
JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.1 (1-20)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Typed path polymorphism ✩

Mauricio Ayala-Rincón a,∗, Eduardo Bonelli b,c,e,∗, Juan Edi d,∗, Andrés Viso d,e,∗
a Universidade de Brasília, Brazil
b Universidad Nacional de Quilmes, Argentina
c Stevens Institute of Technology, United States of America
d Universidad de Buenos Aires, Argentina
e CONICET, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 December 2017
Received in revised form 30 January 2019
Accepted 23 February 2019
Available online xxxx

Keywords:
λ-calculus
Pattern matching
Path polymorphism
Static typing
Type checking

Path polymorphism enables the definition of functions uniformly applicable to arbitrary
recursively specified data structures. Path polymorphic function declarations rely on
patterns of the form x y (i.e. the application of two variables), which decompose a data
structure into its parts. We propose a static type system for a calculus that captures this
feature, combining constants as types, union types and recursive types. The fundamental
properties of Subject Reduction and Progress are addressed to guarantee well-behaved
dynamics; they rely crucially on a novel notion of pattern compatibility. We also introduce
an efficient type-checking algorithm by formulating a syntax-directed variant of the type
system. This involves algorithms for checking type equivalence and subtyping, both based
on coinductive characterizations of those relations.

© 2019 Published by Elsevier B.V.

1. Introduction

In the lambda-calculus, functions are represented as expressions of the form λx.t , x being the formal parameter and t
the body. Such a function may be applied to any term, regardless of its form. This is captured by the β-reduction rule:
(λx.t) s →β {s/x} t , where {s/x} t stands for the result of replacing all free occurrences of x in t with s. The β-reduction
rule places no requirements on the form of s, it can be any term. Pattern calculi [10,22,19,23,20] are generalizations of the
β-reduction rule in which abstractions λx.t are replaced by λp.t where p is called a pattern. An example is λ〈x, y〉.x where
the pattern p is 〈x, y〉, representing a pair of terms; this function projects the first component of a pair. The outermost
application in an expression such as (λ〈x, y〉.x) s will only be able to reduce if s is of the form 〈s1, s2〉, for any expressions
s1 and s2; computation will otherwise focus on s.

The addition of constants to the lambda-calculus allows data and hence also patterns to be expressed using constants
and application (so called applicative notation). For example, the list [1,2] is expressed as the following term s:

cons (l1) (cons (l2)nil)

constructed from constants cons, nil and l. Note the use of a constant l (for leaf) to inject values of standard types, in
this case integers, into the tree-like structure. Another example is the term t capturing a binary tree:

✩ Work partially funded by the international projects DeCOPA STIC-AmSud 146/2012, CONICET, CAPES, CNRS; and ECOS-Sud A12E04, CONICET, CNRS.

* Corresponding authors.
E-mail addresses: ayala@unb.br (M. Ayala-Rincón), eabonelli@gmail.com (E. Bonelli), jedi@dc.uba.ar (J. Edi), aeviso@dc.uba.ar (A. Viso).
https://doi.org/10.1016/j.tcs.2019.02.018
0304-3975/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.tcs.2019.02.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:ayala@unb.br
mailto:eabonelli@gmail.com
mailto:jedi@dc.uba.ar
mailto:aeviso@dc.uba.ar
https://doi.org/10.1016/j.tcs.2019.02.018

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.2 (1-20)

2 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
node (l1) (node (l2)nilnil) (node (l3)nilnil)

Applicative notation applies to patterns too: λ〈x, y〉.x is written as λp x y.x, p being a constant. Note that p is applied to
the variable x and the resulting term is then applied to y.

Consider the following function for updating the values of any of these two structures by applying some user-supplied
function f to it:

upd = f � (l z � l (f z)
| x y � (upd f x) (upd f y)

| w � w)

(1)

Let (+1) stand for the successor function. The expression upd (+1) is applicable to both s and t , returning an updated
structure in which all numbers in the leaves have been incremented by one. The expression to the right of “=” is called an
abstraction and consists of a unique branch; this branch in turn is formed from a pattern consisting solely of the variable f ,
and a body (in this case the body is itself another abstraction that consists of three branches). An argument to an abstraction
is matched against the patterns, in the order in which they are written, and the appropriate body is selected. Notice the
pattern x y. This pattern embodies the essence of path polymorphism [20,18]: it abstracts a path in a data structure viewed as
a tree, being “split”. The starting point of this paper is how to devise a calculus, which we dub Calculus of Applicative Patterns
(CAP), that allows examples such as the one above to be typed. We next discuss the challenges that arise from devising
such a type system. We do so by exhibiting examples of CAP terms, thus simultaneously serving as a gentle introduction to
its syntax; the full syntax and semantics of the calculus are provided in Sec. 2.

Preliminaries on typing patterns expressing path polymorphism Consider these two expressions:

(nil � 0)cons (l x �{x:Nat} x + 1) (ltrue)

They should not be typable. In the first case, the abstraction is not capable of handling cons. This will be avoided by
introducing singleton types in the form of the constructors themselves: nil will be given type nil while cons will be given
type cons, and then they will be compared. In the second case, x in the pattern l x is required to be of type Nat yet the
type of the argument to l in l true is Bool. This will be avoided by introducing type application [26] into types: l x will
be assigned a type of the form l @ Nat while l true is assigned type l @ Bool, then they will be compared.

CAP actually requires that the user supply type declarations for variables in patterns. The following variation of (1)
includes such type declarations:

upd = f �{ f :A⊃B} (l z �{z:A} l (f z)
| x y �{x:C,y:D} (upd f x) (upd f y)

| w �{w:E} w)

(2)

For example, the type declaration for f states that it denotes a function from type A to type B . Types A and B will be
specified below (the same applies to types C , D and E), once we know how to determine the type of the result of upd
itself. We next address what the types of x and y in x y should be, and hence the type of x y itself. The pattern x y can be
instantiated to different terms in each recursive call to upd. For example, consider upd (+1) s. The following table illustrates
some of the terms with which x and y are instantiated during the evaluation of upd (+1) s:

x y
upd (+1) s cons (l1) cons (l2)nil
upd (+1) (cons (l1)) cons l1
upd (+1) (cons (l2)nil) cons (l2) nil

The type assigned to x (and y) should encompass all terms in its respective column. This suggests adopting a union type for
x. Assuming that the user has provided an exhaustive coverage, the type of x in upd is:

μα.(l@ A) ⊕ (α @ α) ⊕ (cons⊕ node⊕nil)

Here μ is the recursive type constructor and ⊕ the union type constructor. The variable y in the pattern x y will also
be assigned the same type. Finally, upd itself is assigned type (A ⊃ B) ⊃ (F A ⊃ F B), where F X is μα.(l@ X) ⊕ (α @ α) ⊕
(cons⊕node⊕nil).

Typing data structures Type recursion, in combination with union, singleton and applicative type constructors allows one to
define data types for structures like lists and trees. In the case of s and t they may be assigned, resp., the types below:

μα.nil⊕ (cons@ (l@ A) @ α) μα.nil⊕ (node@ (l@ A) @ α @ α)

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.3 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 3
Subtyping As mentioned, upd (+1) should be applicable to both s and t . For that, we must ensure that the types of s and t
are adequate in the sense that they are in accordance with the type FNat . A suitable notion of subtyping will allow upd (+1)

to be applicable to both s and t . Indeed, both of the above mentioned types, in which A is replaced with Nat, are subtypes
of FNat:

μα.nil⊕ (cons@ (l@ A) @ α) �μ FNat

μα.nil⊕ (node@ (l@ A) @ α @ α) �μ FNat

The properties of the subtyping relation will allow us to prove Safety for CAP: it enjoys Subject Reduction (SR) and Progress.
The former states that reduction of typed terms produces typed terms; the latter that typable, closed terms that are not
values can always reduce. However, it turns out that although subtyping is important for this result, it is the novel notion
of pattern compatibility, described next, that is crucial for proving both of these properties.

Pattern compatibility Consider the following example:

(l x �{x:Bool} if x then 1 else 0) | (l y �{y:Nat} y + 1) (3)

Although there is a branch capable of handling a term such as l 4, namely the second one, evaluation in CAP takes place
in left-to-right order following standard practice in functional programming languages. Since the term l 4 also matches the
pattern l x, we would obtain the (incorrect) reduct if 4 then 1 else 0. We thus must relate the types of l x and l y
in order to avoid failure of SR. Since l y is an instance of l x, we require the type of the former to be a subtype of the type
of the latter since it will always have priority: l @ Nat � l @ Bool. Fortunately, this is not the case since Nat 	� Bool, rendering
this example untypable. Examples like (2) require a more refined analysis (cf. Sec. 3.3). In a nutshell, compatibility focuses
on offending positions between patterns, and whenever there is a structural overlap among their potential arguments, a
subtyping restriction on their respective types is imposed.

