
Theoretical Computer Science 672 (2017) 36–63
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On abstract normalisation beyond neededness

Eduardo Bonelli a,b, Delia Kesner c, Carlos Lombardi a,∗, Alejandro Ríos d

a Departamento de Ciencia y Tecnología, Univ. Nacional de Quilmes, Roque Sáenz Peña 352 (1876), Bernal, Prov. de Buenos Aires, Argentina
b CONICET, Av. Rivadavia 1917 (1033), C.A. Buenos Aires, Argentina
c IRIF, CNRS and Univ. Paris-Diderot, Case 7014, 75205 Paris Cedex 13, France
d Univ. de Buenos Aires, Pabellón I, Ciudad Universitaria (1428), C.A. Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2014
Received in revised form 30 December 2016
Accepted 30 January 2017
Available online 20 February 2017
Communicated by P.-A. Melliès

Keywords:
Rewriting
Normalisation
Neededness
Sequentiality
Pattern calculi

We study normalisation of multistep strategies, strategies that reduce a set of redexes at a
time, focusing on the notion of necessary sets, those which contain at least one redex that
cannot be avoided in order to reach a normal form. This is particularly appealing in the
setting of non-sequential rewrite systems, in which terms that are not in normal form may
not have any needed redex. We first prove a normalisation theorem for abstract rewrite
systems (ARS), a general rewriting framework encompassing many rewriting systems
developed by P-A. Melliès [20]. The theorem states that multistep strategies reducing
so called necessary and never-gripping sets of redexes at a time are normalising in any
ARS. Gripping refers to an abstract property reflecting the behaviour of higher-order
substitution. We then apply this result to the particular case of PPC, a calculus of patterns
and to the lambda-calculus with parallel-or.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is about computing normal forms in rewrite systems. Consider the λ-calculus. Let K stand for the term
λx.λy.x, I for λx.x and � for (λx.x x) (λx.x x). Then s := K I � admits an infinite reduction sequence of β-steps, namely the
one obtained by repeatedly reducing �, and hence s, to itself. However, it also reduces in two β-steps to the normal form
I by repeatedly reducing the leftmost–outermost redex:

K I � →
β

(λy.I)� →
β

I (1)

The reason this strategy normalises is that the redexes it selects are unavoidable or needed in any reduction to normal form.
Indeed, leftmost–outermost redexes are needed in λ-calculus [6]. This paper studies normalisation for the broader case of
rewriting systems where needed redexes may not exist. It does so by adapting Melliès’ abstract rewriting framework [20]
to encompass Sekar and Ramakrishnan’s notion of needed sets of redexes [22]. In doing so, the relatively unfamiliar notion of
gripping, used only marginally in the work of Melliès, is shown to play a crucial rôle, thus giving it an interest of its own.

Normalisation in TRS. Although in the λ-calculus the leftmost–outermost strategy does indeed attain a normal form (if
it exists) [12], the same cannot be said for term rewriting systems (TRS). For example, consider the TRS:

* Corresponding author.
E-mail addresses: eabonelli@gmail.com (E. Bonelli), Delia.Kesner@pps.univ-paris-diderot.fr (D. Kesner), clombardi@unq.edu.ar (C. Lombardi),

rios@dc.uba.ar (A. Ríos).
http://dx.doi.org/10.1016/j.tcs.2017.01.025
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.01.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:eabonelli@gmail.com
mailto:Delia.Kesner@pps.univ-paris-diderot.fr
mailto:clombardi@unq.edu.ar
mailto:rios@dc.uba.ar
http://dx.doi.org/10.1016/j.tcs.2017.01.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.01.025&domain=pdf

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 37
a → b
c → c

f (x,b) → d

and the term t := f (c, a). The leftmost–outermost strategy selects redex c in t producing an infinite reduction sequence. Yet
this term admits a normal form:

f (c,a) → f (c,b) → d (2)

For left-normal TRS (those in which the constant and function symbols precede, in the linear term notation, the variable
occurrences in the left-hand side of rewrite rules), the leftmost–outermost strategy does indeed normalise [21]; the same
applies to left-normal higher-order rewrite systems [19]. Alternatively, one might decide to reduce all outermost redexes at
once: parallel-outermost reduction is normalising for (almost) orthogonal TRS [21], where an orthogonal TRS is one whose
rewrite rules are left-linear and non-overlapping, and an almost orthogonal TRS has trivial critical pairs at the root, if at all.
Parallel-outermost reduction is also normalising for almost orthogonal systems in higher-order rewriting [24].

Needed redexes. There is indeed a deep connection between redexes reduced in (1) and (2): they are unavoidable in
the sense that in any reduction sequence from s and t to normal form, they (or their residuals) must be reduced at some
point. Such redexes are called needed and a theory of needed redexes was developed by Huet and Lévy [14] for orthogonal
TRS. In [14] it is shown that in these TRS, terms that are not in normal form always have at least one needed redex and
that reduction of needed redexes is normalising. They also showed that determining whether a redex is needed or not is
undecidable in general; this led them to study restrictions of the class of orthogonal TRS (the strongly sequential TRS) in
which needed redexes could be identified effectively.

A fundamental limitation of Huet and Lévy’s work is the requirement of orthogonality. This requirement does have its
reasons though: in non-orthogonal TRS, terms that are not in normal form may not have needed redexes. A paradigmatic
example is the “parallel-or” TRS:

or(x,tt) → tt
or(tt, x) → tt

The term u := or(or(tt, tt), or(tt, tt)) has four redexes: the occurrence of or(tt, tt) on the left is an instance of the
first and second rules of the parallel-or TRS, and the one on the right is also an instance of both of these rules. None of
these is needed since one can always obtain a normal form without reducing it. For example, the reduction sequence:

or(or(tt,tt),or(tt,tt)) → or(or(tt,tt),tt) → tt (3)

never reduces any of the two redexes on the left. A similar argument applies to the two redexes on the right in u. In fact
u seems to suggest that no sensible normalising strategy, picking one redex at a time by looking solely at the term, can be
constructed. The impossibility to construct an effective needed strategy can even occur in orthogonal TRSs, a paradigmatic
example being Gustave’s TRS [7].

Any almost orthogonal TRS,1 such as the parallel-or example above, does admit a normalising one-step reduction strat-
egy [18,3]. There is a price to pay though, namely that such a strategy has to perform lookahead (in the form of cycle
detection within terms of a given size).

Another example of the absence of needed redexes in non-orthogonal rewrite systems are pattern calculi. Let p be a data
constructor representing a person including her/his name, gender and marital status. For example, p j m s represents the
person named j (for “Jack”) who is male and single. A function such as λp x m s.x returns the name of any person that is
male and single. It computes by matching the pattern p x m s against its argument: reporting an appropriate substitution, if
it is successful, or a distinguished constant f, if it fails (cf. Sec. 2). Consider the following term which results from applying
the above mentioned function to a person called a (for “Alice”) that is female and divorced (recall from above that I is the
identity function λx.x):

t0 := (λp xms.x)(pa (If)(Id)) (4)

This term has two redexes, namely If and Id. Note that the term itself is not a redex since the success or failure of the
match between pattern and argument cannot be determined. We have two possible reduction sequences to normal form:

(λp xms.x)(pa (If)(Id)) → (λp xms.x)(pa (If)d) → f

(λp xms.x)(pa (If)(Id)) → (λp xms.x)(paf(I d)) → f

The first reduction sequence does not reduce If; the second does not reduce Id. Therefore the term t0 does not contain
any needed redexes.

Beyond neededness. This prompts one to consider whether it is possible to obtain normalisation results for possibly
overlapping, and more generally non-sequential ([14]) rewrite systems. The following avenues have been pursued in this
direction:

1 In fact, any almost orthogonal Combinatory Reduction Systems [19].

38 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
1. Boudol [11] studies the reduction space of possibly non-orthogonal TRS and defines needed reduction for these systems.
2. Melliès [20] extends the notion of needed redex to that of a needed derivation (actually external derivation, a general-

ization of the notion of neededness).
3. van Oostrom [23] proves that outermost-fair reduction is normalising for weakly orthogonal fully-extended higher-order

pattern rewrite systems (PRS). An outermost fair strategy is one in which no outermost redex is ignored (i.e. not con-
tracted) indefinitely.

4. Sekar and Ramakrishnan [22] extend the notion of a needed redex to that of a set of redexes, called a necessary set, in
the context of first-order rewriting.

The results of the first item above are restricted to first-order rewriting and hence are not applicable to our pattern calcu-
lus example. The second item above suffers from two problems. The first is that it requires the calculus to verify a property
(among others) called stability which fails for some pattern calculi such as the one of our example (cf. Sec. 4.2). Also, it
does not seem obvious how to implement the proposed strategies. For example, in the case of or(or(tt, tt), or(tt, tt)),
although there are no needed redexes, [20] declares the reduction sequence (3) itself to be external. It then goes on to show
that composition of these external reduction sequences are normalising. So in order to normalise a term one would have
to construct such reduction sequences, for which no effective tools are available. In [23] a number of normalisation results
are proved for PRS, the most relevant being that outermost-fair strategies are normalising for weakly orthogonal PRS. There
are a number of notable differences with our work however. The fundamental aspect that sets our paper apart from [23] is
the axiomatic development that we pursue. In [23], the crucial notions of contribution and copying rely heavily on positions
since it is terms that are rewritten. In contrast, we propose a number of axioms that are assumed to hold over objects and
steps whose compliance guarantees normalisation. The nature of the objects that are rewritten is irrelevant.

We now focus our attention on [22] mentioned above, the starting point of this paper. As mentioned, terms such as
(λp x m s.x)(p a (If)(Id)) do not contain needed redexes. However, at least one of the two redexes in each of those terms
will need to be reduced in order to obtain a normal form. We thus declare the set{If, Id} to be necessary for this term. The
intuition is that at least one redex in a necessary set must be reduced in order to obtain a normal form, assuming that a
normal form exists. Of course, selecting all redexes in a term will indeed yield a necessary set; the point is whether some
given subset of the set of all redexes is a necessary one. These ideas have been developed in [22] for almost orthogonal
TRS where it is shown that repeated contraction of necessary sets of redexes is normalising. In this paper we extend the
normalisation results for necessary sets to the setting of abstract rewriting described by means of abstract rewrite systems
(ARS) [20]. This generalization encompasses the first-order case, the higher-order case (in particular, pattern calculi such as
the Pure Pattern Calculus – PPC [16,17]) or any other system that complies with the appropriate axioms.

Towards an abstract proof of normalisation. In order to convey a more precise idea of the abstract nature of the setting
in which we develop our proof, we provide a glimpse of abstract rewriting systems (ARS). An ARS consists of a set O of
objects that are rewritten, a set R of rewriting steps each having a corresponding source and target object, and the following
three relations over rewriting steps:

residual relation �·� ⊆R×R×R
embedding relation <⊆R×R
gripping relation �⊆R×R

For instance, O could be the set of terms of our pattern calculus example. A step would then be a pair consisting
of a term and a position such that the subterm at that position may be reduced. For example, (λp xms.x)(paf (Id)),
where we have used underlining for denoting the position (the root position in this case). The source object of this step
is (λp x m s.x)(p a f (Id)) and the target f. The residual relation �·� relates to the tracing of steps. A triple (a, b, a′) ∈ �·�,
often written a�b�a′ , indicates that after contracting step b, step a becomes a′ (or, equivalently, a′ is what is left of a).
Here a and b are assumed to have the same source. For example, consider steps c := (λp xmb.I x)(p (I j)mb) and d :=
(λp x m b.I x)(p (I j) m b) and d′ := I (I j). Then d�c�d′ . The embedding relation is a partial order on steps with the same
source. It is sometimes referred to as nesting. For example, (λp xms.x)(pa (If)(Id)) embeds (λp x m s.x)(p a (If)(Id)) in
the tree ordering given that the position of the former is a prefix of the position of the latter. The gripping relation is
an additional partial order on steps that seeks to capture a typical property of higher-order rewrite systems in which a
reduction step a may cause a step b to be embedded inside another one c. For this to happen, a must embed c and b. In
addition, c must have occurrences of variables that are to be replaced by the substitution generated from a successful match
arising from the reduction of a. In this case we say c grips a. For example, c := (λx.Ix)(I y) grips a := (λx.Ix)(I y) since the
former is embedded by the latter and the former has a free occurrence of the bound variable x. Note how reduction of a
would embed b := (λx.Ix) (I y) in the residual c′ := (I(I y)) of c.

A number of axioms on ARS shall be used to formulate a proof of normalisation of necessary and never-gripping sets.
These axioms verse over the above mentioned elements of an ARS and are drawn from [20], except for one of them which
is new. They are developed in detail in Sec. 4. Our abstract proof is then applied to concrete cases, showing how one may
obtain normalisation for PPC and the λ-calculus with parallel-or.

