set-
ting sending a value is a non-blocking operation and hence trace-output contexts
represent the activity that could take place before a blocking operation is exe-
cuted. An example trace-output context is O = 3. ⊕ {l1 : �1, l2 : lj.�2, l3 : �3}
(assuming we may send integers): a 3 may be sent followed by one of l1, l2, l3,
followed by lj in the case that l2 was selected. Note that output-trace contexts
may have more than one occurrence of a hole. Holes are indexed with a unique
index indicated with a natural number as subscript. We write O[τ1, . . . , τn] or
simply O[τ ]k=1,n for the result of filling in holes �1 to �n with τ1 to τn, resp. We
often omit the subscript in O[τ ]k=1,n (and write O[τ ]) for the sake of readability.

Both trace types and trace-output contexts are used for stating the duality
invariant, as motivated above. A further word on notation: v : t is a shorthand
for ∅; ∅ �n v : t; ∅, for any n.

Definition 3 (A-Duality of trace types). The binary relation on trace types
called a(synchronous)-duality is defined inductively as follows:
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[end/end-D]
end �� end

[ε/ε-D]
ε �� ε

σ �� τ v : t
[?/v-D]

?t.σ �� v.τ

σ �� τ
[?/!-D]

?t.σ �� !t.τ

σ �� O[τ ] v : t
[v/?-D]

v.σ �� O[?t.τ ]

σ �� O[τ ]
[!/?-D]

!t.σ �� O[?t.τ ]

σj �� τ j ∈ 1..n
[&/l-D]

&i=1,n{li : σi} �� lj .τ

σi �� τi for each i ∈ 1..n
[&/⊕-D]

&i=1,n{li : σi} �� ⊕i=1,n{li : τi}

σ �� O[τj ]k=1,o j ∈ 1..nk
[l/&-D]

lj .σ �� O[&i=1,n{li : τi}]k=1,o

σi �� O[τi]k=1,o for each i ∈ 1..n
[⊕/&-D]⊕i=1,n{li : σi} �� O[&i=1,n{li : τi}]k=1,o

If σ �� τ , then we say σ is a-dual to τ . The intuition behind σ �� τ is that σ is
the session type of one endpoint of a session including the values this endpoint
already sent out and likewise for the other endpoint τ . If they are both end or
ε, then they are said to agree. If σ expects to receive a value of type t, then
either it has already been sent ([?/v-D]) or the send operation is next in line
according to the session type of τ ([?/!-D]). If σ has sent out a value ([v/?-D]),
then τ must be prepared to read but not necessarily immediately. Indeed, first
it may send out some other values (represented by the trace-output context O).
Note that O[?t.τ ]k=1,o in [v/?-D] and [!/?-D] means O[?t.τ1, . . . , ?t.τo]. The
remaining rules follow similar arguments.

Let |s| stand for the trace type resulting from erasing all site name information
from session type s. Note that dual session types are a-dual, as may be verified
by induction on s:

Lemma 2. Let s, s′ be session types. Then Dual(s, s′) implies |s| �� |s′|.
There are, of course, a-dual session types that are not dual. For example, we have
!t.?t′.end �� !t′.?t.end, for any t, t′, however for no decoration of site names shall
these types become dual. A-duality shares another property of duality, namely
symmetry.

Lemma 3 (Symmetry of ��)

1. O[σ]k=1,o �� τ implies
(a) O[?t.σ]k=1,o �� v.τ , if v : t.
(b) O[?t.σ]k=1,o ��!t.τ ,
(c) O[&i=1,n{li : ρi}]k=1,o �� lj .τ , where ρjk

= σk for each k ∈ 1..o, if
j ∈ 1..n.

2. σ �� τ implies τ �� σ.
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Proof. The first item is by induction on the structure of O and the second by
induction on the derivation of σ �� τ and resorts to the first one.

Some further properties of �� shall be useful. Items (1) and (2) below are used in
the proof of Subject Reduction to show that the duality invariant (stated below)
is upheld after a send and receive expression has been executed. Items (3) and
(4) are required for the case of select and branch. The proof of all items is by
induction on the length of v.