Summary of contributions This work builds on [4,17]. The former presents a static typing discipline for CAP that guarantees
safety for path polymorphism. This result relies on the syntactic notion of pattern compatibility mentioned above, hence no
runtime analysis is required. The latter addresses the efficient implementation of a type-checking algorithm for the proposed
system. This is done in two stages:

• The first stage presents a naïve but correct, high-level description of a type-checking algorithm, the principal aim
being clarity. We propose coinductive and invertible presentations of the equivalence and subtyping relations, as well
as a syntax-directed variant of the system. This leads to algorithms for checking equivalence and subtyping modulo
associative, commutative and idempotent (ACI) unions, both based on the invertibility of the functional generating the
associated notions.

• The second stage builds on ideas from the first algorithm with the aim of improving efficiency. μ-types are interpreted
as infinite n-ary trees and represented using automata, avoiding having to explicitly handle unfoldings of recursive
types, and leading to a significant improvement in the complexity of the key steps of the type-checking process, namely
equality and subtype checking.

Related work CAP is a restriction of a more general pattern calculus known as the Pure Pattern Calculus or PPC [20]. PPC
allows not only path polymorphism but also pattern polymorphism: patterns may be created at run-time. For literature on
(typed) pattern calculi the reader is referred to [4]. A recent book on pattern calculi is [18]; it addresses many interesting
aspects including path, pattern and parametric polymorphism. The main difference with our work is that the latter requires
performing type-checking at run-time (cf. Chapter 9.5, “Typed Static Pattern Calculus”); here we focus exclusively on static
typing. Also, efficient type-checking algorithms are not discussed in [18]. The algorithms for checking equality of recursive
types or subtyping of recursive types have been extensively studied in [1,24,6,21] among others. Additionally, in [25] the
authors studied the possibilities of incorporating associative and commutative (AC) products to the equality check, on an
automata-based approach that the authors themselves claimed was not extensible to subtyping [29]. Later on, [14] presented
another automata-based algorithm for subtyping that properly handles AC products with a complexity cost of O(n2n′ 2d5/2),
where n and n′ are the sizes of the analyzed types, and d is a bound on the arity of the involved products.

Structure of the paper Sec. 2 introduces the terms and operational semantics of CAP. The typing system is developed in
Sec. 3 together with a precise definition of compatibility. Sec. 4 studies Safety. Sec. 6 proposes invertible generating func-
tions for coinductive notions of type-equivalence and subtyping. Sec. 5.1 introduces a syntax-directed type system for CAP.
Sec. 7 studies a more efficient type-checking algorithm based on automata. Finally, we conclude in Sec. 8. See the extended
report [3] for full proofs and further details. An implementation of the algorithms described here is available online [16].

2. Syntax and operational semantics of CAP

We assume given countably infinite sets V of term variables and C of constants. The syntax of CAP consists of four
syntactic categories, namely patterns (p, q, . . .), terms (s, t, . . .), data structures (d, e, . . .) and matchable forms (m, n, . . .):

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.4 (1-20)

4 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
p ::= x (matchable)
| c (constant)
| p p (compound)

t ::= x (variable)
| c (constant)
| t t (application)
| p �θ t | · · · | p �θ t (abstraction)

d ::= c (constant)
| d t (compound)

m ::= d (data structure)
| p �θ t | · · · | p �θ t (abstraction)

The set of patterns, terms, data structures and matchable forms are denoted P, T, D and M, resp. Variables occurring
in patterns are called matchables. We often abbreviate p1 �θ1 s1 | . . . | pn �θn sn with (pi �θi si)i∈1..n . The θi are typing
contexts annotating the type assignments for the matchables in pi (cf. Sec. 3).

Definition 2.1. The free variables of a term (notation fv(t)) and free matchables of a pattern (fm(p)) are defined inductively as
follows:

fv(x) � {x}
fv(c) � ∅

fv(r u) � fv(r) ∪ fv(u)

fv
(
(pi �θi si)i∈1..n

)
�

⋃
i∈1..n (fv(si) \ fm(pi))

fm(x) � {x}
fm(c) � ∅

fm(p q) � fm(p) ∪ fm(q)

Positions in patterns and terms are defined as expected and denoted π, π ′, . . . (ε denotes the root position).
We write pos(s) for the set of positions of s and s|π for the subterm of s occurring at position π ∈ pos(s),
e.g. pos

(
(l x �{x:Nat} x) (ltrue)

) = {ε, 1, 2, 11, 12, 111, 112, 12, 21, 22}.
A substitution (σ , σi, . . .) is a partial function from term variables to terms. If it assigns ui to xi , i ∈ 1..n, then we write

{u1/x1, . . . , un/xn}. Its domain (dom (σ)) is {x1, . . . , xn}. Also, {} is the identity substitution. We write σ s for the result of
applying σ to term s. Matchable forms are required for defining the matching operation, described next.

Given a pattern p and a term s, the matching operation { {s/p} } determines whether s matches p. It may have one of
three outcomes: success, fail (in which case it returns the special symbol fail) or undetermined (in which case it returns
the special symbol wait). We say { {s/p} } is decided if it is either successful or it fails. In the former it yields a substitution
σ ; in this case we write { {s/p} } = σ . The disjoint union of matching outcomes is given as follows (“�” is used for definitional
equality):

fail o � fail
o fail � fail

σ1 σ2 � σ1 ∪ σ2

wait σ � wait
σ wait � wait

wait wait � wait

where o denotes any possible outcome and σ1 ∪σ2 denotes the standard union of substitutions assuming that their domains
are disjoint. To ensure this always holds we assume patterns to be linear (at most one occurrence of any matchable). The
matching operation is defined as follows, where the clauses below are evaluated from top to bottom1:

{{u/x}} � {u/x}
{{c/c}} � {}
{{u v/p q}} � {{u/p}} {{v/q}} if u v is a matchable form
{{u/p}} � fail if u is a matchable form
{{u/p}} � wait

For example: { {x � s/c} } = fail; { {d/c} } = fail; { {x/c} } = wait and { {cc/xd} } = fail. We now turn to the only reduc-
tion axiom of CAP:

({{u/pi}} = fail)i∈1.. j−1 {{u/p j}} = σ j for some j ∈ 1..n(pi �θi si)i∈1..n u → σ j s j(β)

It may be applied under any context and states that if the argument u to an abstraction (pi �θi si)i∈1..n fails to match all
patterns pi with i < j and successfully matches pattern p j (producing a substitution σ j), then the term (pi �θi si)i∈1..n u
reduces to σ j s j .

The following example illustrates the use of the reduction rule and the matching operation:

(true � 1 | false � 0) ((true � false | false � true)true)

→ (true � 1 | false � 0)false
→ 0

(4)

Note that in (true � 1 | false � 0)false, the second branch is selected since { {false/true} } = fail. A further ex-
ample showing how a data structure is decomposed by the matching operation is:

1 It corresponds to a specialization of the matching operation introduced in [20] to static patterns.

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.5 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 5
Fig. 1. Strong type equivalence for μ-types (sample).

(nil � nothing | cons (l x) xs � just x) (cons (l1) (cons (l2)nil)) → just1

where:

{{cons (l1) (cons (l2)nil)/nil}} = fail
{{cons (l1) (cons (l2)nil)/cons (l x) xs}} = {1/x,cons (l2)nil/xs}

Proposition 2.2. Reduction in CAP is confluent (CR).

This result follows from a straightforward application of the CR proof technique presented in [20] to our calculus. The
key step is proving that the matching operation satisfies the Rigid Matching Condition (RMC) proposed in the cited work.

3. Typing system

This section presents μ-types, the finite type expressions that are used for typing terms in CAP, their associated notions
of equivalence and subtyping and then the typing schemes. Also, further examples and definitions associated to compatibil-
ity are included.

3.1. Types

In order to ensure that patterns such as x y decompose only data structures rather than arbitrary terms, we introduce
two sorts of typing expressions: types and datatypes, the latter being a subset of the former.

Given countably infinite sets VD of datatype variables (α, β, . . .), VA of type variables (X, Y , . . .), and C of type constants
(c, d, . . .); the sets TD of μ-datatypes and T of μ-types, resp., are inductively defined as follows:

D ::= α (datatype variable)
| c (atom)
| D @ A (compound)
| D ⊕ D (union)
| μα.D (recursion)

A ::= X (type variable)
| D (datatype)
| A ⊃ A (function type)
| A ⊕ A (union)
| μX .A (recursion)

We define V � VA ∪VD and use metavariables V , W , . . . to denote an arbitrary element in it. Likewise, we write a, b, . . . for
elements in V ∪ C .