Contributions. The primary contributions may be summarised as follows:

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 39
• A gentle introduction to ARS and, in particular, to its axioms.
• An abstract proof of normalisation that applies to possibly non-orthogonal systems.
• A concrete normalisation strategy for a non-sequential higher-order rewrite system, namely PPC, and also for the

λ-calculus with parallel-or.

Verification of compliance of a system with the axioms of an ARS, although in some cases tedious, provides valuable insight
into its computation dynamics.

This document supersedes [8] by reformulating the normalisation technique, previously specific to PPC, into an axiomatic
one (encompassed in Melliès’ ARS), introducing a new axiom along the way. It then shows how it may be applied not only
to PPC, but also to any other system satisfying the relevant axioms.

Structure of the paper. We begin by introducing, in Sec. 2, a simple pattern calculus that shall serve as study companion
for the axiomatic development that follows. Sec. 3 defines the axiomatic framework in which we develop our results. The
axioms themselves are presented in Sec. 4. The concept of multireduction and necessary multisteps are defined in Sec. 5. The
axiomatic proof of normalisation is elaborated in Sec. 6. We instantiate our axiomatic proof in Sec. 7, to obtain normalisation
strategies for the Pure Pattern Calculus and for the λ-calculus with parallel-or. Finally, we conclude and suggest further
avenues to pursue.

For some results in Sec. 7, we include only sketches of the corresponding proofs. An extended version of this work,
including the full details of all the proofs, can be found in [9].

2. A study companion: the simple pattern calculus

The simple pattern calculus (SPC), an extension of the lambda calculus, is presented for the sole purpose of serving as
our running example in order to illustrate the various notions we shall be introducing. It is simple enough that we may
be informal in our description below. Full definitions are later supplied in Sec. 7.1, where the more general Pure Pattern
Calculus (PPC), of which SPC is just a fragment, is developed.

Terms (T) in SPC are given by the following grammar:

t ::= x | c | tt | λp.t

where x ranges over some set of term variables, c over some set of constants, and p ranges over a set of algebraic patterns.
We write t1 . . . tn as an abbreviation for ((. . . (t1 t2) . . .)tn). An algebraic pattern is either a variable x or an expression of
the form c p1 . . . pn , e.g. p x m b. The term tu is called an application (t is the function and u the argument) and λp.t an
abstraction (p is the pattern and t is the body). All variables in the body that also occur in the pattern of an abstraction are
said to be bound. Application (resp. abstraction) is left (resp. right) associative. We consider terms up to alpha-conversion,
i.e. up to renaming of bound variables. Positions in terms are extended to terms with patterns (cf. Sec. 7.1.1). Pos(t) is the
set of positions of t; < is the strict prefix relation over positions; ε denotes the root position. A term of the form c t1 . . . tn
is called a data-structure, e.g. p (I j) m b.

The reduction semantics is given by the following rewrite rule:

(λp.s) t → {{p � t}}(s)

{ {p � t} } is the result of matching t against p and is called a match. The meaning of the expression { {p � t} }(s) depends on
this match. The match can be successful, in which case it denotes a substitution σ and σ(s) is thus the application of the
substitution to s. It can also be the special symbol fail. The question here is what does fail(s) denote? Following our
introduction, it would be the distinguished constant f. However, if f is produced it could block subsequent computation
unless some additional considerations on the behaviour of terms such as f t are taken. In order to encourage other patterns
to be tested and avoid overcomplicating the metatheory, it is natural to return the identity function I rather than f. So
we set fail(s) to denote the identity function I . In any of these two cases, success or failure, we say that the match is
decided. If it is not decided, in which case the match is the special symbol wait, then the expression (λp.s) t is not a
redex; e.g. (λc.s) x or (λc.s) (Ic). A match { {p � t} }, denoted μ, is computed by applying the following equations in the order
of appearance:

{{x � t}} := {x → t}
{{c � c}} := {}

{{c p1 . . . pn � c t1 . . . tn}} := {{p1 � t1}} 	 . . . 	 {{pn � tn}} n ≥ 1
{{c p1 . . . pn � λq.t}} := fail

{{c p1 . . . pn � d t1 . . . tm}} := fail if d �= c or m �= n
{{c p1 . . . pn � t}} := wait otherwise

The use of disjoint union in the third clause of this definition restricts successful matching of compound patterns to the
linear ones,2 which is necessary to guarantee confluence [19]. Indeed, disjoint union of two substitutions fails whenever

2 A pattern p is linear if it has at most one occurrence of any variable.

40 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
their domains are not disjoint. Thus { {c x x � c v w} } gives fail. Other examples are: { {c d � c (Id)} } gives wait, however
{ {d d � c (I d)} } gives fail. Disjoint union of matches μ1 and μ2 is defined as: their union if both μi are substitutions and
dom(μ1) ∩ dom(μ2) = ∅; wait if either of the μi is wait and none is fail; fail otherwise. Note that this definition of
disjoint union of matches validates the following equations:

fail	 wait= wait	 fail= fail

These equations reflect the non-sequential nature of reduction in SPC. For example, in { {c d e �c s t} } it is unclear whether
we should pick s or t in order to obtain a decided match since either may not normalise while the other may help decide
the match (towards fail).

3. Abstract rewriting systems

This section revisits the definition of abstract rewriting systems given in the introduction supplying further details and
introduces the axioms that such systems must enjoy in order for the abstract proof of normalisation to be applicable.

3.1. Basic components

Recall from the introduction that an ARS consists of a set of objects O that are rewritten and a set of steps3 R. Each
step have a source and target object given by functions src, tgt : R → O. If t ∈ O, then we write Red(t) for the set {a ∈
R s.t. src(a) = t}. Two steps with the same source are said to be coinitial. We often write t a→ u for a step a s.t. src(a) = t
and tgt(a) = u.

The following relations are given over steps:

• The residual relation �·� ⊆R ×R ×R.
This relation reflects how a step may be traced after some other coinitial step is reduced. Whenever b�a�b′ we require
a and b to be coinitial, and src(b′) = tgt(a). When b�a�b′ we say that b′ is a residual of b after a. By b�a� we denote
the set {b′ s.t. b�a�b′} and similarly for �a�b. Accordingly, we define �a� as the relation {(b, b′) s.t. b�a�b′}. A step b is
said to be created by a step a, with src(b) = tgt(a), if �a�b = ∅.

• The embedding relation < ⊆R ×R.
This well-founded relation4 is a strict order5 on coinitial steps.
For each pair a < b, the steps a and b must be coinitial. A step a is said to be outermost iff there is no b such that
b < a. A step a is disjoint from b, written a ‖ b, when a and b are coinitial, a �< b and b �< a.

• The gripping relation � ⊆R ×R.
Just like for embedding, gripping is a well-founded and strict order on coinitial steps.
For each pair a � b, the steps a and b must be coinitial. This relation seeks to capture a typical property of higher-order
rewrite systems, in which steps disjoint with b in the source object of a, may become embedded by b in the target
object of a.

An example of an ARS is the SPC. Its objects O are just the terms T . A step is a pair consisting of a term
and a position in the term s.t. the subterm at this position is of the form (λp.s)u, and { {p � u} } is decided. For ex-
ample, a := (λp xmb.x)(paf(Id)) is a step, where we have underlined the relevant position. Then src(a) is the term
(λp x m b.x)(p a f(Id)) and tgt(a) is I (since matching fails and hence the identity function is produced). We could also
write (λp x m b.x)(p a f(Id)) a→ I . Also, b := (λp x m b.x)(p a f(Id)) is a step. It has the same source as a but the target is
(λp x m b.x)(p a f d).

For an example of steps related by the residual relation, consider the step c := (λp xmb.x)(p (I j)mb) and d :=
(λp x m b.x)(p (I j) m b) and d′ := I j. Then d�c�d′ . Steps may be erased by other steps. For example, (λp x y z.c) (p (I u)mb)

erases the coinitial step (λp x y z.c) (p (I u)m b). It may also duplicate a coinitial step. For example, (λp x y z.x x) (p (I u)mb)

duplicates (λp x y z.x x) (p (I u)m b) yielding two residuals (I u) (I u) and (I u) (I u).
In SPC a step a embeds another step b iff the position of a is a prefix of the position of b. For example, c described

above embeds d. However, the two steps (λp x m b.x)(p a (If) (Id)) are not related by embedding and are hence disjoint.
An example of gripping was given in the introduction. We revisit gripping in Sec. 4.3.

3.2. Reduction sequences, multisteps and developments

A reduction sequence (or derivation) is either nilt , i.e. an empty sequence indexed by the object t , or a (possibly
infinite) sequence a1; a2, . . . ; an; . . . of steps verifying tgt(ak) = src(ak+1) for all k ≥ 1. In the former case, we define the

3 Called redexes (“radicaux”) in [20], hence the reason why we use the letter R.
4 Notice that if Red(t) is finite, then any relation on coinitial steps is necessarily well-founded.
5 The embedding relation < is assumed to be irreflexive and transitive.

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 41
source as t and in the latter case as the source of the first step in the sequence. We define the target of a finite reduction
sequence as follows: tgt(nilt) := t , tgt(a1; . . . ; an) := tgt(an). The length of a reduction sequence, denoted by | · |, is defined
as follows: |nilt | := 0, |a1; . . . ; an| := n. The target and length of an infinite sequence are undefined. We write RS for
the set of reduction sequences. In the following, reduction sequences are given the names δ, δ′ , δ1, γ , ξ , etc. We write

t
δ
� u to indicate that src(δ) = t and tgt(δ) = u. Also, if δ = a1; . . . ; an , we denote with δ[k] the step ak , and write δ[i.. j] for

the subsequence ai; . . . ; a j , if i ≤ j, and nilsrc(ai) , if i > j. We use the symbol ; to denote the concatenation of reduction
sequences, allowing to concatenate steps and sequences freely, e.g. a; δ or a; b or δ; a or δ; γ , as long as the concatenation
yields a valid reduction sequence. If Red(t) = ∅ then we say that t is a normal form. An object t is normalising iff there

exists a reduction sequence δ such that t
δ� u and u is a normal form.

A multistep is a set of coinitial steps, i.e. a subset of Red(t) for a certain object t . We denote such sets by the letters A,
A′ , B, C , D, etc. Two multisteps are coinitial if their union is a multistep. Residuals of coinitial steps B after a are defined
by B�a�b′ iff b�a�b′ for some b ∈ B. We also use the notation B�a�, defined analogously to b�a�. Notice that for any a and
b, b�a� is a set of coinitial steps; the same happens with B�a� for any B.

Residuals after reduction sequences �·� ⊆R ×RS×R are defined as follows: b�nilt �b for all b ∈Red(t), and b�a; δ�b′
whenever b�a�b′′ and b′′�δ�b′ hold for some b′′ . We sometimes use the notation b�δ� for the set of residuals of b after δ,
and �δ� to denote the relation {(b, b′) s.t. b�δ�b′}. We also write B�δ�b′ and B�δ� for the obvious extension of residuals of
steps after a reduction sequence to multisteps. Observe that B�a; δ� = B�a� �δ�.

Next we consider contraction of multisteps. Since, in principle, the order in which the steps comprising a multistep
A are contracted could affect the target object of A and/or its residual relation, it becomes necessary to lay out precise
definitions on the meaning of contraction. This is achieved through the concept of development. Let A ⊆ Red(t) for some
object t . The reduction sequence δ is a development of A iff δ[i] ∈ A�δ[1..i − 1]� for all i ≤ |δ|. E.g. a development of the

multistep A := {a, b} where a is (λx.Ix)(I y) and b is (λx.Ix)(I y) is the reduction sequence (λx.Ix)(I y)
a→ I(I y) b′→ I y, since

a ∈ A�nil(λx.Ix)(I y)� = A and b′ ∈ A�a� given that b�a�b′ . The reduction sequence (λx.Ix)(I y) b→ (λx.Ix)y
a′→ I y, where

a�b�a′ , is also a development of A. Note also that the reduction sequence consisting solely of the step a (or the step b) is a
development of A too. A development δ of A is complete (written δ �A) iff δ is finite and A�δ� = ∅.

The depth of a multistep A, written ν(A), is the length of its longest complete development. If a ∈ A and δ �A�a�,
then a; δ �A. Consequently, ν(A) > ν(A�a�), yielding a convenient induction principle for multisteps. Both the notion of
depth and the derived induction principle are important tools in several proofs of this work.

Note that it is not a priori clear that a development terminates, nor that the residual relation is finitely branching.
Moreover, since there may be more than one development of a multistep, it is natural to wonder whether they all have the
same target and induce the same residual relation. These topics are discussed in the next section (cf. finite residuals, finite
developments and semantic orthogonality axioms). Suffice it to say, for now, that complete developments are a valid means
of defining contraction of multisteps since the latter do not depend on the complete development chosen (Proposition 4.1).