Lemma 4. 1. v.!t.τ1 �� τ2 and v : t imply v.v.τ1 �� τ2.
2. v.?t.τ1 �� v.τ2 implies v : t and v.τ1 �� τ2.
3. v. ⊕i=1,n {l1 : τi} �� σ and j ∈ 1..n imply v.lj .τj �� σ.
4. v.&i=1,n{li : τi} �� lj .σ implies j ∈ 1..n and v.τj �� σ.

Let us illustrate the first item with a concrete example. Consider the reduction
of the expression send(kp, m, v) at site n. The trace type v.!t.τ1 �� τ2 will be
interpreted as the view of kp at n as follows:

– v is the sequence of values already sent out by n on kp to m and not con-
sumed, and

– !t.τ1 is the channel type of kp at n (with its site names erased).

Assuming this view is a-dual to that of m (represented by τ2), Lemma 4(1) states
that replacing !t by v (the value sent by n on kp) preserves a-duality.

Definition 4 (Duality Invariant). A pair of session environment and global
buffer satisfy the duality invariant, written DualityInv(Σ; h), if k+@n : sn ∈ Σ
and k−@m : sm ∈ Σ implies

vR.|sn � m| �� wR.|sm|
where hn(k+

Fm) = w and hm(k−
Fn) = v.

One final ingredient is required before formulating our main result. Given that
request and accept expressions create new communication channels, session en-
vironments may grow as reduction proceeds. Therefore, we define Σ ≤ Σ′ as the
smallest partial order that contains Σ, u@λ : end ≥ Σ. The following property
relating this partial order and typability is seen to hold.

Lemma 5 (Weakening)

1. Γ ; Σ1 �n e : t; Σ2 and Σ′
1 ≥ Σ1 imply Γ ; Σ′

1 �n e : t; Σ′
2, for some Σ′

2 ≥ Σ2.
2. Γ ; Σ1 � S : Σ2 and Σ′

1 ≥ Σ1 imply Γ ; Σ′
1 � S : Σ′

2, for some Σ′
2 ≥ Σ2.

Proposition 1 (SR for Expressions). Γ ; Σ1 �n e : t; Σ2 and DualityInv(Σ1; h)
and e, h −→n e′, h′ implies Γ ; Σ′

1 �n e′ : t; Σ′
2 and DualityInv(Σ′

1; h′), for
some Σ′

1 and Σ′
2 ≥ Σ2.

Proof. By induction on the derivation of e, h −→n e′, h′. We include a sample
case, namely that of a [Send-R] reduction step.
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– e = send(kp, m, v) and h = h′′ · [(m)(kp
Fn) 	→ v],

– e′ = null and h′ = h′′ · [(m)(kp
Fn) 	→ v · v].

From Γ ; Σ1 �n send(kp, m, v) : cmd; Σ2 we deduce

1. Σ1 = Σ11, k
p@n : !mt.s and

2. Σ2 = Σ11, k
p@n : s.

Set Σ′
1 = Σ11, k

p@n : s and Σ′
2 = Σ2(= Σ′

1). Then note that

3. Γ ; Σ11, k
p@n : s �n null : cmd; Σ11, k

p@n : s is immediate and also
4. DualityInv(Σ11, k

p@n : s; h′).

We develop (4). Suppose p = + and k−@m : sm ∈ Σ′
1. Then also k−@m : sm ∈

Σ1 and from DualityInv(Σ1; h):

vR.|!mt.s � m| �� wR.|sm|
where hn(k+

Fm) = w. By Lemma 4(1),

vR.v.|s � m| �� wR.|sm|
Suppose now that p = − and k+@m : sm ∈ Σ′

1. Then also k+@m : sm ∈ Σ1 and
from DualityInv(Σ1; h):

wR.|sm � n| �� vR.|!mt.s|
where hn(k−

Fm) = w. We resort to symmetry of �� (Lemma 3), followed by
Lemma 4(1), and finally symmetry again.