Remark 3.1. A type of the form μα.A is excluded since it may produce invalid unfoldings. For example, μα.α ⊃ α = (μα.α ⊃ α) ⊃
(μα.α ⊃ α), since α is a datatype variable and type abstraction is not a datatype. On the other hand, types of the form μX .D are not
necessary since they denote the solution to the equation X = D, hence X represents a datatype.

We consider ⊕ to bind tighter than ⊃, while @ binds tighter than ⊕. Therefore D @ A ⊕ A′ ⊃ B means ((D @ A) ⊕ A′) ⊃
B . Additionally, when referring to a finite series of consecutive unions such as A1 ⊕ . . . ⊕ An we will use the simplified
notation ⊕i∈1..n Ai . This notation is not strict on how subexpressions Ai are associated hence, in principle, it refers to any
of all possible associations. In the next section we present an equivalence relation on μ-types that will identify all these
associations. We often write μV .A to mean either μα.D or μX .A. A non-union μ-type A is a μ-type of one of the
following forms: α, c, D @ A′ , X , A′ ⊃ A′′ or μV .B with B a non-union μ-type. We assume μ-types are contractive: μV .A
is contractive if V occurs in A only under a type constructor ⊃ or @, if at all. We henceforth redefine T to be the set of
contractive μ-types. μ-types come equipped with a notion of equivalence �μ and subtyping �μ .

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.6 (1-20)

6 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 2. Strong subtyping for μ-types (sample).

Fig. 3. Typing rules for patterns and terms.

Definition 3.2 (μ-Type Equivalence and μ-Subtyping). μ-Type Equivalence, �μ , is the least congruence closed under the rules in
Fig. 1. μ-Subtyping, �μ , is the least preorder2 closed under the rules in Fig. 2, where a subtyping context 	 is a set of assumptions
over type variables of the form V �μ W with V , W ∈ V .

(e-contr) actually encodes two rules, one for datatypes (μα.D) and one for arbitrary types (μX .A). Likewise for (e-fold).
The relation resulting from dropping (e-contr) [2,7] is called weak type equivalence [9] and is known to be too weak
to capture equivalence of its coinductive formulation (required for our proof of invertibility of subtyping cf. Prop. 3.12);
for example, types μX .A ⊃ A ⊃ X and μX .A ⊃ X cannot be equated. We can now use notation ⊕i∈1..n Ai on contractive
μ-types to denote several consecutive applications of the binary operator ⊕ irrespective of how they are associated. All such
associations yield equivalent μ-types. Regarding the subtyping rules, we adopt those for union of [28]. It should be noted
that the naïve variant of (s-rec) in which 	 � μV .A �μ μV .B is deduced from 	 � A �μ B , is known to be unsound [1].
We often abbreviate � A �μ B as A �μ B .

3.2. Typing schemes

A typing context
 (or θ) is a partial function from term variables to μ-types;
(x) = A means that
 maps x to A. We
write θ1, θ2 for the typing context that, given x, behaves as θ1 if x ∈ dom (θ1) and as θ2 if x ∈ dom (θ2); here θ1 and θ2 are
assumed to have disjoint domains. We have typing judgments for patterns, θ �p p : A, and for terms,
 � s : A. Moreover, if
σ is a substitution, the judgement
 � σ : θ holds if dom (σ) = dom (θ) and
 � σ(x) : θ(x), for all x ∈ dom (σ). Fig. 3 (top
and bottom) depicts two sets of typing rules, one defining θ �p p : A and the other defining
 � s : A. We write � θ �p p : A
to indicate that θ �p p : A is derivable (likewise for �
 � s : A). The typing schemes for patterns are straightforward. Worth
noticing, though, is that variables in contexts are handled linearly: dom (θ) = fv(p) whenever � θ �p p : A. The typing rules
for terms mostly speak for themselves except for two of them which we now comment. The first is (t-app) where Ai are
not required to be non-union types, thus allowing examples such as (4) to be typable (the outermost instance of (t-app)

is with n = 1 and A1 = Bool = true ⊕ false). Regarding (t-abs) it requests a number of conditions. First of all, each of
the patterns pi must be typable under the typing context θi , i ∈ 1..n. Another condition, indicated by (
, θi � si : B)i∈1..n , is
that the bodies of each of the branches si , i ∈ 1..n, be typable under the context extended with the corresponding θi . More

2 Reflexive and transitive binary relation.

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.7 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 7
noteworthy is the condition cmp
(
[pi : Ai]i∈1..n

)
, i.e. that the list of annotated patterns [p1 : A1, . . . , pn : An] or [pi : Ai]i∈1..n

for short, be compatible, a notion we discuss in Sec. 3.3. A summary of the judgements presented so far are:

Judgement Description Ref.
� A �μ B Types A and B are equivalent Fig. 1

	 � A �μ B A is a subtype of B under type assumptions 	 Fig. 2
θ �p p : A Pattern p has type A under typing context θ Fig. 3

 � s : A Term s has type A under typing context
 Fig. 3

 � σ : θ Substitution σ has type θ under typing context
 Sec. 3.2

3.3. Pattern compatibility

Let us say that pattern p subsumes pattern q, written p � q, if there exists a substitution σ s.t. σ p = q. Consider an
abstraction (p �θ s | q �θ ′ t) and two judgments θ �p p : A and θ ′ �p q : B . We consider two cases depending on whether p
subsumes q or not.

As already mentioned in example (3) of the introduction, if p subsumes q, then the branch q �θ ′ t will never be evaluated
since the argument will already match p. Indeed, for any term u of type B in matchable form, the application will reduce
to { {u/p} } s. Thus, in this case, in order to ensure SR we demand that B �μ A.

Suppose p does not subsume q (i.e. p 	�q). We analyze the cause of failure of subsumption in order to determine whether
requirements on A and B must be imposed. In some cases no requirements are necessary. For example in:

f �{ f :C⊃D} (c z �{z:C} c (f z)
| d y �{y:E} d y)

(5)

no relation between A (the type of c z) and B (the type of d y) is required since the branches are mutually disjoint. In other
cases, however, B �μ A is required; we seek to characterize these other cases. We focus on those where p fails to subsume
q, and π ∈ pos(p) ∩ pos(q) is an offending position in both patterns. The following table exhaustively lists them:

p|π q|π
(a) c y restriction required
(b) c d no overlapping (q 	� p)
(c) c q1 q2 no overlapping
(d) p1 p2 y restriction required
(e) p1 p2 d no overlapping

In cases (b), (c) and (e), no extra condition on the types of p and q is necessary either, since their respective sets of possible
arguments are disjoint; example (5) corresponds to the first of these. The cases where A and B must be related are (a) and
(d): for those we require B �μ A. The first of these has already been illustrated in the introduction (3), for the second one
consider:

f �{ f :D⊃A⊃C} g �{g:B⊃C} (x y �{x:D,y:A} f x y
| z �{z:B} g z)

The problematic situation is when B = D ′ @ B ′ , i.e. the type of z is another compound, which may have no relation at all
with D @ A. Compatibility ensures B �μ D @ A.

We now formalize these ideas.

Definition 3.3. Given a pattern � θ �p p : A and π ∈ pos(p), we say A admits a symbol � (with � ∈ V ∪ C ∪ {⊃, @}) at position
π iff � ∈ A‖π , where:

a‖ε � {a}
(A1 � A2)‖ε � {�} , � ∈ {⊃,@}

(A1 � A2)‖iπ � Ai‖π , � ∈ {⊃,@} , i ∈ {1,2}
(A1 ⊕ A2)‖π � A1‖π ∪ A2‖π

(μV .A′)‖π � (
{
μV .A′/V

}
A′)‖π

Note that � θ �p p : A and contractiveness of A, implies A‖π is well-defined for π ∈ pos(p).
Whenever subsumption between two patterns fails, any mismatching position is a leaf in the syntactic tree of one of the

patterns. Otherwise, both of them would have a type application constructor in that position and there would be no failure
of subsumption.