Let A ⊆Red(t) be a multistep. Define src(A) := t , tgt(A) := tgt(δ), and b�A�b′ iff b�δ�b′ where δ is an arbitrary complete
development of A. In order for these definitions to be coherent, the empty multistep should be indexed by an object, i.e. ∅t ,
so that src(∅t) := tgt(∅t) := t . We will use the notations b�A�, B�A�b′ , B�A� with meanings analogous to those described
for steps. Notice that for any a ∈ A, the reduction sequence a; δ′ is a (complete) development of A iff δ′ is a (complete)
development of A�a�. As a consequence, B�A� = B�a� �A�a� �. Multistep contraction of A ⊆ Red(t), written t

A−→◦ u,

where src(A) = t and tgt(A) = u, denotes an arbitrary complete development δ �A, where t
δ� u.

As a closing comment to this section, it should be mentioned that the analysis of contraction of multisteps for higher-
order rewriting is non-trivial even for sets of pairwise disjoint steps, since residuals of such sets are not necessarily pairwise
disjoint. Conversely, in first-order rewriting, residuals of pairwise disjoint sets of steps are always pairwise disjoint again.
This difference yields the need of a subtle analysis of the behaviour of multisteps, which is not required for the first-order
case (cf. [22]), in order to obtain normalisation results applicable to higher-order rewrite systems.

4. Axioms for ARS

We next introduce the axioms for ARS. These are presented in three groups (Fig. 1), together with their associated
concepts. The fundamental axioms deal with basic properties of the residual relation; the embedding axioms deal with the
interaction between residuals and embedding; and the gripping axioms deal with the basic properties of the gripping relation
on redexes. In what follows, free variables in the statement of an axiom are assumed implicitly universally quantified. For
example, “a�a� = ∅” should be read as “For all a ∈ R, a�a� = ∅”. Finally, bear in mind that in an expression such as “a�b�a′”,
steps a and b are assumed coinitial.

4.1. Fundamental axioms

The fundamental axioms of an ARS have to do with the properties of the residual relation over redexes and derivations.
The embedding and gripping relations do not participate in these axioms. The first is Self Reduction and states, quite
reasonably, that nothing is left of a step a if it is contracted.

42 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
Axiom group Axioms Reference
Fundamental Self Reduction, Finite Residuals, Ancestor

Uniqueness, FD, SO
Sec. 4.1

Embedding Linearity, Context-Freeness, Enclave–Creation,
Enclave–Embedding, Pivot

Sec. 4.2

Gripping Grip–Instantiation, Grip–Density,
Grip–Convexity

Sec. 4.3

Fig. 1. Axioms for ARS presented in three groups.

s a

b

t

γ

u
δ

v

Fig. 2. The semantic orthogonality axiom.

Self Reduction a�a� = ∅.

The second is Finite Residuals and states that the residuals of a step b after contraction of a coinitial (and possibly the
same) one a is a finite set. In other words, a step may erase (b�a� = ∅) or copy other coinitial steps, however only a finite
number of copies can be produced.

Finite Residuals b�a� is a finite set.

The third one, namely Ancestor Uniqueness, states that a step a cannot “fuse” two different steps b1 and b2, coinitial
with a, into one. In other words, if we use the term “ancestor” to refer to the inverse of the residual relation, then any step
can have at most one ancestor.

Ancestor Uniqueness b1 �a�b′ ∧ b2 �a�b′ ⇒ b1 = b2.

As discussed in Sec. 3.2, a multistep A is contracted by performing any complete development of A. However, as already
mentioned, developments may a priori not terminate and, since there may be more than one development of a multistep,
they may not all have the same target or induce the same residual relation. Any of these situations would render the
purported notion of multistep contraction senseless. The following two axioms FD and SO ensure exactly that these three
properties are met. The first states that any development of a multistep A necessarily terminates.

Finite developments (FD) All developments of A are finite.

Note that, together with Finite Residuals, FD implies (by König’s Lemma) that the notion of depth of a multistep A
(i.e. the length of the longest complete development of A) is well-defined. As already mentioned, this provides us with a
convenient measure for proving properties involving multisteps.

The second axiom states that complete developments of a multistep {a, b}, consisting of two coinitial steps, are joinable
and induce the same residual relation (Fig. 2). It is called PERM in [20].

Semantic orthogonality (SO) ∃δ, γ s.t. δ � a�b� ∧ γ � b�a� ∧ tgt(a; γ) = tgt(b; δ) ∧
the relations �a; γ � and �b; δ� coincide.

Developments of an arbitrary multistep of an ARS are also joinable and induce the same residual relation. This is reflected
in the following result (Lem. 2.18 and Lem. 2.19 in [20]) which is proved by resorting to all of the above axioms (except for
Ancestor Uniqueness):

Proposition 4.1. Consider an ARS enjoying the fundamental axioms. Suppose δ �A and γ �A. Then tgt(δ) = tgt(γ) and the relations
�δ� and �γ � coincide.

4.2. Embedding axioms

The embedding axioms establish coherence conditions between the embedding relation < and the residual relation �·�.
In reading these axioms it helps to think of a < b in the setting of SPC as indicating that the position of the step a is a
prefix of the position of b. Bear in mind however, that an ARS does not assume the existence of terms nor positions; this
reading is solely for the purpose of aiding the interpretation of the axioms.

The first axiom, Linearity, states that the only way in which a step a can either erase or produce multiple (two or more)
copies of a coinitial step, is if it embeds it.

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 43
Fig. 3. Three redexes a,b, c such that b < c and a �= b.

Linearity a �≤ b ⇒ ∃!b′ s.t. b�a�b′.

The second axiom pertains to the invariance of the embedding relation w.r.t. contraction of steps. Consider three coinitial
steps a, b and c. Suppose that b�a�b′ and c�a�c′ , for some steps b′ and c′ (this implies a �= c and a �= b). If a does not embed
c (a �< c), then a cannot grant the ability to b of embedding c (b �< c ⇒ b′ < c′ cannot happen) or revoke it from b
(b < c ⇒ b′ �< c′ cannot happen).

Context-Freeness b�a�b′ ∧ c�a�c′ ⇒ a < c ∨ (b < c ⇔ b′ < c′).

The next two axioms assume that two steps a and b are given such that b < a. It considers under what conditions b′ ,
the unique residual of b after a (b�a�b′), embeds other steps c′ in the target of a. Two cases are considered, first when c′ is
created by a (Enclave–Creation) and then when it is not (Enclave–Embedding).

Enclave–Creation b < a ∧ b�a�b′ ∧ ∅�a�c′ ⇒ b′ < c′.
Enclave–Embedding b�a�b′ ∧ c�a�c′ ∧ b < a < c ⇒ b′ < c′.

Finally, the axiom Pivot is new, in the sense that it does not appear in [20] since it is not required for the results that
are proved there. It reads as follows:

Pivot a < c ∧ b < c ∧ b �≤ a ∧ c�a�c′ ⇒ ∃b′ s.t. b�a�b′ ∧ b′ < c′.

To motivate this axiom we illustrate an important property that we shall need to prove for our normalisation result
(Lemma 6.4). We assume given b < c and a step a �= b s.t. c�a�c′ for some c′ (cf. shaded triangles in the figure). We would
like to deduce the existence of b′ s.t. (i) b�a�b′ and (ii) b′ < c′ . For that we proceed to consider all possible embedding
relations between a, on the one hand, and b and c, on the other (see Fig. 3):

• a �< c. This is represented with the two occurrences of a subscripted with 1. We conclude (i) and (ii) using Linearity and
Context-Freeness.

• a < c.
– b < a (hence b < a < c). This is represented with the occurrence of a subscripted with 2. We conclude (i) and (ii)

using Linearity and Enclave–Embedding.
– b �< a. This is represented with the occurrence of a subscripted with 3. We conclude (i) and (ii) using Pivot.

4.3. Gripping axioms

In order to motivate our need for the gripping relation [20] we provide a brief glimpse of the approach we take for
our abstract proof of normalisation. We shall show that, starting from a normalising object t and by repeatedly contracting
multisteps enjoying certain properties (let us call such multisteps judicious), a normal form will be reached. That this process
does not continue indefinitely, shall be guaranteed by providing an appropriate measure that decreases with each such
judicious multistep. The elements that are measured are certain “multireductions”, sequences of multisteps, that originate
from each of the sources and targets of judicious multisteps. In the particular case that a multireduction consists of a sole

ti

◦B

◦A t′
i

ti+1 ◦
A�B�

t′
i+1

multistep A, our measure computes its depth (the length of the longest complete development).
This is depicted in the figure where B is the judicious multistep, A is the multireduction con-
sisting of just one multistep that is measured and A�B� is what remains of multistep A after B
which will also be measured and compared with the measure of A. We are interested in showing
that the depth of A is greater than that of A�B�. In general, this is not true as the following
example in λ-calculus (suggested by V. van Oostrom and also applicable to higher-order rewrite
systems in general) illustrates, where A := {a1, a2}, B := {b} and D = λz.z z. Note that indeed we
have ν(A) = 2 < 3 = ν(A�B�).

44 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
(λx.D xb) (I y
a2

)
a1

◦B

◦A D y

(λx.x x)(I y
a2

)
a1

◦
A�B�

y y

The problem is that a1 embeds the step b that duplicates a1’s bound variable; if this variable is substituted by some other
step (in this example, a2) then, after contracting b more copies of a2 have to be contracted in the development of A�B�.
When a step a embeds another step b that has a free occurrence of a variable bound by a we say that b grips a and write:

a � b

We shall avoid the above situation by requiring our judicious multisteps to be never-gripping (cf. Lemma 6.2), in other words,
that this situation never occurs. Since our ARS are over abstract objects (hence there is no notion of term, nor variable, nor
bound variable) we must put forward appropriate axioms that capture gripping in an abstract way. These axioms were
presented in [20] for the purpose of providing an abstract proof of finite developments for ARS (see remark at the end of
this section). We next present these axioms.

The first one, Grip–Instantiation, states the role gripping plays in the creation of new embeddings. Consider three coinitial
steps a, b, c and steps b′, c′ s.t. b�a�b′ and c�a�c′ . Suppose b′ embeds c′ (i.e. b′ < c′). Two situations are possible. If a �< c,
then by Context-Freeness, we already know that b < c. However, if a < c (and b �< c), then this axiom may be seen to
provide further information. It informs us that b grips a: this is the only way in which a can place (the residual of) c under
(the residual of) b. As an example, consider (λx.I xb)(I I)

c

a
; after contracting a we obtain I (I I)

c′
b′ ; notice how a has nested

c under b.

Grip–Instantiation b�a�b′ ∧ c�a�c′ ∧ b′ < c′ ⇒ b < c ∨ (a � b ∧ a < c).

The second axiom, Grip–Density, states that at any moment a step grips some other step, this can be traced back
to a “chain” of grippings over the ancestors of these steps. An example in SPC that shows the b � a � c case is
(λy.((λx.I xc) y

a
))u

b
. The other case, namely when b′ � c′ holds because already b � c, may be illustrated by I((λx.I x

c
) y

b
)

a
.

Grip–Density b�a�b′ ∧ c�a�c′ ∧ b′ � c′ ⇒ b � c ∨ b � a � c.

The third axiom, Grip–Convexity, states if a step b grips another step a (i.e. a � b), then any step that embeds b either
grips a or embeds a. Examples for each case are (λx.I (I x

b
)

c
)y

a
and I ((λx.I x

b
)y)

ac
respectively.

Grip–Convexity a � b ∧ c < b ⇒ a � c ∨ c ≤ a.

Note that the embedding and gripping relations are defined independently in the abstract framework. Moreover, the
gripping axioms do not imply neither <⊆� nor �⊆<. That being said, in our concrete PPC framework, the gripping
relation between PPC-redexes (on page 56) is included in the embedding relation.

As remarked above, the gripping axioms entail FD, Thm. 3.2. in [20].

4.4. An additional axiom: stability

One final axiom which, although not required for our abstract normalisation proof, is worthy of mention given the key
rôle that it plays in the axiomatic standardisation proof of [20], is briefly discussed here. An ARS satisfying the fundamental
axioms and the embedding axioms (disregarding both enclave axioms and the axiom Pivot), enjoys the property of exis-
tence of standard derivations [20]. A standard derivation is one in which contraction takes place outside-in. The additional
property of uniqueness of such derivations can also be proved in this axiomatic framework. For that the ARS must satisfy
the fundamental axioms, the embedding axioms (disregarding Pivot, which is not required) and an additional axiom called
Stability. This last axiom states that steps can be created in a unique way.

Stability Assume a ‖ b, a�b�a′, b�a�b′, and there exists some d′ such that d′
1 �b′�d′

and d′
2 �a′�d′. Then there exists d such that d�a�d′

1, d�b�d′
2, and either

a �≤ d or b �≤ d.