Prop. 1 holds for sites too. This requires first showing that:

Lemma 6 (Structural Congruence Preserves Typability). Γ ; Σ1 � S :
Σ2 and S ≡ S′ implies Γ ; Σ1 � S′ : Σ2.

We can then obtain the desired extension.

Proposition 2 (SR for Sites). Γ ; Σ1 � S : Σ2 and DualityInv(Σ1; h) and
S, h −→ S′, h′ implies Γ ; Σ′

1 � S′ : Σ′
2 and DualityInv(Σ′

1; h′), for some Σ′
1

and Σ′
2 ≥ Σ2.

Proof. By induction on the derivation of S, h −→ S′, h′.

– [Site-R]. Then S = n�e�, S′ = n�e′� and e, h −→n e′, h′. Also, Γ ; Σ1 �n

e : t; Σ2 for some t. We conclude by resorting to Subject Reduction for
Expressions.

– [Par-R]. Then S = S1 ‖ S2, S′ = S′
1 ‖ S2 and S1, h −→ S′

1, h
′. Also,

there exists Σ3 such that Γ ; Σ1 � S1 : Σ3 and Γ ; Σ3 � S2 : Σ2. By
the IH there exists Σ′

1, Σ
′
3 such that Σ′

3 ≥ Σ3 and Γ ; Σ′
1 � S1 : Σ′

3 and
DualityInv(Σ′

1; h
′). We conclude by Lemma 5.

– [Str-R]. Then there exist S1, S2 such that
1. S ≡ S1,
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2. S1, h −→ S2, h
′ and

3. S2 ≡ S′.
From Lemma 6, Γ ; Σ1 � S1 : Σ2. By IH, there exist Σ′

1 and Σ′
2 such that

4. Σ′
2 ≥ Σ2,

5. Γ ; Σ′
1 � S2 : Σ′

2 and
6. DualityInv(Σ′

1; h′).
We conclude from (3) and Lemma 6.

In order to formally state Communication Safety we first introduce the conve-
nient notion of evaluation context E:

E ::= � | let x = E in e | send(kp, m, E)

The hole in an evaluation environment singles out the part of the context where
the redex involved in the next reduction step is located. Communication Safety
says that if receive is the next expression to be reduced at some site n, then
either the value expected has not been sent by the expected party yet and the
channel type of this party coincides with the one expected by the receive, or the
value is located in n’s local buffer and has the expected type. Similarly for a
branch expression.

Proposition 3 (Communication Safety). Suppose Γ ; Σ1 �n e : t; Σ2 and
DualityInv(Σ1; h).

1. If e = E[receive(kp, m)] and kp@m ∈ Σ1, then Σ1(kp@n) =?mt.sn and
Σ1(kp@n) = sm, for some session types sn, sm, and

vR.|?mt.sn � m| �� wR.|sm|
where hn(kp

Fm) = w and hm(kp
Fn) = v, and one of two cases holds

(a) either wR = ε and sm =!nt.s′m, for some s′m,
(b) or wR = w.w′ and w : t, for some w and w′.

2. If e = E[〈kp, m〉 �i=1,o {li = ei}] and kp@m ∈ Σ1, then Σ1(kp@n) =
&m

i=1,o{li : s′i} and Σ1(kp@n) = sm, for some session types s′i, sm, and

vR.|&m
i=1,o{li : s′i} � m| �� wR.|sm|

where hn(kp
Fm) = w and hm(kp

Fn) = v, and one of two cases holds
(a) either wR = ε and sm = ⊕n

i=1,o{li : s′i}, for s′i with i ∈ 1..o,
(b) or wR = lj .w

′ and j ∈ 1..o, for some w′.