Definition 3.4. The maximal positions in a set of positions P are:

maxpos(P)�
{
π ∈ P | �π ′ ∈ P .π ′ = ππ ′′ ∧ π ′′ 	= ε

}

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.8 (1-20)

8 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
The mismatching positions between two patterns are:

mmpos(p,q)� {π | π ∈ maxpos(pos(p) ∩ pos(q)) ∧ p|π 	� q|π }

Definition 3.5. Type assignment p : A overlaps with q : B iff:

ovl(p : A,q : B)� ∀π ∈ mmpos(p,q) .A‖π ∩ B‖π 	=∅

Type assignment p : A is compatible with q : B iff:

cmp(p : A,q : B)� ovl(p : A,q : B) =⇒ B �μ A

A list of type assignments [pi : Ai]i∈1..n is compatible iff:

cmp
(
[pi : Ai]i∈1..n

)
� ∀i, j ∈ 1..n.i < j =⇒ cmp

(
pi : Ai, p j : A j

)

We conclude this section with an example that illustrates how the type system establishes a clear distinction between
semi-structured data, susceptible to path polymorphism, and “unstructured” data (represented below by base and functional
types). Suppose we wish to apply the upd function (2) from the Introduction to data structures holding values of different
types: say l prefixed values of type A1 and l2 prefixed values of type A2 ⊃ A3. Note that upd cannot be typed as it
stands. The reason is that the last branch would have to handle values of functional type and hence would receive type
cons⊕node⊕nil⊕ l2⊕ (A2 ⊃ A3). This fails to be a datatype due to the presence of the component of functional type.
As a consequence, x y cannot be typed since it requires an applicative type @. The remedy is to add an additional branch to
upd capable of handling values prefixed by l2:

upd′ = f �{ f :A1⊃B} g �{g:(A2⊃A3)⊃B} (l z �{z:A1} l (f z)
| l2 z �{z:A2⊃A3} l2 (g z)
| x y �{x:C,y:D} (upd′ f x) (upd′ f y)

| w �{w:E} w)

The type of upd′ is (A1 ⊃ B) ⊃ ((A2 ⊃ A3) ⊃ B) ⊃ (F A1,A2⊃A3 ⊃ F B,B) with

F X,Y = μα.(l@ X) ⊕ (l2@ Y) ⊕ (α @ α) ⊕ (cons⊕node⊕ nil)

3.4. Basic metatheory of typing

We present some technical lemmas that will be useful in the proof of safety and type-checking.

Lemma 3.6 (Generation Lemma). Let
 be a typing context and A a type.

1. If �
 � x : A then ∃A′ s.t. A′ �μ A and x : A′ ∈
.
2. If �
 � c : A then c �μ A.
3. If �
 � r u : A then, either:

(a) ∃D, A′ s.t. D @ A′ �μ A, �
 � r : D and �
 � u : A′; or
(b) ∃A1, . . . , An, A′ , k ∈ 1..n s.t. A′ �μ A, �
 � r : ⊕i∈1..n Ai ⊃ A′ , and �
 � u : Ak.

4. If �
 � (pi �θi si)i∈1..n : A then ∃A1, . . . , An, B s.t. ⊕i∈1..n Ai ⊃ B �μ A, cmp
(
[pi : Ai]i∈1..n

)
, � θi �p pi : Ai and �
, θi �

si : B for every i ∈ 1..n.

Lemma 3.7 is useful to deduce the shape of the type when we know the term is a data structure. Essentially it states
that every data structure that can be typed, can also be typed with a more specific non-union datatype.

Lemma 3.7 (Typing for Data Structures). Let �
 � d : A for d ∈D. Then, ∃D ∈ TD s.t. D is a non-union type, D �μ A and �
 � d : D.
Moreover,

1. If d = c, then D �μ c.
2. If d = d′ t, then ∃D ′, A′ s.t. D �μ D ′ @ A′ , �
 � d′ : D ′ , and �
 � t : A′ .

Some results on compatibility follow, the crucial one being Lemma 3.9. This next lemma shows that matching failure is
enough to guarantee that the type of the argument is not a subtype of that of the pattern.

Lemma 3.8. Let �
 � u : B, � θ �p p : A and { {u/p} } = fail, then B �μ A.

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.9 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 9
The Compatibility Lemma should be interpreted in the context of an abstraction. Assume an argument u of type B is
passed to a function where there are (at least) two branches, guarded by patterns p and q, the latter having the same type
as u. If the argument matches the first pattern of (potentially) a different type A, then ovl(p : A,q : B) must hold. Since
patterns in a well-typed abstraction are compatible, whenever p comes before q we get B �μ A, and thus �
 � u : A too.

Lemma 3.9 (Compatibility Lemma). Let �
 � u : B, � θ �p p : A, � θ ′ �p q : B and { {u/p} } be successful. Then, ovl(p : A,q : B) holds.

Recall from Sec. 3.2 that
 � σ : θ indicates that dom (σ) = dom (θ) and
 � σ(x) : θ(x), for all x ∈ dom (σ).
The following lemma assures that the substitution yielded by a successful match preserves the types of the variables in

the pattern.

Lemma 3.10 (Type of Successful Match). Let �
 � u : A, � θ �p p : A and { {u/p} } = σ . Then, �
 � σ : θ .

Finally, we recall the standard Substitution Lemma.

Lemma 3.11 (Substitution Lemma). Let �
, θ � s : A and �
 � σ : θ . Then, �
 � σ s : A.

Type safety, addressed in the next section, also relies on �μ enjoying the fundamental property of invertibility of non-
union types:

Proposition 3.12.

1. If D @ A �μ D ′ @ A′ , then D �μ D ′ and A �μ A′ .
2. If A ⊃ B �μ A′ ⊃ B ′ , then A′ �μ A and B �μ B ′ .

To prove this we appeal to the standard tree interpretation of terms and formulate an equivalent coinductive defini-
tion of strong equivalence and subtyping. For the latter, invertibility of non-union types is proved coinductively, entailing
Proposition 3.12 (cf. [3]). Further details on the coinductive presentation of type equivalence and subtyping are supplied in
Sec. 6.

4. Safety

This section addresses Safety. We start with Subject Reduction.

Proposition 4.1. If �
 � s : A and s → s′ , then �
 � s′ : A.

Proof. By induction on s. The non-trivial case is when s = (pi �θi si)i∈1..n u and s′ = { {u/pk} }sk for some k ∈ 1..n such
that { {u/pk} } = σ and { {u/pi} } = fail for every i < k. By Lemma 3.6 (3b), there exists C1, . . . , Cm , A′ such that A′ �μ A, �
 � (pi �θi si)i∈1..n : ⊕ j∈1..mCm ⊃ A′ and:

�
 � u : Ck′

for some k′ ∈ 1..m. Applying Lemma 3.6, once again, item (4) this time, to �
 � (pi �θi si)i∈1..n : ⊕ j∈1..mCm ⊃ A′ , we get
∃A1, . . . , An, B such that:

⊕i∈1..n Ai ⊃ B �μ ⊕ j∈1..mCm ⊃ A′ (6)

cmp
(
[pi : Ai]i∈1..n

)
, � θi �p pi : Ai and �
, θi � si : B for every i ∈ 1..n.

From (6), by invertibility of subtyping for non-union types, B �μ A′ and:

⊕ j∈1..mCm �μ ⊕i∈1..n Ai (7)

We want to show that �
 � u : Ak . For that we distinguish two cases:

1. If u is in matchable form, we have two possibilities:
(a) u is a data structure: then, by the Typing for Data Structures lemma, there exists a non-union datatype D such that

D �μ Ck′ and �
 � u : D .
(b) u is an abstraction: then, by Lemma 3.6 (4), there exists types C ′, C ′′ such that C ′ ⊃ C ′′ �μ Ck′ and �
 � u : C ′ ⊃ C ′′ .
Then, in both cases there exists a non-union type, say C , such that C �μ Ck′ and �
 � u : C . Then, from (7) we get:

C �μ ⊕i∈1..n Ai

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.10 (1-20)

10 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
and, since C is non-union, C �μ Al for some l ∈ 1..n. Hence, by subsumption �
 � u : Al .
If k = l we are done, so assume k 	= l. Recall the conditions for the reduction rule, where { {u/pi} } = fail for every i < k.
Then, by Lemma 3.8, we have Al �μ Ai . Thus, it must be the case that k < l. By Lemma 3.9 with hypothesis �
 � u : Al , � θk �p pk : Ak , � θl �p pl : Al and { {u/pk} } = σ we get that ovl(pk : Ak, pl : Al) holds. Additionally, we already saw that
cmp

(
[pi : Ai]i∈1..n

)
holds, thus cmp(pk : Ak, pl : Al) and by definition Al �μ Ak . Finally we conclude by subsumption once

again, �
 � u : Ak .
2. If u is not in matchable form, then pk = x and by the premises of the reductions rule we need { {u/pi} } = fail for

every i < k. Thus, necessarily k = 1. Moreover, since x � pi for every i ∈ 1..n, by compatibility we have Ai �μ Ak . Then,
from (7) we get

Ck′ �μ ⊕ j∈1..mC j �μ ⊕i∈1..n Ai �μ Ak

Thus, by subsumption, �
 � u : Ak .

Finally, in either case we have �
 � u : Ak . Now Lemma 3.10 and 3.11 with �
, θk � sk : B entails �
 � s′ : B and we
conclude by subsumption, �
 � s′ : A (recall B �μ A′ �μ A). �

Let the set of values be v ::= x v1 . . . vm | c v1 . . . vm | (pi �θi si)i∈1..n with m ≥ 0. Progress states that reduction for closed
typed terms does not get stuck before reaching a value.