As mentioned, Stability is not required for our abstract normalisation proof. This is quite fortunate since neither the
parallel-or TRS nor the SPC of the introduction, enjoy stability. Let us look at the case of SPC.

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 45
Fundamental axioms

Self Reduction a�a� = ∅.
Finite Residuals b�a� is a finite set.
Ancestor Uniqueness b1 �a�b′ ∧ b2 �a�b′ ⇒ b1 = b2.
Finite developments All developments of a multistep A are finite.
Semantic orthogonality (SO) ∃δ, γ s.t. δ � a�b� ∧ γ � b�a� ∧ tgt(a; γ) = tgt(b; δ) ∧ the relations

�a; γ � and �b; δ� coincide.

Embedding axioms

Linearity a �≤ b ⇒ ∃!b′ s.t. b�a�b′ .
Context-Freeness b�a�b′ ∧ c�a�c′ ⇒ a < c ∨ (b < c ⇔ b′ < c′).
Enclave–Creation b < a ∧ b�a�b′ ∧ ∅�a�c′ ⇒ b′ < c′ .
Enclave–Embedding b�a�b′ ∧ c�a�c′ ∧ b < a < c ⇒ b′ < c′ .
Pivot a < c ∧ b < c ∧ b �≤ a ∧ c�a�c′ ⇒ ∃b′ s.t. b�a�b′ ∧ b′ < c′ .

Gripping axioms

Grip–Instantiation b�a�b′ ∧ c�a�c′ ∧ b′ < c′ ⇒ b < c ∨ (a � b ∧ a < c).
Grip–Density b�a�b′ ∧ c�a�c′ ∧ b′ � c′ ⇒ b � c ∨ b � a � c.
Grip–Convexity a � b ∧ c < b ⇒ a � c ∨ c ≤ a.

Fig. 4. The three groups of axioms of an ARS.

(λp xms.x)(pa (If)(Id))
ba

(λp xms.x)(paf (Id))

d′
1 b′

(λp xms.x)(pa (If)d)

d′
2a′

I (λp xms.x)(pafd)

d′
I

I

The steps depicted above meet the antecedent of the statement of the stability axiom. However, the conclusion is not
satisfied since both steps d′

1 and d′
2 are created, by a and b, respectively. In other words, there is no d as in the conclusion

of the Stability axiom.
This concludes our presentation of the axioms of an ARS. A summary of all three groups is given in Fig. 4.

5. Multireductions over an ARS

Our normalisation result states conditions under which an object can be reduced to a normal form by repeatedly con-
tracting multisteps, thus requiring a precise meaning for sequences of such multisteps. Also, we must introduce some
qualifiers for multisteps that enjoy properties that are useful for the development that shall follow.

5.1. Multireductions

The concept of reduction sequence introduced earlier for steps, makes sense for multisteps as well. A multireduction se-
quence, or just multireduction, is either nilt , an empty multireduction indexed by the object t , or a sequence of multisteps
A1; . . . ; An; . . . where tgt(Ak+1) = src(Ak) for all k ≥ 1. We use �, �, , � to denote multireductions and �[k] and �[i.. j]
with the same meanings given for reduction sequences. Source, target and length of multireductions are defined analogously

as done before for reduction sequences. We write t
�−�◦ u to denote that src(�) = t and tgt(�) = u. Some comments:

• The length of a multireduction is the number of its multisteps, it is not related to the size of the sets.
• An element of a multireduction can be an empty multistep, so that the only corresponding development is the empty

reduction sequence indexed by its source.
• A multireduction consisting of one or more occurrences of ∅t , and nilt , are different multireductions. In particular,

|∅t | = 1 while |nilt | = 0. We will say that a multireduction is trivial iff all its elements are empty multisteps. Empty
multireductions are trivial.

The residual relation is extended from multisteps to multireductions, exactly as we have extended it from steps to
reduction sequences. We use the notations b���b′ , b���, B���b′, B��� and ��� as expected.

Let MR be the set of multisteps associated to an ARS. Notice that, in contrast to the notion of residuals for steps,
residuals can be considered as a function on multisteps, i.e. �·� : MR × MR → MR, since A�B� is again a multistep
for any A, B. This distinguishing feature of multisteps leads to the definition of the residual of a multireduction after a

46 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
multistep, for which we will (ab)use the notation �·�. If src(B) = t then nilt �B� := niltgt(B); if A and B are coinitial then
(A; �)�B� := A�B�; (��B�A� �). Observe that, in spite of the name “residual” and the notation �·�, the above definition
corresponds to a partial function MRS ×MR → MRS , where MRS stands for the set of multireductions. Notice also
that |��B�| = |�|.

A (multistep) reduction strategy for an ARS A is any function S : (O \ N F) → P(R) such that S(t) �= ∅ and S(t) ⊆
Red(t) for all t; here N F stands for the set of normal forms of A. A multistep reduction strategy determines, for each
object, a multireduction: if t ∈ N F , then the associated multireduction is nilt , otherwise it is S(t0); S(t1); . . . ; S(tn); . . .
where t0 := t and tn+1 := tgt(S(tn)). A reduction strategy is normalising iff for any object t , the determined multireduction
ends in a normal form for all normalising objects. A single-step reduction strategy is a multistep reduction strategy S s.t.
S(t) is a singleton for every t in the domain of S . In this case, the multireduction sequence determined by S is in fact a
reduction sequence.

The independence of order of contraction of steps, formalised in Proposition 4.1, extends to multisteps [20, Lem. 2.24]
and to multireductions. The former is a consequence of Proposition 4.1 and the latter then follows by induction on �.

Proposition 5.1. Consider an ARS enjoying the group of fundamental axioms.

1. Let A, B ⊆Red(t). The target and residual relation of A; B�A� and B; A�B� coincide.
2. Let � be a multireduction, and B ⊆Red(t). The target and residual relation associated to �; B��� and B; ��B� coincide.

t

◦B

◦A s

◦B�A�

u ◦
A�B�

v

t

◦B

◦
�

s

◦B���

u ◦
��B�

v

5.2. Key concepts

This section introduces several notions that are crucial in the development of our abstract normalisation proof. More
precisely, our normalisation result holds for strategies choosing never-gripping and necessary multisteps, which are intro-
duced as follows. First of all, starting from the embedding relation on redexes, we define two key relations on multisteps:
free-from and embedded by. Secondly, starting from the gripping notion on redexes, we define a gripping notion on multi-
steps, together with the associated concept of never-gripping multisteps. Last but not least, we define the uses relation which
defines what it means for a multistep to be necessary.

Free-from and embedded multisteps

Two notions related with embedding and involving multisteps are crucial to define the main elements of the abstract
normalisation proof. In order to introduce these notions, we discuss different ways to extend the notion of embedding to
multisteps.

Two different meanings could be assigned to the notation a > B: either that there exists some b ∈ B that verifies a > b,
or else that a > b for all b ∈ B. Since we are going to apply this general framework to terms, it seems natural to adopt the
former interpretation. Conversely, when considering A > B, we take a “forall” meaning on the A side: to consider that B
embeds A, it must embed each of its elements. In the sequel, we use the notations a > B and A > B with the just given
meanings, and we say that a (or A) is embedded by B.

On the other hand, we say that a step is free from a coinitial multistep, if it is neither equal to nor embedded by a step
in B. In turn, a multistep A is free from another, coinitial multistep B, if a is free from B for all6 a ∈ A. The notion also
extends to multireductions, as defined below. Formally, given a, A, � coinitial with B:

• a is free from B, written a �� B, iff a �≥ b for all b ∈ B.
• A is free from B, written A �� B, iff a �� B for all a ∈A.
• � is free from B, written � �� B, iff either � = nilsrc(B) or � =A; �′ , A �� B and �′ �� B�A�.
• a is embedded by B, written a > B, iff a /∈ B and ∃b ∈ B s.t. a > b.
• A is embedded by B, written A > B, iff a > B for all a ∈A.

Notice that being free from and embedded by B are complementary for a single (coinitial) step a, unless a ∈ B, i.e.
exactly one of a ∈ B, a �� B and a > B holds. This need not be the case for a multistep A: even if A ∩ B = ∅, it could well
be the case that neither A �� B nor A > B hold, if some elements of A are free from B while others are embedded by it.

On the other hand, any A verifying A ∩ B = ∅ can be partitioned into a free subset AF and an embedded subset AE

w.r.t. B, i.e. A = AF 	 AE , AF �� B, and AE > B. The partition of a multistep into a free and an embedded part w.r.t.
another, coinitial multistep, is a relevant notion for the development of the abstract proof we describe in Sec. 6.

6 Observe that given the just discussed meanings, “A �>B” and “A free from B” are different predicates.

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 47
Consider the following multireduction � in the λ-calculus:

d︷ ︸︸ ︷
(λx.x(I5︸︷︷︸

a

))(I3︸︷︷︸
b

) (

e︷ ︸︸ ︷
I(I4︸︷︷︸

c

)
{e}−→◦

d′
︷ ︸︸ ︷
(λx.x(I5︸︷︷︸

a′
))(I3︸︷︷︸

b′
) (I4︸︷︷︸

c′
)

{d′,c′}−→◦ (I3︸︷︷︸
b′′

)(I5︸︷︷︸
a′′

) 4

In this case, we have {c, d, e} �� {a, b}, {a, b} �� {c, e}, {a, b, c} > {d, e}. Also, we have � �� {a, b}, because {e} �� {a, b} and
{d′, c′} �� {a′, b′}. If we define A = {b, c, e} and B = {a, d}, we observe that neither A �� B nor A > B hold. The partition of
A w.r.t. B gives AF = {c, e} and AE = {b}.

Observe also that being free from a multistep extends to parts of a multireduction, namely7:

Lemma 5.2. Assume �1; �2; �3 �� B. Then �2 �� B��1 �.

Proof. We proceed by induction on 〈|�1|, |�2|〉. Let � be �1; �2; �3.
The base case is when �1 = �2 = nilsrc(B) . In this case B��1 � = B. Then the definition of �� suffices to conclude.
Suppose that �1 = nilsrc(B) and �2 = A; �′

2. In this case, � = A; �′
2; �3, so that � �� B implies A �� B and �′

2; �3 =
niltgt(A); �′

2; �3 �� B�A�. We observe that 〈|niltgt(A)|, |�′
2|〉 < 〈|�1|, |�2|〉, therefore we can apply i.h., obtaining that

�′
2 �� B�A� �niltgt(A)� = B�A�. Recalling that A �� B, we get �2 �� B = B��1 �.

If �1 = A; �′
1, then � �� B implies A �� B and �′

1; �2; �3 �� B�A�. Observe 〈|�′
1|, |�2|〉 < 〈|�1|, |�2|〉, then i.h. yields

�2 �� B�A� ��′
1 � = B��1 �. �

The axiom Linearity can be extended to the residuals of a step after a multistep from which it is free from, as proved in
the following Lemma. This fact is used in Sec. 6.

Lemma 5.3 (Linearity after a multistep). Consider an ARS enjoying the fundamental axioms and Linearity; and a, B such that a �� B.
Then a�B� is a singleton.

Proof. By induction on ν(B). If B = ∅, then we conclude by observing that a�∅� = {a}. Otherwise assume some b ∈ B. Then
a �� B implies b �≤ a, thus Linearity yields a�b� = {a′}. Let us show that a′ �� B�b�. Take b′

0 such that b0 �b�b′
0 for some b0 ∈ B.

Assume b′
0 < a′ . Then b �≤ a and Context-Freeness imply b0 < a thus contradicting a �� B. On the other hand, b′

0 = a′ would
contradict Ancestor Uniqueness. Consequently, a′ �� B�b�. The i.h. can then be applied to obtain that a′ �B�b� � is a singleton.
We conclude by observing that a�B� = a�b� �B�b� � = a′�B�b� �. �
Gripping for multisteps
Now we discuss the extension of the gripping relation to multisteps. We say that:

• B grips a, written a �B, iff a � b for some b ∈ B.
• B grips A, written A � B, iff a � B for at least one a ∈ A.

Informally, we say that a multistep B is never-gripping iff no residual of B (including B itself) grips any coinitial re-
dex. Formally, we define B to be never-gripping (ng) iff for any finite multireduction � , if � is coinitial with B, then
Red(tgt(�)) �� B���. Notice that B being never-gripping implies that every residual of B (after a coinitial step, multistep
or multiderivation) is.

It is worth noticing that an alternative definition of never-gripping can be given coinductively as follows: a multistep
B is coinductively never-gripping (cng) iff Red(src(B)) �� B, and for any multistep A coinitial with B, the set B�A� is
never-gripping. It is not difficult to show that both definitions are equivalent.

Lemma 5.4. A multistep B is ng iff B is cng.

Proof.
⇒) The proof is by coinduction.