The proof is by induction on E and relies on the following lemma:

Lemma 7. 1. v.?t.σ1 �� w.σ2 implies
(a) either v = ε and σ2 =!t.σ′

2, for some σ′
2,

(b) or w = w.w′ and w : t, for some w′.
2. v.&i=1,o{li : si} �� w.σ2 implies

(a) either w = ε and σ2 = ⊕i=1,o{li : s′i}, for s′i with i ∈ 1..o,
(b) or w = lj.w

′ and j ∈ 1..o, for some w′.
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5 Related Work

Session types were introduced in work of Honda et al [Hon93, HKT94, HVK98].
Since then it has been studied in various programming language paradigms:
π-calculus like [GH99, HG03, GVR03, BCG05, BCG04], mobile ambients
[GCDC06], CORBA [VVR03], functional threads [VRG04] and for object-oriented
programming [DCYAD05, DCMYD06]. Recent work [YV06] revisits Subject Re-
duction for session types in view of some subtle issues related with naming.

Dezani-Ciancaglini et al [DCYAD05] present a distributed object-oriented lan-
guage with session types. Although they also deal with a system of named sites,
they use synchronous communication. In later work [DCMYD06] they considered
higher-order sessions for roughly the same language and study a progress prop-
erty. Also, they introduce buffers to model the operational semantics. However,
connection is still synchronous and no notion of multipoint session types is stud-
ied. The work of Neubauer and Thiemann [NT04] seems to be the first work on
session types for asynchronous communication. They consider a functional pro-
gramming language which, although lacks a notion of multipoint session type nor
is distributed, introduces an interesting relation on values similar to a-duality.
Session types for asynchronous communication in the setting of operating sys-
tem services [FAH+06] and object-oriented languages [CDCY07] has also been
studied.

In recent [Yos07], independent work Honda, Yoshida and Carbone [HYC08]
have developed a similar calculus of multiparty asynchronous session types. In-
teraction between participants is described by means of a “global type”, essen-
tially sequences of expressions of the form p → p′ : k < U > expressing that
“participant p sends a message of type U to channel k received by participant
p′” (constructs for branching/selection and recursive types are also considered).
Thus participants may share any number of channels, in contrast to our more
restricted setting where only the master endpoint of a multipoint session type is
shared. Since sharing gives rise to conflicts, a causality condition (dubbed “lin-
earity” of global types) is required to ensure that global types are conflict-free.
The remaining development is close to the one presented here: our notion of
compatible session types corresponds to “coherence” of global types (Def. 4.2. in
op. cit.), our duality invariant corresponds to “rollback of a message” (Sec. 5.2.
in op. cit.). It should also be mentioned that Honda et al consider, in addition
to Communication Safety, a progress property [DCMYD06]: roughly that, un-
der certain conditions, a well-typed process that is ready to communicate shall
always do so (Sec. 5.6. in op. cit.). We feel such a property should also hold for
DCMS, although the details should be worked out.

6 Conclusions

We have presented a theory of session types for a core distributed calculus called
DCMS. Distributed systems are represented as sets of named sites running
threads. These sites communicate with each other by either sending/receiving
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values or selecting/branching on alternative code branches. The type system is
built on the notion of session type: sequences of types of the entities being sent
or received. The resulting session types are multipoint in the sense that they
encode the interaction protocol to be followed by two or more parties. One such
party is selected as a master and is the one that initiates a connection; multi-
ple other parties are designated as slaves and each follow their own interaction
scheme with the master. All communication expressions in DCMS are asyn-
chronous: its semantics is described in terms of connection and communication
buffers local to each site. Correctness of DCMS is proved in the form of a sub-
ject reduction theorem. This result consists in showing that a predicate on all
buffers and the type assigned to each open connection called duality invariant is
upheld at all times. This invariant roughly synthesizes run-time types, consisting
of sequences of standard types and values, for channels and checks that any two
endpoints have asynchronous dual such types. Asynchronous dual types is an
extended notion of dual types that takes asynchronicity into account.

In order to bring out the fundamentals of combining session types and dis-
tributedness we have reduced our calculus to a minimal core. In particular,
we have not included features such as run-time session type creation, send-
ing/receiving session types, delegation of channels or spawning of new threads.
This is left to future work. Type checking and inference based on the more
lax notion of a-duality and an appropriate notion of subtyping should also be
interesting avenues for further work.
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