Proposition 4.2. If �∅ � s : A and s is not a value, then ∃s′ s.t. s → s′ .

The proof is by induction on the term, analyzing those subterms that can still be reduced to a value.

5. Towards type-checking

Obtaining an implementation of type-checking based on the type system of Fig. 3 is not immediate for two reasons.
The first is that the system is not syntax-directed due to the presence of the subsumption typing rule. Given a term s

and assuming it is typable, there may be more than one typing derivation for it. A syntax-directed presentation of the type
system of Fig. 3 can be obtained by dropping subsumption and “hard-wiring” it back into (t-app). It is presented in Sec. 5.1.
Judgements in this new presentation will take the form
 s : A to distinguish them for the ones of the non syntax-directed
presentation.

The second reason that implementing a type-checker for CAP is not immediate is the non-trivial nature of deciding �μ .
To address the latter we will resort to a coinductive presentation of subtyping. It is well-known (cf. Sec. 6) that if such
a characterization can be provided in which the so called generating function is invertible, then a simple algorithm can be
given for deciding the relation. It should be mentioned that an invertible coinductive presentation also provides a conve-
nient mechanism for reasoning about subtyping; this fact will be used to prove that the syntax and non syntax-directed
presentations are in correspondence.

The solutions to these two obstacles, as described above, will indeed produce a type-checking algorithm for CAP, how-
ever it will be an inefficient one. Our last contribution to type-checking for CAP is to switch from a representation of types
based on trees to one based on term automata. This shall be the subject of Sec. 7.

The rest of this section develops the syntax-directed presentation of our type-system.

5.1. Syntax-directed typing

As mentioned, a syntax-directed presentation for typing in CAP, inferring judgments of the form
 s : A, may be
obtained from the rules of Fig. 3 by dropping subsumption and “hard-wiring” it back in into (t-app). Unfortunately, the so
obtained naïve syntax-directed variant:

 r : (⊕i∈1..n Ai) ⊃ B
 u : A′ A′ �μ Ak, for some k ∈ 1..n
 r u : B(t-app-al)
′

fails to capture all the required terms. In other words, there are
, s and A such that
 � s : A but no A′ �μ A such that

 s : A′ . For example, take
(x) � (c⊕ e⊃ d) ⊕ (c⊕ f ⊃ d), s � x c and A � d. Using (t-app) we can indeed prove the
judgement
 � xc : d. This follows from the fact that (c⊕ e⊃ d)⊕ (c⊕ f ⊃ d) �μ c ⊃ d and hence
 � x : c⊃ d. However,
from
 r : A and A �μ ⊕i∈1..n Ai ⊃ B , in general, we cannot infer that A is a functional type due to the presence of union
types. A complete syntax directed presentation is obtained by dropping (t-subs) from Fig. 3 and replacing (t-abs) and (t-app)

by (t-abs-al) and (t-app-al), resp. The full set of rules for the typing system is presented in Fig. 4. It is complete in the
following sense:

Proposition 5.1.

1. If �
 s : A, then �
 � s : A.

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.11 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 11
Fig. 4. Syntax-directed typing rules for terms.

Fig. 5. Type-checking for patterns and terms of CAP.

2. If �
 � s : A, then ∃A′ such that A′ �μ A and �
 s : A′ .

The proof is by induction on the derivation of
 s : A, in the first item, and by induction on the derivation of
 �
s : A, in the second. Moreover, in the proof of the second item we will resort to the coinductive presentation of subtyping
(cf. Sec. 6) to reason about the form of the types. Consider the case where the derivation of
 � s : A ends in an instance
of (t-app). Then
 � r : ⊕i∈1..n Ai ⊃ A and
 � u : Ak for some k ∈ 1..n. By the induction hypothesis we have
 r : B with
B �μ ⊕i∈1..n Ai ⊃ A. Without loss of generality, we can assume B = ⊕ j∈1..m B j with B j 	= ⊕. Moreover, by contractiveness,
we can further assume that B �μ ⊕ j∈1..m B j and B j 	= μ, ⊕ for every j ∈ 1..m. In order to continue we need to relate the
B j with ⊕i∈1..n Ai ⊃ A. This, is one example of where the invertible coinductive presentation is put to use; in this case to
determine that B j �μ ⊕i∈1..n Ai ⊃ A for every j ∈ 1..m.

In the sequel of this section we assume we have an algorithm for checking whether a type A is a subtype of type B .
We write subtype(∅, A, B) for this algorithm (the role of ∅ will be explained later). From the syntax-directed presentation
we may obtain a simple type-checking function tc(
, s) (Fig. 5) such that tc(
, s) = A iff
 s : A′ , for some A′ �μ A. The
interesting clause is that of application, where the decision of whether (t-comp-al) or (t-app-al) may be applied depends on
the result of the recursive call. If the term r is assigned a datatype, then a new compound datatype is built; if its type can
be rewritten as a union of functional types, then a proper type is constructed with each of the co-domains of the latter,
as established in rule (t-app-al). The expression unfold(A), in the clause defining tc(
, r u), is the result of unfolding type A
using rules (e-rec-l-al) and (e-rec-r-al) until the result is an equivalent type A′ = ⊕i∈1..n A′

i with A′
i 	= μ, ⊕, and then simply

verifying that A′
i = ⊃ for all i ∈ 1..n.

unfold(A ⊃ B) � A ⊃ B
unfold(⊕i∈1..n Ai) � let⊕ j∈1..mi (Aij ⊃ Bij) = unfold(Ai) foreach i ∈ 1..n in

⊕ i∈1..n
j∈1..mi

(Aij ⊃ Bij) if n > 1 and (Ai 	= ⊕)i∈1..n

unfold(μV .A) � unfold({μV .A/V } A)

unfold(_) � fail

Termination is guaranteed by contractiveness of μ-types. In the worst case it requires exponential time due to the need to
unfold types until the desired equivalent form is obtained (e.g. μX1.. . .μXn.X1 ⊃ . . . Xn ⊃ c).

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.12 (1-20)

12 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
Compatibility between branches is verified by checking ovl(p : A,q : B):

compatible(p : A,q : B) � (not overlap(p : A,q : B)) or subtype(∅, B, A)

overlap(p1 p2 : A,q1 q2 : B) � let A = A1 @ A2, B = B1 @ B2 in
overlap(p1 : A1,q1 : B1) and overlap(p2 : A2,q2 : B2)

overlap(p : A,q : B) � (p = x) or (p = q = c) or (A‖ε ∩ B‖ε 	=∅)

In overlap we may assume that it has already been checked that p has type A and q has type B . Therefore, if these are
compound patterns they can only be assigned application types, and union types may only appear at leaf positions of a
pattern. We use this correspondence to traverse both pattern and type simultaneously in linear time, which means the
worst-case execution time of the compatibility check is governed by the complexity of subtyping.

6. Coinductive presentation of subtyping

Coinductive characterizations of subsets of T × T whose generating function � is invertible admit a simple (although
not necessarily efficient) algorithm for subtype membership checking and consists in “running � backwards” [27, Sec. 21.5].
This strategy is supported by the fact that contractiveness of μ-types guarantees a finite state space to explore (i.e. unfolding
these types results in regular trees); invertibility further guarantees that there is at most one way in which a member of ν�,
the greatest fixed-point of �, can be generated. Invertibility of � : ℘ (T × T) → ℘ (T × T) means that for any 〈A, B〉 ∈ T ,
the set {X ∈ ℘ (T × T) | 〈A, B〉 ∈ �(X)} is either empty or contains a unique member. We say that a set S ∈ ℘ (T × T)

is �-dense if S ⊆ �(S). For monotone �, the greatest fixed-point of � (written ν�), is the largest �-dense set. We next
introduce invertible generating functions for equivalence and subtyping.