Take � = nilsrc(B) . Then Red(src(B)) =Red(src(nilsrc(B))) =Red(tgt(nilsrc(B))) �� B�nilsrc(B)� = B.
Take any multistep A which is coinitial with B. By hypothesis B is ng so that B�A� is also ng. The coinductive

hypothesis gives B�A� cng and we can thus conclude B cng.
⇐) Let � be a finite multiderivation which is coinitial with B. We want to show Red(tgt(�)) �� B���. We proceed by
induction on � .

7 The statement of Lemma 5.2 could be seen as more general than needed. However, it is applied twice in the proof of Lemma 6.6, once with empty �1

and once with empty �3.

48 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
t0

◦S(t0)

◦�0 u

t1 ◦�1 u

tn

◦S(tn)

◦�n u

u
�n+1

u

Fig. 5. Proof idea.

If � = nilsrc(B) , then Red(tgt(nilsrc(B))) =Red(src(nilsrc(B))) =Red(src(B)) �� B = B�nilsrc(B)�.
If � =A; � ′ , then we want to show Red(tgt(A; � ′)) �� B�A; � ′�.
Since B is cng, then B�A� is cng by definition, so that by i.h. we have Red(tgt(� ′)) �� B�A� �� ′�. We conclude since

Red(tgt(� ′)) =Red(tgt(A; � ′)) and B�A� �� ′� = B�A; � ′�. �
The choice between the use of the predicate ng or cng remains a matter of taste, as the (forthcoming) proofs relying

on ng are not simplified in any notable way by adopting instead cng. Still, since never-gripping plays a central rôle in this
paper, explicitly spelling out its coinductive nature provides one more way of understanding it.

Another interesting remark concerns the relation between our never-gripping predicate and that of universally
<-external [1]: a redex a is said to be universally <-external, i.e. external with respect to any reduction step (and thus
w.r.t. any derivation) if a is <-minimal in Red(src(a)), and a�b�a′ implies a′ universally <-external for all b coinitial with
a. A redex which is universally <-external is in particular never-gripping , but the converse does not necessarily hold:
a never-gripping redex is not always universally <-external. For example, in the case of the λ-calculus, the redex b in
I(I(I Ic)b

)
a

is never-gripping , but is not universally <-external as b is not <-minimal. Another example can be found in

Section 7.1.3, where we define a reduction strategy for PPC, which selects never-gripping redexes which are not necessarily
universally <-external.

Uses, needed step and necessary multisteps
Given a multireduction and some coinitial multistep, a further property the abstract normalisation proof is interested in is
whether the multistep is at least partially contracted along the multireduction, or if it is otherwise completely ignored. We
will say that a multistep is used in a multireduction, iff at least one residual of the former is included (i.e. contracted) in
the latter. Formally, let b be a step, A and B two multisteps, and � a multireduction, such that all of them are coinitial.

• A uses b iff b ∈A;
• � uses b iff �[k] ∩ (b��[1..k − 1]�) �= ∅ for at least one k; and
• A (resp. �) uses B iff it uses at least one b ∈ B.

A step a is needed iff for every multireduction src(a)
�−�◦ u such that u is a normal form, � uses a. A multistep A

is necessary, iff for every multireduction src(A)
�−�◦ u such that u is a normal form, � uses A. The notion of necessary

multistep generalises that of needed redex (notice that any singleton whose only element is a needed redex is a necessary
set). As mentioned in the introduction, there is an important difference: while not all terms admit a needed redex, any term
admits at least one necessary set, i.e. the set of all its redexes.

6. Necessary normalisation for ARS

We prove in this section that, for any ARS verifying the fundamental axioms, the embedding axioms, and the gripping
axioms, the systematic contraction of necessary and never-gripping multisteps is normalising.

The overall structure of the proof is inspired by the work on first-order term rewriting systems by Sekar and Ramakr-
ishnan in [22]. Assume that S is a reduction strategy selecting always necessary and never-gripping multisteps. Consider

an initial multireduction t0
�0−�◦ u ∈ N F , and t1 the target term of the multistep selected by S for t0, i.e. t0

S(t0)−→◦ t1. We

construct a multireduction t1
�1−�◦ u, such that the multireduction �1 is strictly smaller than the original one w.r.t. a con-

venient well-founded ordering < on multireductions. We have thus transformed the original t0
�0−�◦ u in t0

S(t0)−→◦ t1
�1−�◦ u.

Well-foundedness of < entails that by iterating this procedure one may deduce that repeated contraction of the multisteps
selected by the strategy S yields the normal form u. This is depicted in Fig. 5 where �k+1 is strictly smaller than �k for all
k and �n+1 is a trivial multireduction. The original multireduction �0 is first transformed into S(t0); �1, then successively
into S(t0); . . . ; S(tk); �k+1; and finally into S(t0); . . . ; S(tn).

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 49
tk ◦�
′

◦S(tk)

◦A

◦S(tk)��′ �

◦�
′′

u

tk+1 ◦
�′ �S(tk)�

Fig. 6. Construction of �k+1, starting point.

tk ◦�
′

◦S(tk)

◦A1

◦S(tk)��′ �

s ◦A2

◦ B

◦�
′′

u

tk+1 ◦
�′ �S(tk)� A1 �S(tk)��′ ��=∅ s′ ◦

�′ u

Fig. 7. Construction of �k+1, finished.

Several notions contribute to this proof. We define a measure inspired from [22,23], based on the depths of the multisteps
composing a multireduction. More precisely, the measure of a multireduction is defined as the sequence of the depths of
its elements (see definition of depth on page 41), taken in reverse order, i.e. given a multireduction � = �[1..n], the measure
of �, written χ(�), is the n-tuple 〈ν(�[n]), . . . , ν(�[1])〉. Then, the lexicographic order <lex is used to compare (measures
of) multireductions, where <lex is defined on n-tuples of natural numbers as follows:

〈x1, . . . , xn〉 <lex 〈y1, . . . , yn〉 iff ∃1 ≤ j ≤ n . x j < y j and ∀1 ≤ i < j . xi = yi

Therefore, χ(�) < χ(�) implies χ(;�) < χ(�;�) for any , � that verify tgt() = src(�), tgt(�) = src(�), and || =
|�|, because the elements of a multireduction are taken in reversed order. Notice that multireductions comparable by <lex
may not be coinitial.

This (well-founded) ordering allows only to compare multireductions having the same length; the minimal elements
are the n-tuples of the form 〈0, . . . , 0〉 which corresponds exactly to the trivial multireductions. As remarked in [23], the
measure used in [22], based on sizes of multisteps rather than depths, is not well-suited for a higher-order setting.

To construct �k+1, we observe that the fact that S(tk) is a necessary set, implies that it is used along �k at least
once. Therefore, we can consider the last element of �k that includes (some residual of) an element of S(tk). Let us call
this element A. We build the diagram shown in Fig. 6, where �k = �′; A; �′′ , A ∩ S(tk)��′� �= ∅, and �′′ does not use
S(tk)��′; A�.

By setting A1 = A ∩ S(tk)��′� �= ∅, A2 = (A \A1)�A1 �, and B = S(tk)��′; A1 �, we can refine the previous diagram as
depicted in Fig. 7. Now A2; �′′ does not use B. Notice that A1 �= ∅ implies ν(A2) < ν(A). Observe also that A1 ⊆ S(tk)��′�,
implying A1 �S(tk)��′� � = ∅.

To conclude the construction of �k+1, it suffices to obtain a multireduction �′ such that s′ �′
−�◦ u and χ(�′) ≤lex

χ(A2;�′′) <lex χ(A;�′′); taking the multisteps of a multireduction in reversed order in the measure allows to assert
χ(�k+1) <lex χ(�k). Building such a �′ is the most demanding part of the proof. Following [22], this construction is based
on the following observations:

• Partition of each multistep in free and embedded parts. Each multistep comprising A2; �′′ can be partitioned into a
free and an embedded part w.r.t. B, as remarked in Sec. 5.2 after the definition of free and embedded multisteps.

• Postponement of embedded parts. We prove that each embedded part can be postponed, i.e. permuted with a subse-
quent free part, preserving the free and embedded nature of the permuted multisteps, and the depth of the free part
(cf. Lemmas 6.4, 6.5 and 6.6). We describe this phenomenon in more detail at the beginning of Sec. 6.2.

• Irrelevance of postponed embedded parts. Since B is not used and u ∈ N F implies B�A2; �′′� = ∅, we prove that the
(postponed) embedded part can be simply ignored when defining �′ (cf. Lemmas 6.7 and 6.8).

• Measure of free multireduction does not increase in projection. Since S(tk) is never-gripping, hence also B is
never-gripping, the depth of the free part of each multistep can be proven greater or equal than that of its residual
after (the corresponding residual of) B (cf. Lemmas 6.2 and 6.3). This is the reason for the introduction of gripping,
which then allows to apply the general structure of the proof in [22] in the abstract setting of this work.

We describe the details in the remainder of this section.

6.1. Relevance of gripping

This section develops the key properties that show the relevance of gripping in the abstract normalisation proof, as
described in Section 4.3. To this end, we introduce a strengthened variant of the free from relation. Given two coinitial
multisteps A and B, we say that A is independent from B, iff A �� B and A �� B. Analogously, if � and B are coinitial,
we say that � is independent from B, iff � �� B and �[k] �� B��[1..k − 1]� for all k.

50 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
t

◦C>B

◦B

◦
A ��B

◦ C�A� >B�A�

◦
B�A�

s ◦
A′ ��B�C�

◦
B�C�

u

A′=A�C�

t

◦C>B

◦B

◦
� ��B

◦ C��� >B���

◦
B���

s ◦
�′ ��B�C�

◦
B�C�

u

�′=��C�

Fig. 8. Postponement of embedded multisteps: the one step and multiple step cases; Lemma 6.5 and Lemma 6.6 respectively.

We prove the preservation of the depth of a multistep A after the contraction of a multistep B, if A is independent
from B (cf. Lemma 6.2), and the extension of such preservation to the measure of multireductions after the contraction of a
never-gripping set (cf. Lemma 6.3).

Lemma 6.1 (Independence preservation). Consider A independent from B, and d ∈A. Then A�d� is independent from B�d�.

Proof. If B = ∅, then the result holds trivially since also B�d� = ∅. So assume b ∈ B. Next, we may assume some a ∈ A
s.t. a �= d. Otherwise A�d� = ∅ and the result also holds trivially. For the same reason, we may assume a�d�a′ for some a′ .
Similarly, we may assume there exists b′ s.t. b�d�b′ .

The hypotheses implies the following: b �≤ a, b �≤ d, a �� b, and d �� b.
Observe b′ = a′ would contradict Ancestor Uniqueness. On the other hand, b′ < a′ would imply b < a ∨ (d � b ∧ d < a)

by Grip–Instantiation, while a′ � b′ would imply a � b ∨ a � d � b by Grip–Density. Therefore, either case would contradict
the hypotheses. Thus we conclude. �
Lemma 6.2 (Depth preservation). Let A, B ⊆Red(t) such that A is independent from B. Then ν(A) = ν(A�B�).

Proof. By induction on ν(A). If A = ∅, then A�B� = ∅ and we conclude. Otherwise, let δ = d; δ′ such that δ � A and
ν(A) = |δ|. Observe that δ′ �A�d�, implying ν(A) = ν(A�d�) + 1. Lemma 6.1 allows to apply the i.h., obtaining ν(A�d�) =
ν(A�d� �B�d� �), so that Proposition 5.1:(1) yields ν(A�d�) = ν(A�B� �d�B� �). In turn, Lemma 5.3 implies d�B� = {d′} for
some step d′ .

t d

◦B

◦A�d�

◦ B�d�

d�B�={d′} ◦
A�d��B�d��=A�B��d�B��

Therefore, for any γ such that γ � A�B� �d�B� �, we have d′; γ � A�B�. Consequently, ν(A) ≤ ν(A�d�) + 1 =
ν(A�B� �d�B� �) + 1 ≤ ν(A�B�).

Conversely, consider γ = e′; γ ′ such that γ �A�B� and ν(A�B�) = |γ |; observe that γ ′ �A�B� �e′�. Let e ∈A such that
e�B�e′. Lemma 5.3 implies e�B� = {e′}, implying that γ ′ �A�B� �e�B� �, so that Proposition 5.1:(1) yields γ ′ �A�e� �B�e� �.
Therefore, ν(A�B�) ≤ ν(A�e� �B�e� �) + 1. Again, Lemma 6.1 allows to apply the i.h., to obtain ν(A�e�) = ν(A�e� �B�e� �).
In turn, for any δ such that δ �A�e�, we get e; δ �A. Consequently, ν(A�B�) ≤ ν(A�e� �B�e� �) + 1 = ν(A�e�) + 1 ≤ ν(A).
Thus we conclude. �

The following result lifts Lemma 6.2 to multireductions. By replacing local absence of gripping to the hereditary
never-gripping property, we enforce independence of the multireduction from the given multistep. Hence, invariance of
depth for a multistep can be lifted to invariance of measure for a multireduction.