6.1. Equivalence checking

A coinductive presentation of type equality over μ-types is given by the rules in Fig. 6. The resulting relation �co
μ is

defined by means of these rules, interpreted coinductively as indicated by the double lines. Rules (e-refl-al), (e-comp-al) and
(e-func-al) are standard. We describe the remaining ones. The rule (e-union-al) makes use of functions f and g to encode
the ACI nature of ⊕. Letters C, D, used in rules (e-rec-l-al) and (e-rec-r-al), denote contexts of the form:

A1 ⊕ . . . Ai−1 ⊕ � ⊕ Ai+1 ⊕ . . . ⊕ An

where � denotes the hole of the context, A j 	= ⊕ for all j ∈ 1..n \ i and Al 	= μ for all l ∈ 1..i − 1. Note that, in particular,
C may take the form �. These contexts help identify the first occurrence of a μ constructor within a maximal union. For
instance, consider types a ⊕ (μα.b⊃ α) and a ⊕ (b⊃ μα.b⊃ α) and the derivation:

====== (e-refl-al)

a�co
μ a

====== (e-refl-al)

b�co
μ b

b⊃ μα.b⊃ α �co
μ b⊃ μα.b⊃ α

========================= (e-rec-r-al)

b⊃ μα.b⊃ α �co
μ μα.b⊃ α

====================== (e-rec-l-al)

μα.b⊃ α �co
μ μα.b⊃ α

====================================== (e-func-al)

b⊃ μα.b⊃ α �co
μ b⊃ μα.b⊃ α

=== (e-union-al)

a⊕ (b⊃ μα.b⊃ α) �co
μ (b⊃ μα.b⊃ α) ⊕ a

=================================== (e-rec-l-al)

a⊕ (μα.b⊃ α) �co
μ (b⊃ μα.b⊃ α) ⊕ a

Note that there is only one applicable rule at each step due to the conditions on rules (e-union-al) and (e-rec-r-al). This
allows us to guarantee the invertibility of the generating function for �co

μ . Moreover, �co
μ coincides with �μ . These two prop-

erties will allow us to check A �μ B by using the invertibility of the generating function (implicit in the rules of Fig. 6) for
�co

μ .

Proposition 6.1. A �μ B iff A �co
μ B.

The proof of Proposition 6.1 relies on an intermediate relation �T over the possibly infinite trees resulting from the com-
plete unfolding of μ-types. This relation is defined using the same rules as in Fig. 6 except for two important differences:
1) the relation is defined over regular (infinite) trees, and 2) rules (e-rec-l-al) and (e-rec-r-al) are dropped.

As mentioned above, we can resort to invertibility of the generating function to check for �co
μ . Fig. 7 presents the

algorithm. It uses seq e1 . . . en which sequentially evaluates each of its arguments, returning the value of the first of these
that does not fail. Evaluation of eqtype(∅, A, B) can have one of two outcomes: fail, meaning that A 	�co

μ B , or a set
S ∈ ℘ (T × T) that is �-dense with 〈A, B〉 ∈ S , proving that A �co

μ B .

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.13 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 13
Fig. 6. Coinductive axiomatization of type equality for contractive μ-types.

Fig. 7. Equivalence checking algorithm.

6.2. Subtype checking

The approach to subtype checking is similar to that of type equivalence. Consider the relation �co
μ over μ-types defined

in Fig. 8. It captures �μ:

Proposition 6.2. A �μ B iff A �co
μ B.

The proof strategy is similar to that of Proposition 6.1. In this case we resort to a proper subtyping relation for infinite
trees that essentially results from dropping rules (s-rec-l-al) and (s-rec-r-al) in Fig. 8.

Unfortunately, the generating function determined by the rules in Fig. 8, let us call it ��co
μ

, is not invertible. Notice that
(s-union-r-al) overlaps with itself. For example, c �co

μ (c⊕d) ⊕ (e⊕ c) belongs to two ��co
μ

-saturated sets (i.e. sets X such
that X ⊆ ��co

μ
(X)):

X1 = {〈c, (c⊕d) ⊕ (e⊕ c)〉, 〈c, (c⊕d)〉, 〈c,c〉}
X2 = {〈c, (c⊕d) ⊕ (e⊕ c)〉, 〈c, (e⊕ c)〉, 〈c,c〉}

However, since this is the only source of non-invertibility we easily derive a subtype membership checking function
subtype that, in the case of (s-union-r-al), simply checks all cases (cf. [3]).

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.14 (1-20)

14 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 8. Coinductive axiomatization of subtyping for contractive μ-types.

7. Towards efficient type-checking

The algorithms presented so far are clear but inefficient. The number of recursive calls in eqtype and subtype depends
on the size of the type, and unfolding recursive types may increment their size exponentially. This section draws from ideas
in [21,25,14] and adopts a dag-representation of recursive types which are encoded as term automata (described below).
Associativity is handled by resorting to n-ary unions, commutativity and idempotence of ⊕ is handled by how types are
decomposed in their automaton representation (cf. check in Fig. 12). The algorithm itself is tc of Fig. 5 except that:

1. μ-types are represented with term automata, rendering unfold linear.
2. The subtyping algorithm is optimized, based on the new representation of types and following ideas from [25,14].

The end product is an algorithm with complexity O(n7d) where n is the size of the input (i.e. that of
 plus t) and d is the
maximum arity of the n-ary unions occurring in
 and t . Note that all the information needed to type t is either in the
context or annotated within the term itself. Thus, a linear relation can be established between the size of the input and the
size of the resulting type; and we can think of n as the size of the latter.

7.1. Term automata

μ-types may be understood as finite dags since their infinite unfolding produce regular (infinite) trees. We further
simplify the types whose dags we consider by flattening the union type constructor and switching to an alphabet where
unions are n-ary: L∗ �

{
a0 | a ∈ V ∪ C

}∪{
@2,⊃2

}∪{⊕n | n > 1
}

and we let T∗ stand for possibly infinite trees whose nodes
are symbols in L∗ . μ-types may be interpreted in T∗ simply by unfolding and then considering maximal union types as
their underlying n-ary union types [13]. We write �•�∗ for this function and use meta-variables A, B, . . . when referring to
elements of T∗ . Types in T∗ may be represented as term automata [1].

Definition 7.1. A term automaton is a tuple M = 〈Q , 	, q0, δ, �〉 where:

1. Q is a finite set of states.
2. 	 is an alphabet where each symbol has an associated arity.
3. q0 is the initial state.
4. δ : Q ×N → Q is a partial transition function between states, defined over the arity of the symbol associated by � to the origin

state.
5. � : Q → 	 is a total labelling function over states.

We write MA for the automaton associated to type A. MA recognizes all paths from the root of A to any of its
sub-expressions. Fig. 9 illustrates an example type, namely ListA = μα.nil⊕ (cons@ A @ α), represented as an infinite tree
and as a term automaton MListA . If q0 is the initial state of MListA and ̂δ denotes the natural extension of δ to sequences of
symbols, then �(̂δ(q0, 211)) = cons. As mentioned, the regular structure of trees arising from types yields automata with a
finite number of states.

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.15 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 15
Fig. 9. The type ListA represented as an infinite tree and as a term automaton.

Fig. 10. Subtyping relation up-to R over T∗ .

7.2. Subtyping and subtype checking

We next present a coinductive notion of subtyping over T∗ . �R
T∗ is a binary relation defined up-to a set of hypothesis

R (Fig. 10). For R = ∅, �R
T∗ coincides with �μ modulo the interpretation of types as trees, and hence with �co

μ (Proposi-
tion 6.2).

Proposition 7.2. A �μ B iff � A�∗ �∅

T∗ � B �∗ .

So we can use �∅

T∗ to determine whether types are related via �μ: take two types, construct their automaton represen-
tation and check whether these are related via �∅

T∗ . Moreover, our formulation of �R
T∗ will prove convenient for proving

correctness of our subtyping algorithm.

7.2.1. Algorithm description
The algorithm that checks whether types are related by the new subtyping relation builds on ideas from [14]. Our

presentation is more general than required for subtyping; this general scheme will also be applicable to type equivalence,
as we shall later see. Call p ∈ T∗ × T∗ valid if p ∈ �∅

T∗ . The algorithm consists of two phases. The aim of the first one is
to construct a set U ⊆ T∗ × T∗ that delimits the universe of pairs of types that will later be refined to obtain a set of only
valid pairs. It starts off with an initial pair (cf. Fig. 11, buildUniverse) and then explores pairs of sub-terms of both types in
this pair by decomposing the type constructors (cf. Fig. 11, children). Note that, given p, the algorithm may add invalid pairs
in order to prove the validity of p. The second phase shall be in charge of eliminating these invalid pairs. Note that the first
phase can easily be adapted to other relations by simply redefining function children. U may be interpreted as a directed

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.16 (1-20)

16 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 11. Pseudo-code of the first phase of the algorithm (building the universe).

Fig. 12. Pseudo-code of the second phase (relation refinement).

graph where an edge from pair p to q ∈ children(p) is added, meaning that q might belong to the support set of p in the
final relation �∅

T∗ . In this case we say that p is a parent of q. Since types represented as term automata could have cycles, a
pair may be encountered more than once during the creation of U , meaning that it has more than one parent in the graph.
Set u(p) to be the incoming degree of p, i.e. the number of parents.