Lemma 6.3 (Measure preservation). Let � be a multireduction and B a multistep, such that � and B are coinitial, B is never-gripping
and � �� B. Then χ(�) = χ(��B�).

Proof. We proceed by induction on |�|. If � = nilsrc(B) , then ��B� = niltgt(B) , so we conclude immediately. Assume,
therefore, � = A; �′ , so that ��B� = A�B�; �′�B�A� �. Observe A �� B, A �� B, �′ �� B�A� and B�A� is never-gripping.
Then Lemma 6.2 implies ν(A) = ν(A�B�), and the i.h. on �′ yields χ(�′) = χ(�′�B�A� �). Thus we conclude. �
6.2. Normalisation proof

The next ingredient in the normalisation proof is the ability to postpone an embedded multistep after a free multistep or
multireduction. The situation is described in Fig. 8. The diagram on the left shows that an embedded (by B) multistep can
be postponed after a free (from B�C�) one, yielding a multireduction in which the free multistep precedes the embedded one

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 51
(Lemma 6.5). Moreover, the depth of the free multistep is preserved by the postponement. To enforce this we show, resorting to
Grip–Convexity, that the embedded multistep does not grip the (ancestor of the) free one, so that Lemma 6.2 can be applied.
This is the only rôle of Grip–Convexity in the normalisation proof.

The diagram on the right shows that a embedded multistep can be postponed after a free multireduction as well
(Lemma 6.6).

We observe that the only rôle of the added Pivot axiom in the normalisation proof, is to verify that C�A� > B�A� in the
left-hand side diagram.

Lemma 6.4 (Embedding preservation). Let A, B, C ⊆Red(t) such that A ∩B = ∅ and C > B. Then C�A� > B�A�.

Proof. By induction on ν(A). If A = ∅, then C�A� = C and B�A� = B, so that we conclude immediately. Otherwise, con-
sider a ∈A and c′ ∈ C�a� (if C�a� = ∅, then C�A� = ∅ and C�A� > B�A� holds trivially). Let c ∈ C such that c′ ∈ c�a�. Note
that a �= c for otherwise c�a� = ∅. We will verify the existence of some b′ ∈ B�a� such that b′ < c′ , so that C�a� > B�a�.
Let b ∈ B be such that b < c, as follows from the hypothesis. Observe that a = b or a = c would contradict, respectively,
the hypotheses of this lemma or our observation above on the existence of c′ . Therefore a �= b and a �= c. We consider two
cases.

1. Case a �< c. Then b < c implies a �< b, so that Linearity implies b�a� = {b′}, and then Context-Freeness applies to obtain
b′ < c′ .

2. Case a < c. If b < a, i.e. b < a < c, then Linearity implies b�a� = {b′} (since a �< b), and therefore Enclave–Embedding
applies to obtain b′ < c′ . Otherwise, we have a < c, b < c and b �≤ a, then Pivot applies to obtain b�a�b′ and b′ < c′ for
some b′ .

Hence, we have verified C�a� > B�a�. Moreover, Ancestor Uniqueness yields A�a� ∩ B�a� = ∅. Consequently, we can
apply the i.h. on A�a�, obtaining C�a� �A�a� � >B�a� �A�a� �. Thus we conclude. �

Lemma 6.5 (Postponement after a multistep). Let B ⊆ Red(t), t C−→◦ s A′−→◦ u, such that C > B, A′ �� B�C� and B is never-gripping.
Then there exists A ⊆Red(t) s.t. A′ =A�C�, A �� B and ν(A) = ν(A′).

Proof. If A′ = ∅s , then taking A = ∅t suffices to conclude. So we assume A′ �= ∅s and proceed by induction on ν(C). If
C = ∅, i.e. s = t , then we conclude by taking A′ :=A; observe that in this case B�C� = B.

Consider c ∈ C and t
c→ t0

C�c�−→◦ s. Since C > B, c /∈ B and hence {c} ∩ B = ∅; we can apply Lemma 6.4 to obtain C�c� >
B�c�. Moreover B�C� = B�c� �C�c� �, and B never-gripping implies B�c� never-gripping. Therefore, the i.h. on C�c� yields
the existence of some A′′ ⊆ Red(t0) such that A′ = A′′�C�c� �, A′′ �� B�c� and ν(A′′) = ν(A′). Hence, to conclude the
proof, it suffices to verify the existence of some A ⊆ Red(t) verifying (1) A′′ = A�c�, (2) A �� B and (3) ν(A) = ν(A′′).
Observe that A′ �= ∅s and ν(A′′) = ν(A′) imply A′′ �= ∅t0 .

1. Let b0 ∈ B such that b0 < c, so that Linearity implies b0 �c� = {b′′
0}. Let a′′ ∈A′′ . Then a′′ being created by c would imply

b′′
0 < a′′ by Enclave–Creation, contradicting A′′ �� B�c�. Therefore, a�c�a′′ for some a. Let A := {a ∈ Red(t) s.t. ∃ a′′ ∈
A′′ . a�c�a′′}. Observe that A′′ ⊆A�c� and let us show that also A�c� ⊆ A′′ .
Let a0 ∈ A�c�, a ∈ A such that a�c�a0, a′′ ∈ A′′ such that a�c�a′′ . Observe that c < a would imply b0 < c < a, and then
b′′

0 < a′′ by Enclave–Embedding, contradicting A′′ �� B�c�. Moreover, c = a would contradict a�c�a′′ , cf. Self Reduction.
Therefore c �≤ a, so that Linearity applies yielding that a�c� is a singleton, hence a0 = a′′ ∈A′′ . Consequently, A�c� ⊆A′′ ,
and then A�c� =A′′ .

2. Let a ∈ A and b ∈ B. If b is minimal in B w.r.t. <, then C > B implies b0 < c for some b0 ∈ B, therefore c �≤ b (since
c ≤ b would contradict minimality of b), hence b�c� = {b′′} by Linearity. Let a′′ ∈ A′′ such that a�c�a′′ . Observe that we
have already verified that c �< a. Then b < a would imply b′′ < a′′ by Context-Freeness, contradicting A′′ �� B�c�; hence,
b �< a. In turn, if b is not minimal in B w.r.t. <, then well-foundedness of < implies the existence of some b0 such that
b0 < b and b0 is minimal in B w.r.t. <, so that b0 �< a as we have just shown, and therefore b �< a. Consequently, A �� B.

3. Consider b0 ∈ B such that b0 < c and a ∈A. Observe that a � c would imply either a � b0 or b0 ≤ a by Grip–Convexity,
contradicting B being never-gripping and A �� B respectively. Therefore A �� c, and moreover A �� c (recall c �≤ a for
any a ∈A). Hence we can apply Lemma 6.2 to obtain ν(A) = ν(A′′). Thus we conclude. �

The next result extends Lemma 6.5 to multireductions: a multistep embedded by B may be postponed after a multire-
duction free from the same B, without affecting neither the free-from and embedding relations w.r.t. (the corresponding
residual of) B, nor the measure of the “free” multireduction.

52 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
Lemma 6.6 (Postponement after a multireduction). Let t C−→◦ s
�′

−�◦ u and B ⊆ Red(t) such that B is never-gripping, C > B, and

�′ �� B�C�. Then there exists some multireduction � verifying �′ = ��C�, so that Proposition 5.1:(2) yields t
�−�◦ s′ C���−→◦ u for some

object s′; and moreover � �� B, C��� > B���, and χ(�) = χ(�′).

Proof. By induction on |�′|. If �′ = nils , i.e. u = s, then it suffices to take � := nilt , so that s′ = t .

Assume �′ = �′
0; A′ , so that t

C−�◦ s
�′

0−�◦ u′ A′−→◦ u. Lemma 5.2 on nils; �′
0; A′ implies �′

0 �� B�C�. Then we can apply the

i.h. on �′
0 obtaining �′

0 = �0 �C� for some multireduction �0, such that t
�0−�◦ s′′ C��0 �−→◦ u′ for some object s′′ , and moreover

�0 �� B, C��0 � > B��0 �, and χ(�0) = χ(�′
0). We can thus build the following diagram:

t ◦�0

◦C

s′′

◦ C��0 �

s ◦
�′

0
u′ ◦

A′ u

On the other hand, �′ �� B�C� implies A′ �� B�C; �′
0 � (cf. Lemma 5.2, now on �′

0; A′; nilu), therefore Proposition 5.1:(2)
yields A′ �� B��0; C��0 � � = B��0 � �C��0 � �. Moreover, B never-gripping implies B��0 � never-gripping. Hence we can ap-

ply Lemma 6.5 to s′′ C��0 �−�◦ u′ , obtaining that A′ =A�C��0 � � for some A ⊆Red(s′′) verifying A �� B��0 � and ν(A) = ν(A′).
Consequently, we can complete the previous diagram as follows.

t ◦�0

◦C

s′′ ◦A

◦C��0 �

s′

◦C��0;A�

s ◦
�′

0

u′ ◦
A′ u

We define � := �0; A. Given C��0 � > B��0 � and A �� B��0 �, so that A ∩ B��0 � =
∅, Lemma 6.4 applied on A implies C��� > B���.

Moreover, given �0 �� B and A �� B��0 �, a simple induction on |�0| yields � �� B. Finally, χ(�) = χ(�′) is immediate.
Thus we conclude. �

The postponement result is used to show that, whenever t
�−�◦ u and B ⊆ Red(t) is never-gripping and not used in

�, and B��� = ∅, all activity embedded by (the successive residuals of) B is irrelevant, i.e. it can be omitted without
compromising the target object u, and moreover without increasing the measure. Therefore, the embedded part of each
multistep in A2; �′′ can just be discarded in the construction of �k+1, cf. Fig. 7 on page 49.

Lemma 6.7 (Irrelevance of one multistep). Let t C−→◦ s
�′

−�◦ u and B ⊆ Red(t), such that B is never-gripping, C > B, �′ �� B�C�, and

B�C; �′� = ∅. Then there is a multireduction � such that �′ = ��C�, t
�−�◦ u, � �� B, B��� = ∅ and χ(�) = χ(�′).

Proof. Lemma 6.6 implies the existence of � such that �′ = ��C�, t
�−�◦ s′ C���−→◦ u, � �� B, C��� > B���, and χ(�) = χ(�′).

Then B��� �C��� � = B��; C��� � = B�C; �′� = ∅; cf. Proposition 5.1:(2). We will show that B��� = ∅, and also that

C��� = ∅ implying t
�−�◦ u.

Assume for contradiction the existence of some b ∈ B���, we assume wlog that b is minimal in B��� w.r.t. < (recall that
< is assumed well-founded). Then C��� > B��� implies b �� C���, so that Lemma 5.3 yields b�C��� � = {b′}, contradicting
(B���)�C��� � = ∅. Therefore B��� = ∅. In turn, the existence of some c ∈ C��� would imply the existence of some b ∈
B��� such that b < c, contradicting B��� = ∅. Therefore C��� = ∅, implying u = s′ so that t

�−�◦ u. Thus we conclude. �
Lemma 6.8 (Irrelevance of many multisteps). Let t

�−�◦ u and B ⊆ Red(t), such that B is never-gripping, � does not use B, and

B��� = ∅. Then there exists a multireduction � such that t
�−�◦ u, � �� B, B��� = ∅ and χ(�) ≤lex χ(�).

Proof. By induction on |�|. If � = nilt , then it suffices to take � := �.

Assume � = A; �0, so that t A−→◦ s
�0−�◦ u for some object s. Observe B�A� is never-gripping, �0 does not use B�A� and

B�A� ��0 � = B��� = ∅. Then we can apply the i.h. on s
�0−�◦ u, thus obtaining s

�′
0−�◦ u for some �′

0 verifying �′
0 �� B�A�,

B�A� ��′
0 � = ∅ and χ(�′

0) ≤lex χ(�0).
We partition A in its free and embedded parts w.r.t. B, according to the idea described in Sec. 5.2 after the definition of

free and embedded multisteps. Formally, we define AF := {a ∈ A s.t. a �� B} and AE := (A \AF)�AF �, so that t AF−→◦ t′ AE−→◦

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 53
s
�′

0−�◦ u for some object t′ . It is easy to check AF �� B and (A \ AF) > B; since A does not use B and then A ∩ B = ∅. As
moreover AF ∩B = ∅, then Lemma 6.4 yields AE > B�AF �. Observe that B never-gripping implies B�AF � never-gripping,

�′
0 �� B�A� = B�AF � �AE �, and B�AF � �AE ; �′

0 � = B�A� ��′
0 � = ∅; cf. Proposition 4.1. Therefore Lemma 6.7 applies to t′ AE−→◦

s
�′

0−�◦ u, implying the existence of some �0 verifying t′ �0−�◦ u, �0 �� B�AF �, B�AF � ��0 � = ∅ and χ(�0) = χ(�′
0) ≤lex χ(�0).