During the second phase (Fig. 12, gfp�) the following sets are maintained, all of which conform a partition of U :

• W : pairs whose validity has yet to be determined
• S: pairs considered conditionally valid
• F : invalid pairs

The algorithm repeatedly takes elements in W and, in each iteration, transfers to S the selected pair p if its validity can
be proved assuming valid only those pairs which have not been discarded up until now (i.e. those in W ∪ S). Otherwise,
p is transferred to F and all of its parents in S need to be reconsidered (their validity up-to W may have changed). Thus
these parents are moved back to W (cf. Fig. 12, invalidate). Intuitively, S contains elements in �W

T∗ . The process ends when
W is empty. The only aspect of this second phase specific to �W

T∗ is function check, which may be redefined to be other
suitable up-to relations.

7.2.2. Correctness
It is based on the fact that S may be considered a set of valid pairs assuming the validity of those in W . More generally,

the following holds:

Proposition 7.3. The algorithm preserves the following invariant:

• 〈W , S, F 〉 is a partition of U
• F is composed solely of invalid pairs
• S ⊆ ��W

T∗ (S)

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.17 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 17
Fig. 13. Equivalence relation up-to R over T∗ (sample).

When the main cycle ends we know that W is empty, and therefore that S ⊆ ��∅

T∗ (S). The coinduction principle then

yields S ⊆ �∅

T∗ (i.e. every pair in S is valid) and therefore we are left to verify whether the original pair of types is in S
or F .

Corollary 7.4. A �∅

T∗ B iff gfp�(〈A,B〉) = true.

7.2.3. Complexity
The first phase consists of identifying relevant pairs of sub-terms in both types being evaluated. If we call N and N ′ the

size of such types (considering nodes and edges in their representations) we have that the size and cost of building the
universe U can be bounded by O(N N ′). As we shall see, the total cost of the algorithm is governed by operations in the
second phase.

As stated in [14], since any pair can be invalidated at most once (in which case u(p) nodes are transferred back to W
for reconsideration) the amount of iterations in the refinement stage can be bounded by

∑
p∈U 1 + ∑

p∈U u(p) = ∑
p∈U (1 + u(p)) = size(U)

Assuming that set operations can be performed in constant time, the cost of evaluating each pair in the main loop is
that of deciding whether to suspend or invalidate it and, in the latter case, the cost of the invalidation process. The decision
whether to transfer the pair is computed in the function check, which always performs a constant amount of operations on
non-union types. The worst case involves checking pairs of the form 〈⊕n

i Ai, ⊕m
j Bi〉, which can be resolved by maintaining

in each node a table indicating, for every Ai , the amount of pairs 〈Ai, B j〉 that have not yet been invalidated. Using this
approach, this check can be performed in O(d) operations, where d is a bound on the size of both unions. Whenever a pair
is invalidated, all tables present in its immediate parents are updated as necessary.

Finally we resort to an argument introduced in [14] to argue that the cost of invalidating an element can be seen as
O(1): a new iteration will be performed for each of the u(p) pairs added to W when invalidating p. Because of this, a more
precise bound for the cost of the complete execution of the algorithm can be obtained if we consider the cost of adding
each of these elements to W as part of the iteration itself, yielding an amortized cost of O(d) operations for each iteration.
This gives a total cost of O(size(U)d) for the subtyping check, i.e. O(N N ′d) in terms of the input automata.

Let us call n and n′ the amount of constructors in types A and B , respectively. N and N ′ are the sizes of automata
representing these types, and can consequently be bounded by O(n2) and O(n′ 2). Therefore, the complexity of the algorithm
can be expressed as O(n2n′ 2d).

7.3. Equivalence checking

In this section we adapt the previous algorithm to obtain one for equivalence checking with the same complexity cost.
The equivalence relation �R

T∗ up-to R results from replacing rules (s-func-up), (s-union-up), and (s-union-r-up) from Fig. 10
by their counterparts in Fig. 13.

Proposition 7.5. A �μ B iff � A�∗ �∅

T∗ � B �∗ .

The algorithm is the result of adapting the scheme presented for subtyping to the new relation �R
T∗ . This is done by

redefining functions children and check from the first and second phase respectively (cf. Fig. 14). For the former the only
difference is on rule (e-func-up), where we need to add pair 〈A′, B′〉 instead of 〈B′, A′〉, added for subtyping. This could have
been avoided by resorting the symmetry of �R

T∗ , but is meant to emphasize the fact that phase one can easily be adapted
if needed. For the refinement phase we need to properly check the premises of rules (e-union-up) and (e-union-r-up), while
the others remain the same.

With these considerations is easy to see that, in each iteration, S consists of pairs in the relation �W
T∗ , getting S ⊆ �∅

T∗
at the end of the process.

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.18 (1-20)

18 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
Fig. 14. Pseudo-code of first (left) and second (right) phase for equivalence checking.

Proposition 7.6. The algorithm preserves the following invariant:

• 〈W , S, F 〉 is a partition of U
• F is composed solely of invalid pairs
• S ⊆ ��W

T∗ (S)

Correctness of the algorithmic presentation of type equivalence follows just like for subtyping (Corollary 7.4), where gfp�
behaves similar to gfp� except that the check function is adapted for type equivalence.

Corollary 7.7. A �∅

T∗ B iff gfp�(〈A,B〉) = true.

For the complexity analysis, recall that uppercase N denotes the size of the automata representing a type. Notice that
the size of the built universe is the same as before and overall cost is governed by phase two, which has at most O(N N ′)
iterations. For the cost of each iteration it is enough to analyze the complexity of check, since the rest of the scheme
remains the same. As we remarked before, the only difference in check between subtyping and equality is in the cases
involving unions. Here the worst case is when checking rule (e-union-up) that requires the existence of two functions f and
g relating elements of each type. This can be done in linear time by maintaining tables with the count of non-invalidated
pairs of descendants, as indicated in Sec. 7.2.3. Thus, the cost of an iteration is O(d), resulting in an overall cost of O(N N ′d)

as before.

7.4. Type checking

Let us revisit type-checking (tc). As already discussed, it linearly traverses the input term, the most costly operations
being those that deal with application and abstraction. These cases involve calling subtype. Notice that these calls do not
depend directly on the input to tc. However, a linear correspondence can be established between the size of the types
being considered in subtype and the input to the algorithm, since such expressions are built from elements of
 (the input
context) or from annotations in the input term itself. Consider for instance subtype(∅, A, B) with a and b the size of each
type resp. This has complexity O(a2b2d) and, from the discussion above, we can refer to it as O(n4d), where n is the size
of the input to tc (i.e. that of
 plus t). Similarly, we may say that unfold is linear in n.

We now analyze the application and abstraction cases in detail:

Application First it performs a linear check on the type to verify if it is a datatype. If so it returns. Otherwise, a second
linear check is required (unfold) in order to then perform as many calls to subtype as elements there are in the
union of the functional types. This yields a local complexity of O(n4d2).

Abstraction First there are as many calls to tcp (the algorithm for type-checking patterns) as branches the abstraction has.
Note that tcp has linear complexity in the size of its input and this call is instantiated with arguments pi and
θi which occur in the original term. All these calls, taken together, may thus be considered to have linear time
complexity with respect to the input of tcp. Then it is necessary to perform a quadratic number (in the number
of branches) of checks on compatibility. We have already analyzed that compatibility in the worst case involves
checking subtyping. If we assume a linear number of branches w.r.t. the input, we obtain a total complexity of
O(n6d) for this case.

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.19 (1-20)

M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–••• 19
Finally, the total complexity of tc is governed by the case of the abstraction, and is therefore O(n7d).

7.5. Prototype implementation

A prototype in Scala is available [16]. It implements tc and resorts to the efficient algorithm for subtyping and type
equivalence described above. It also includes further optimizations. For example, following a suggestion in [14], the order
in which elements in W are selected for evaluation relies on detecting strongly connected components, using Tarjan’s [15]
algorithm of linear cost and topologically sorting them in reverse order. In the absence of cycles this results in evaluat-
ing every pair only after all its children have already been considered. For cyclic types, pairs for which no order can be
determined are encapsulated within the same strongly connected component.

8. Conclusions

A type system is proposed for a calculus that supports path polymorphism and the fundamental property of Safety is
addressed. The system includes type application, constants as types, union and recursive types. This result relies crucially
on a novel notion of pattern compatibility and on the invertibility of subtyping for μ-types.

For the proposed system, efficient type-checking is also addressed. This requires the formulation of a syntax-directed
variant of the system. Also, invertible coinductive formalizations of type equivalence and subtyping are devised. The first
naïve but correct type-checking algorithm proved to be inefficient (exponential in the size of the type). However, efficiency
is considerably improved by adopting a representation of type expressions based on automata techniques. Indeed, the final
algorithm has polynomial complexity in the size of the input.

Regarding future work an outline of possible avenues follows. These are aimed at enhancing the expressiveness of CAP
itself and then adapting the techniques presented here to obtain efficient type checking algorithms.