Hence we conclude by taking � :=AF ; �0 since AF ⊆A implies in particular that ν(AF) ≤ ν(A). �
The following propositions describe the construction of the multireduction �k+1 (cf. Fig. 7 on page 49). In terms of the

general proof structure described at the beginning of Sec. 6, we can consider tk , tk+1 and S(tk) as t , s and B respectively in
the statement of Proposition 6.9 and Proposition 6.10. and �k as � in the latter Proposition.

Proposition 6.9 (Projection over non-used multistep). Let t
�−�◦ u and B ⊆Red(t) s.t. B is never-gripping, � does not use B, B��� =

∅ and t B−→◦ s. Then there exists a multireduction � s.t. s
�−�◦ u and χ(�) ≤lex χ(�).

Proof. Lemma 6.8 implies the existence of some �0 such that t
�0−�◦ u, �0 �� B, B��0 � = ∅ and χ(�0) ≤lex χ(�). We define

� := �0 �B�. Then we can build the following diagram; cf. Proposition 5.1(2).

t ◦�0

◦B

u

s ◦
�

u

Lemma 6.3 implies χ(�) = χ(�0) ≤lex χ(�). Thus we conclude. �
Proposition 6.10 (Projection over used multistep). Let t

�−�◦ u and B ⊆ Red(t), s.t. B is never-gripping, � uses B, B��� = ∅ and

t
B−→◦ s. Then there exists a multireduction � such that s

�−�◦ u and χ(�) <lex χ(�).

Proof. The hypotheses indicate � uses B, therefore the “last” element of � which uses the corresponding residual of B
can be determined, i.e. � can be written as �1; A; �2, such that A uses B��1 � (i.e. A ∩B��1 � �= ∅) and �2 does not use
B��1; A�. Observe |�| = |�1| + |�2| + 1.

Let B′ := B��1 �, A1 := A ∩ B′ , and A2 := (A \ A1)�A1 �. Observe that A1 �= ∅. To verify that ν(A2) < ν(A), let δ, γ
such that δ �A1, γ �A2, and particularly |γ | = ν(A2). Observe δ; γ �A. We obtain |δ| > 0 since A1 �= ∅. Then ν(A) ≥
|δ; γ | > ν(A2).

Therefore, χ(A2;�2) <lex χ(A;�2). Moreover A1 �B′� = ∅. We can build the following diagram:

t ◦�1

◦B

t0 ◦A1

◦B′

t1 ◦A2

◦B′ �A1 �

t2 ◦�2 u

s s0 s0

Suppose A2 uses B′�A1 �. Notice that the existence of some b′ ∈ A2 ∩ B′�A1 � would in turn imply the existence of some
b1 ∈ B′ s.t. b1 �A1 �b′ and also the existence of some b2 ∈ A \ A1 s.t. b2 �A1 �b′ . Consider an arbitrary δ �A1. Then, by a
simple induction on |δ| and resorting to Ancestor Uniqueness, one deduces b1 = b2. Therefore b1 = b2 ∈ B′ ∩ (A \ A1). But
then, by definition of A1, b1 = b2 ∈ A1, which is absurd. Therefore A2 does not use B′�A1 � and hence, since �2 does not
use B��1; A�, we obtain that A2; �2 does not use B′�A1 �. Moreover, B never-gripping implies B′�A1 � never-gripping.

Hence Proposition 6.9 yields the existence of some �2 verifying s0
�2−�◦ u and χ(�2) ≤lex χ(A2;�2) <lex χ(A;�2). Remark

that, by definition of χ , |�2| = |A; �2| = |�2| + 1.

t ◦�1

◦B

t0 ◦A;�2

◦B′

u

s ◦�1 �B�
s0 ◦�2 u

Thus if we define � := �1 �B�; �2, then |�| = |�1| + |�2| + 1 = |�|, and χ(�2) <lex χ(A;�2) implies χ(�) <lex χ(�)

independently of the relative measures of �1 �B� and �1, since elements of multireductions are considered in reversed
order when building measures. Thus we conclude. �

54 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
As we already remarked, Proposition 6.10 shows the existence of an adequate �k+1 following the general proof structure
described at the beginning of Sec. 6. Therefore, we can prove the main result of this work.

Theorem 6.11 (The abstract normalisation result). Let A be an ARS 〈O, R, src, tgt, �·�, <, �〉 enjoying all the axioms listed in Fig. 4.
Repeated contraction of necessary and never-gripping multisteps on A normalises.

Proof. Let t0 ∈ O a normalising object in A. Then there exists some multireduction �0 such that t0
�0−�◦ u where u is a

normal form. We proceed by induction on χ(�0), i.e. using the well-founded ordering defined at the beginning of Sec. 6.
If χ(�0) is minimal, i.e. either �0 = nilt0 or �0 = 〈∅t0 , . . . , ∅t0 〉, then t0 is a normal form, and therefore there is nothing

to prove. Otherwise, let B be a necessary and never-gripping multistep such that t0
B−→◦ t1. Then �0 uses B, and u being a

normal form implies B��0 � = ∅. Therefore Proposition 6.10 implies the existence of a multireduction �1 such that t1
�1−�◦ u

and χ(�1) <lex χ(�0). The i.h. on �1 suffices to conclude. �
7. Applications

7.1. The pure pattern calculus (and the simple pattern calculus)

PPC is a pattern calculus which extends SPC and stands out for the novel forms of polymorphism it supports. Since
arbitrary terms may be used as patterns and hence reduction inside patterns is allowed, PPC models pattern polymorphism
where functions over patterns that are computed at runtime may be defined. Another language feature is path polymorphism,
which permits functions that are generic in the sense that they operate over arbitrary data structures.

This section has four parts. We first present a brief overview of PPC following [17]. Then we show that PPC fits the ARS
framework, including all the axioms. The third part formulates a multistep strategy S . The final part shows that S computes
necessary and never-gripping multisteps. In view of the results of the previous section, cf. Theorem 6.11, these last three
parts – taken together – imply that S is normalising for this calculus.

7.1.1. Overview of PPC
Consider a countable set of symbols f , g, . . . , x, y, z. Sets of symbols are denoted by meta-variables θ , φ, The syntax

of PPC is summarised by the following grammar:

Terms (T) t ::= x | x̂ | tt | λθ t.t
Data-Structures (D S) D ::= x̂ | Dt
Abstractions (A B S) A ::= λθ t.t
Matchable-forms (M F) F ::= D | A

The term x is called a variable, ̂x a matchable, tu an application (t is the function and u the argument) and λθ p.u
an abstraction (θ is the set of binding symbols, p is the pattern and u is the body). Application (resp. abstraction) is left
(resp. right) associative.

A λ-abstraction λx.t can be defined by λ{x} x̂.t . The identity function λ{x} x̂.x is abbreviated I .
A binding symbol x ∈ θ of an abstraction λθ p.s binds matchable occurrences of x in p and variable occurrences of x in s.

λ{x} x x̂ . x x̂
The derived notions of free variables and free matchables are respectively denoted by fv(_) and fm(_).
This is illustrated in the figure on the left. Formally, free variables and free matchables of terms are
defined by:

fv(x) := {x}
fv(̂x) := ∅
fv(tu) := fv(t) ∪ fv(u)

fv(λθ p.u) := (fv(u) \ θ) ∪ fv(p)

fm(x) := ∅
fm(̂x) := {x}
fm(tu) := fm(t) ∪ fm(u)

fm(λθ p.u) := (fm(p) \ θ) ∪ fm(u)

As usual, we consider terms up to alpha-conversion, i.e. up to renaming of bound matchables and variables. Constructors
are matchables which are not bound and, to ease the presentation, they are often denoted in typewriter fonts a, b, c, d, . . .,
thus for example λ{x,y} x̂ y a.y denotes λ{x,y} x̂ y ̂z.y. The distinction between matchables and variables is unnecessary for
standard (static) patterns which do not contain free variables.

A position is either ε (the empty position), or na, where n ∈ {1, 2} and a is a position. We use a, b, . . . to denote positions.
The set Pos(t) of positions of t is defined as expected, provided that for abstractions λθ p.s positions inside both p and s
are considered. Here is an example Pos(λ{x} a ̂x.a x x) = {ε, 1, 2, 11, 12, 21, 22, 211, 212}. We write a ≤ b (resp. a ‖ b) when
the position a is a prefix of (resp. disjoint from) the position b. Notice that a ‖ b and a ≤ c imply c ‖ b. All these notions are
defined as expected [10] and extended to sets of positions as well. In particular, given a position a and a set of positions B,
we will say that a ≤ B iff a ≤ b for all b ∈ B, and analogously for <, ‖, etc.

We write t|a for the subterm of t at position a and t[s]a for the replacement of the subterm at position a in t by s.
Finally, we write s ⊆ t if s is a subterm of t (note in particular s ⊆ s). Notice that replacement may capture variables. An

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 55
occurrence of a term s in a term t is any position p ∈ Pos(t) verifying t|p = s. Particularly, variable occurrences are defined
this way.

Substitution and matching A substitution σ is a mapping from variables to terms with finite domain dom(σ). We write
{x1 → t1, . . . , xn → tn} for a substitution with domain {x1, . . . , xn}. A match μ is either a substitution or a special constant
in the set {fail, wait}. A match is positive if it is a substitution; it is decided if it is either positive or fail. The set of
free variables of a match μ are defined as follows: fv(σ) = ⋃

x∈dom(σ) fv(σ x), fv(fail) = ∅ and fv(wait) is undefined.
Similarly for fm(μ). We also define dom(fail) = ∅, whereas dom(wait) is undefined. The symbols of μ are sym(μ) :=
dom(μ) ∪ fv(μ) ∪ fm(μ). A set of symbols θ avoids a match μ, written θ#μ, iff ∀x ∈ θ, x /∈ sym(σ). The application
of a substitution σ to a term is written and defined as usual on alpha-equivalence classes; in particular σ(λθ p.s) :=
λθ σ (p).σ (s), if θ#σ . Notice that data structures and matchable forms are stable by substitution. The application of a
match μ to a term t , written μt , is defined as follows: if μ is a substitution, then it is applied as explained above; if
μ = wait, then μt is undefined; if μ = fail, then μt is the identity function I . Other closed terms in normal form could be
taken to define the last case, this one allows in particular to encode pattern-matching definitions given by alternatives [17].

The restriction of a substitution σ to a set of variables {x1, . . . , xn} ⊆ dom(σ) is written σ |{x1,...,xn} . This notion is ex-
tended to matchings by defining wait|{x1,...,xn} = wait and fail|{x1,...,xn} = fail, for any set of variables {x1, . . . , xn}. The
composition σ ◦ η of two substitutions σ and η is defined by (σ ◦ η)x = σ(ηx). Furthermore, if μ1 and μ2 are matches of
which at least one is fail, then μ2 ◦ μ1 is defined to be fail. Otherwise, if μ1 and μ2 are matches of which at least
one is wait, then μ2 ◦ μ1 is defined to be wait. Thus, in particular, fail ◦ wait is fail.

The disjoint union of two matches μ1 and μ2 is as in SPC. In particular, the equation from SPC also holds

fail	 wait= wait	 fail= fail

and is the culprit for the non-sequential nature of PPC (just as in SPC).8

The compound matching operation takes a term, a set of binding symbols and a pattern and returns a match, it is
defined by applying the following equations in order:

{{̂x �θ t}} := {x → t} if x ∈ θ

{{̂x �θ x̂}} := {} if x /∈ θ

{{̂xt1 . . . tn �θ x̂p1 . . . pn}} := {{p1 �θ t1}} 	 . . . 	 {{pn �θ tn}} if x /∈ θ

{{̂yt1 . . . tm �θ x̂p1 . . . pn}} := fail if x, y /∈ θ and (x �= y or (x = y and m �= n))

{{λθ p.u �θ x̂p1 . . . pn}} := fail
{{λθ p2.s2 �θ λθ p1.s1}} := fail

{{p �θ t}} := wait otherwise

The use of disjoint union in the third case of the previous definition restricts compound matching to linear patterns, as
in SPC. The result of the matching operation9 {p/θ t} is defined to be the check of { {p �θ t} } on θ ; where the check of a
match μ on θ is fail if μ is a substitution whose domain is not θ , μ otherwise. Notice that {p/θ t} is never positive if p
is not linear with respect to θ . We now give some examples: {̂x̂x/{x} uv} gives fail because ̂x̂x is not linear; {̂x̂y/{x,y,z} uv}
gives fail because {x, y, z} �= {x, y}, {̂x/∅ u} gives fail because ∅ �= {x}; {̂y/{x} ŷ} gives fail because {x} �= ∅; {̂x̂y/{x} ûz}
gives fail because { {̂y �{x} ẑ} } is fail; {̂x̂y/∅ ûz} gives fail since both {̂x/∅ u} and { {̂y �∅ ẑ} } are fail.