• The addition of parametric polymorphism (e.g. in the style of F<: [8,27,11]).
• Strong normalization requires devising a notion of positive/negative occurrence in the presence of strong μ-type equal-

ity, which is known not to be obvious [5, page 515].
• Exploring connections between our use of term automata for subtype checking and tree automata [12].
• A more ambitious extension is that of dynamic patterns, namely patterns that may be computed at run-time, PPC being

the prime example of a calculus supporting this feature.

References

[1] R.M. Amadio, L. Cardelli, Subtyping recursive types, ACM Trans. Program. Lang. Syst. 15 (4) (1993) 575–631.
[2] Z.M. Ariola, J.W. Klop, Equational term graph rewriting, Fund. Inform. 26 (3/4) (1996) 207–240.
[3] M. Ayala-Rincón, E. Bonelli, J. Edi, A. Viso, Typed path polymorphism. Extended report, https://drive .google .com /open ?id =

1d4d8mA05KLgxBuCPbuGZRSE3T2GglPYz, 2017.
[4] M. Ayala-Rincón, E. Bonelli, A. Viso, Type soundness for path polymorphism, Electron. Notes Theor. Comput. Sci. 323 (2016) 235–251.
[5] H.P. Barendregt, W. Dekkers, R. Statman, Lambda Calculus with Types. Perspectives in Logic, Cambridge University Press, 2013.
[6] M. Brandt, F. Henglein, Coinductive axiomatization of recursive type equality and subtyping, in: P. de Groote (Ed.), Proceedings of the TLCA ’97, Nancy,

France, April 2–4, 1997, in: Lecture Notes in Computer Science, vol. 1210, Springer, 1997, pp. 63–81.
[7] M. Brandt, F. Henglein, Coinductive axiomatization of recursive type equality and subtyping, Fund. Inform. 33 (4) (1998) 309–338.
[8] L. Cardelli, S. Martini, J.C. Mitchell, A. Scedrov, An extension of system F with subtyping, in: T. Ito, A.R. Meyer (Eds.), Proceedings of the TACS ’91,

Sendai, Japan, September 24–27, 1991, in: Lecture Notes in Computer Science, vol. 526, Springer, 1991, pp. 750–770.
[9] F. Cardone, An algebraic approach to the interpretation of recursive types, in: J.-C. Raoult (Ed.), CAAP, in: Lecture Notes in Computer Science, vol. 581,

Springer, 1992, pp. 66–85.
[10] H. Cirstea, C. Kirchner, The rewriting calculus – part I and II, Log. J. IGPL 9 (3) (2001) 339–410.
[11] D. Colazzo, G. Ghelli, Subtyping recursion and parametric polymorphism in kernel fun, Inform. and Comput. 198 (2) (2005) 71–147.
[12] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, M. Tommasi, Tree automata techniques and applications, http://

tata .gforge .inria .fr, 2008.
[13] B. Courcelle, Fundamental properties of infinite trees, Theoret. Comput. Sci. 25 (1983) 95–169.
[14] R. Di Cosmo, F. Pottier, D. Rémy, Subtyping recursive types modulo associative commutative products, in: P. Urzyczyn (Ed.), Proceedings of the TLCA

2005, Nara, Japan, April 21–23, 2005, in: Lecture Notes in Computer Science, vol. 3461, Springer, 2005, pp. 179–193.
[15] P.J. Downey, R. Sethi, R.E. Tarjan, Variations on the common subexpression problem, J. ACM 27 (4) (1980) 758–771.
[16] J. Edi, A. Viso, Prototype implementation of efficient type-checker in scala, https://github .com /juanedi /cap -typechecking, 2016.
[17] J. Edi, A. Viso, E. Bonelli, Efficient type checking for path polymorphism, in: T. Uustalu (Ed.), 21st International Conference on Types for Proofs and

Programs, TYPES 2015, May 18–21, 2015, Tallinn, Estonia, in: LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, vol. 69, 2015, pp. 6:1–6:23.
[18] B. Jay, Pattern Calculus – Computing with Functions and Structures, Springer, 2009.
[19] B. Jay, D. Kesner, Pure pattern calculus, in: P. Sestoft (Ed.), ESOP, in: Lecture Notes in Computer Science, vol. 3924, Springer, 2006, pp. 100–114.
[20] B. Jay, D. Kesner, First-class patterns, J. Funct. Programming 19 (2) (2009) 191–225.
[21] T. Jim, J. Palsberg, Type Inference in Systems of Recursive Types with Subtyping, 1997.
[22] W. Kahl, Basic pattern matching calculi: a fresh view on matching failure, in: Y. Kameyama, P.J. Stuckey (Eds.), Proceedings of the Functional and Logic

Programming, 7th International Symposium, FLOPS 2004, Nara, Japan, April 7–9, 2004, in: Lecture Notes in Computer Science, vol. 2998, Springer, 2004,
pp. 276–290.

[23] J.W. Klop, V. van Oostrom, R.C. de Vrijer, Lambda calculus with patterns, Theoret. Comput. Sci. 398 (1–3) (2008) 16–31.
[24] D. Kozen, J. Palsberg, M.I. Schwartzbach, Efficient recursive subtyping, Math. Structures Comput. Sci. 5 (1) (1995) 113–125.
[25] J. Palsberg, T. Zhao, Efficient and flexible matching of recursive types, Inform. and Comput. 171 (2) (2001) 364–387.

http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F746F706C61732F416D6164696F433933s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F6675696E2F4172696F6C614B3936s1
https://drive.google.com/open?id=1d4d8mA05KLgxBuCPbuGZRSE3T2GglPYz
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F656E7463732F5669736F42413136s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A626F6F6B732F6461676C69622F30303332383430s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F746C63612F4272616E6474483937s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F746C63612F4272616E6474483937s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F6675696E2F4272616E6474483938s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F746163732F43617264656C6C694D4D533931s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F746163732F43617264656C6C694D4D533931s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F636161702F436172646F6E653932s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F636161702F436172646F6E653932s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F6967706C2F436972737465614B3031s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F69616E64632F436F6C617A7A6F473035s1
http://tata.gforge.inria.fr
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F7463732F436F757263656C6C653833s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F746C63612F436F736D6F50523035s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F746C63612F436F736D6F50523035s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F6A61636D2F446F776E657953543830s1
https://github.com/juanedi/cap-typechecking
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F74797065732F45646956423135s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F74797065732F45646956423135s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A626F6F6B732F6461676C69622F30303233363837s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F65736F702F4A61794B3036s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F6A66702F4A61794B3039s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib4A696D3A31393937s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F666C6F70732F4B61686C3034s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F666C6F70732F4B61686C3034s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F666C6F70732F4B61686C3034s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F7463732F4B6C6F704F563038s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F6D7363732F4B6F7A656E50533935s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F69616E64632F50616C73626572675A3031s1
https://drive.google.com/open?id=1d4d8mA05KLgxBuCPbuGZRSE3T2GglPYz
http://tata.gforge.inria.fr

JID:TCS AID:11917 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.254; Prn:15/03/2019; 12:01] P.20 (1-20)

20 M. Ayala-Rincón et al. / Theoretical Computer Science ••• (••••) •••–•••
[26] B. Petit, Semantics of typed lambda-calculus with constructors, Log. Methods Comput. Sci. 7 (1) (2011).
[27] B.C. Pierce, Types and Programming Languages, MIT Press, 2002.
[28] J. Vouillon, Subtyping union types, in: J. Marcinkowski, A. Tarlecki (Eds.), CSL, in: Lecture Notes in Computer Science, vol. 3210, Springer, 2004,

pp. 415–429.
[29] T. Zhao, Type Matching and Type Inference for Object-Oriented Systems, Ph.D. thesis, Computer Science, Purdue University, 2002.

http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A6A6F75726E616C732F636F72722F6162732D313030392D33343239s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A626F6F6B732F6461676C69622F30303035393538s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F63736C2F566F75696C6C6F6E3034s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib44424C503A636F6E662F63736C2F566F75696C6C6F6E3034s1
http://refhub.elsevier.com/S0304-3975(19)30124-0/bib5A68616F3A32303032s1

	Typed path polymorphism
	1 Introduction
	2 Syntax and operational semantics of CAP
	3 Typing system
	3.1 Types
	3.2 Typing schemes
	3.3 Pattern compatibility
	3.4 Basic metatheory of typing

	4 Safety
	5 Towards type-checking
	5.1 Syntax-directed typing

	6 Coinductive presentation of subtyping
	6.1 Equivalence checking
	6.2 Subtype checking

	7 Towards efﬁcient type-checking
	7.1 Term automata
	7.2 Subtyping and subtype checking
	7.2.1 Algorithm description
	7.2.2 Correctness
	7.2.3 Complexity

	7.3 Equivalence checking
	7.4 Type checking
	7.5 Prototype implementation

	8 Conclusions
	References