7.1.2. PPC as an ARS
PPC can be described as an ARS. Its objects O are the terms of PPC. The steps are the pairs 〈t, a〉 where t is a term, a ∈

Pos(t), t|a = (λθ p.s)u, and {p/θ u} is decided. In this case src(〈t, a〉) := t and tgt(〈t, a〉) := t[{p/θ u}s]a . If {p/θ u} = fail,
then we say that the step is a matching failure. We will often denote by a a given step 〈t, a〉; analogously, we will often
denote by D the set {〈t, d〉 | d ∈ D} where D ⊆ Pos(t). Conversely, whenever a is a step, we often refer to its position as a,
even without specifying explicitly that a = 〈t, a〉 for some term t , and similarly, whenever D is a set of steps, we refer to
the corresponding set of positions as D . This notation shall prove convenient when we address the compliance of PPC w.r.t.
the axioms of an ARS. Regarding the relations over objects and steps:

• Residual relation. If a = 〈t, a〉, b = 〈t′, b〉 and b′ = 〈u, b′〉 are steps, then b�a�b′ iff t′ = t , u = tgt(a), and one of the
following cases apply, where t|a = (λθ p.s)u:
• a �≤ b and b′ = b.
• b = a12n, b′ = an and {p/θ u} �= fail.
• b = a2mn, b′ = akn, {p/θ u} �= fail, and there is a variable x ∈ θ such that t|a11m = p|m = x̂ and t|a12k = s|k = x.

8 Sequentiality can be recovered (see e.g. [15,4,5]) by simplifying the equations of disjoint union, however, some meaningful terms will no longer be
normalising. E.g. if in particular wait	 fail= wait, then (λ∅ a b b .̂y)(a � c), where � is a non-terminating term, would never fail as we expect.

9 Note that the notation for (compound) matching we have just given differs from [16] and [17]: the pattern and argument appear in reversed order
there.

56 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
• Embedding relation. We define the embedding relation between redexes as the tree order [20]. Namely, a < b iff a =
〈t, a〉, b = 〈t, b〉, and a < b. Notice that whenever a < c and b < c, then a and b are comparable w.r.t. the embedding, i.e.
either a = b, a < b or b < a.

• Gripping relation. Let a = 〈t, a〉 and b = 〈t, b〉 be steps and let t|a = (λθ p.s)u. Then a � b iff {p/θ u} �= fail, b = a12n,
and θ ∩ fv(s|n) �= ∅.

We now address the axioms of Fig. 4. A word on notation: if t and θ are a term and a set of symbols respectively, then
we will write bm(t, θ) when t = x̂ for some x ∈ θ .

Fundamental axioms.
Self Reduction is immediate from the definition of residuals for PPC: none of the cases there applies for a�a�. Finite Residuals
follows from the fact that terms are finite. Axiom Ancestor Uniqueness is proved below.

Lemma 7.1 (Ancestor uniqueness). Let b1, b2, a, b′ be steps verifying b1�a�b′ and b2�a�b′ . Then b1 = b2 .

Proof. Let b1 = 〈t, b1〉, b2 = 〈t, b2〉 and b′ = 〈t′, b′〉, where t
a→ t′ . We prove that b1 = b2. Let t|a = (λθ p.s)u. We consider

three cases according to the definition of b1�a�b′ .

• If a �≤ b1, then b1 = b′ so that a �≤ b′ . A straightforward case analysis on the definition of residuals yields a �≤ b2, therefore
b1 = b2 = b′ .

• If b1 = a2mn and b′ = akn, then s|k = x and p|m = x̂ for some x ∈ θ . Observe that a < b′ implies a < b2. We consider two
cases. If b2 = a12n′ and b′ = an′ , then kn = n′ . This would imply t|b2 = s|kn has the form (λθ ′ p′.s′)u′ , contradicting s|k
being a variable. Therefore, akn = b′ = ak′n′ and b2 = a2m′n′ , where s|k′ = y and p|m′ = ŷ for some y ∈ θ . Observe that
k < k′ , i.e. k′ = kc where c �= ε , would imply kc ∈ Pos(s), contradicting the fact that s|k is a variable; so that k �< k′ . We
obtain k′ �< k analogously. On the other hand, k ‖ k′ would contradict kn = k′n′ . Hence k = k′ , implying n = n′ and also
y = x. In turn, {p/θ u} being positive implies that p is linear, and then m = m′ . Thus we conclude.

• If b1 = a12n and b′ = an, then we have again that a < b′ implies a < b2. On the other hand, assuming b2 = a2m′n′ ,
so that an = b′ = akn′ , would yield a contradiction as already stated. Therefore b2 = a12n′ and an = b′ = an′ , implying
n = n′ and consequently b1 = b2. �

Finally, FD and SO are left for the end of this section.

The Enclave–Creation axiom.
To verify Enclave–Creation involves a rather long technical development, including some preliminary lemmas, particularly a
creation lemma indicating the creation cases for PPC.

Lemma 7.2. Let p � p′ and u � u′ . Then,

(i) { {p �θ u} } positive implies { {p′ �θ u′} } positive,
(ii) { {p �θ u} } = fail implies { {p′ �θ u′} } = fail.
(iii) {p/θ u} positive implies {p′/θ u′} positive,
(iv) {p/θ u} = fail implies {p′/θ u′} = fail.

Proof. By induction and case analysis on p. See [9] for further details. �
Lemma 7.3 (Creation cases). Let t a→ t′ , and ∅�a�b, i.e. b is created by (the contraction of) a. Say t|a = (λθ p.s)u and t′|b = (λθ ′ p′.s′)u′ .
Then one of the following holds.

Case I. The contraction of a contributes to the creation of b from below, i.e., b ∈ Pos(t), a = b1 implying t|b = (λθ p.s)uu′ , and
either
(i) s = x where x ∈ θ and ̂x occurs in p, {p/θ u} = σ , σ x = (λθ ′ p′.s′).
(ii) s = λθ ′ p′′.s′′ , {p/θ u} = σ , p′ = σ p′′ , s′ = σ s′′ .
(iii) {p/θ u} = fail, λθ ′ p′.s′ = I .

Case II. The contraction of a contributes to the creation of b from above, i.e., b = an, s|n = xu′′ , {p/θ u} = σ , σ x = (λθ ′ p′.s′),
u′ = σ u′′ .

Case III. The argument of a redex pattern becomes decided. We have three such situations:
(i) b = an, s|n = (λθ ′ p′′.s′′)u′′ , {p′′/θ ′ u′′} = wait, {p/θ u} = σ , p′ = σ p′′ , s′ = σ s′′ and u′ = σ u′′ .
(ii) a = b2n, t|b = (λθ ′ p′.s′)u′′ and {p′/θ ′ u′′} = wait.
(iii) a = b11n, t|b = (λθ ′ p′′.s′)u′ and {p′′/θ ′ u′} = wait.

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 57
Proof. We proceed by comparing a with b.

• If a ‖ b, then t|b = t′|b so that 〈t, b〉�a�b, contradicting the hypotheses.
• Assume a ≤ b, i.e. b = ac.

In this case, {p/θ u} = fail would imply t′|a = I , contradicting t′|b being a redex. Then {p/θ u} = σ , implying t′|b =
σ s|c . Now the redex at position c of σ s is either entirely contained in σ or otherwise it occurs at a non-variable
position of s. Observe that c = kn, s|k = x and t′|b = σ x|n for some variable x would imply 〈t, a2mn〉�a�b where p|m = x̂.
This is not possible since b is created. Therefore s|c = t1u′′ and t′|b = (λθ ′ p′.s′)u′ = (σ t1)σ u′′ . If t1 is a variable, so that
σ t1 = λθ ′ p′.s′ , then case II applies, otherwise case III.(i) applies.

• Assume b < a.
If a = b1, i.e. t|b = (λθ p.s)uu′ , then observe {p/θ u}s = t′|a = λθ ′ p′.s′ . If {p/θ u} = fail, then case I.(iii) applies. If s is
a variable, then case I.(i) applies. Otherwise, s is an abstraction, so that case I.(ii) applies.
If b11 ≤ a, i.e. t|b = (λθ ′ p′′.s′)u′ , then observe ∅�a�b implies {p′′/θ ′ u′} = wait. Then case III.(iii) applies. If b2 ≤ a, a
similar argument yields that case III.(ii) applies.
Finally, b12 ≤ a implies t|b = (λθ ′ p′.s′′)u′ , and t′|b being a redex implies {p′/θ ′ u′} decided so that 〈t, b〉�a�b, contra-
dicting the hypothesis. �

Lemma 7.4.

1. Let t a→ t′ such that t /∈ M F and t′ ∈ M F . Then a is outermost.
2. Let t a→ t′ such that { {p �θ t} } = wait and { {p �θ t′} } is decided for some θ , p. Then a is outermost.

3. Let p a→ p′ such that { {p �θ t} } = wait and { {p′ �θ t} } is decided for some θ , t. Then a is outermost.

Proof. By induction on t′ , t and p, respectively. We use item 1 in the proof of the other items. See [9] for further details. �
Lemma 7.5 (Enclave–Creation). Let a, b be steps such that b < a, b�a�b′ , and ∅�a�c′ . Then b′ < c′ .

Proof. Observe that a �≤ b implying b′ = b. Say t
a→ t′ , t|a = (λθ p.s)u, and t′|c′ = (λθ ′ p′.s′)u′ . We proceed by case analysis

w.r.t. Lemma 7.3.

Case I In this case c′ ∈ Pos(t) and a = c′1, so that t|c′ = (λθ p.s)uu′ . Therefore, it suffices to observe that b = c′ would
contradict b to be a step, then b < a implies b < c′ .

Cases II or III.(i) In either case c′ = an, thus b < a implies b < c′ .
Case III.(ii) In this case a = c′2n and t|c′ = (λθ ′ p′.s′)u′′ . Then, b < a implies either b < c′ , b = c′ or b = c′2n′ where n′ < n. We

conclude by observing that the second and third cases would contradict ∅�a�c′ and Lemma 7.4:(2) respectively.
Case III.(iii) In this case a = c′11n and t|c′ = (λθ ′ p′′.s′)u′ . A similar analysis applies, resorting to Lemma 7.4:(3) instead of

Lemma 7.4:(2). �
The other embedding and gripping axioms.

Linearity is immediate from the definition of residuals. The remaining embedding axioms, and also Grip–Instantiation, are
related with the invariance of embedding w.r.t. residuals. The following result characterises those situations in which the
embedding relation between two steps fails to be preserved w.r.t. the contraction of a third one.

Lemma 7.6. Suppose b�a�b′ and c�a�c′ , such that ¬(b < c ⇔ b′ < c′). Then:

• (a < b) ∧ (a < c), and moreover;
• either (b < c) ∧ (b′ ‖ c′), or (a � b) ∧ (b ‖ c) ∧ (b′ < c′) ∧ (a2 ≤ c).

Proof. By case analysis of a, b and c. The most challenging case is when a < b and a < c. In this case, a detailed analysis of
the possible cases w.r.t. the residual relation is required. See [9] for further details. �

It is easy to obtain Context-Freeness, Enclave–Embedding and Grip–Instantiation as corollaries of Lemma 7.6.

Lemma 7.7 (Pivot). Let a, b, c, c′ steps verifying a < c, b < c, b �≤ a, and c�a�c′ . Then there exists a step b′ such that b�a�b′ and b′ < c′ .

Proof. Observe that a < c, b < c and b �≤ a implies a < b < c. A case analysis w.r.t. the definition of residuals, considering
a < c, allows to conclude. See [9] for further details. �
Lemma 7.8. Suppose t = (λθ p.s)u a→ t′ , c�a�c′ , and x ∈ fv(t′|c′). Then x ∈ fv(t|c), or a � c and x ∈ fv(u).

58 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
Proof. By case analysis on the definition of residuals. See [9] for further details. �

Lemma 7.9 (Grip–Density). Consider steps a, b, b′, c, c′ verifying b�a�b′ , c�a�c′ , and b′ � c′ . Then b � c ∨ b � a � c.

Proof. Let t a→ t′ , and say t|a = (λθ p.s)u, t′|b′ = (λθ ′ p′.s′)u′ , and t|b = (λθ ′ p′′.s′′)u′′; notice that the set θ ′ is invariant w.r.t.
the contraction of a. Recall that b′ � c′ implies {p′′/θ ′ u′′} positive, b′12 ≤ c′ and θ ′ ∩ fv(t′|c′) �= ∅. Observe that {p′′/θ ′ u′′}
positive and {p′/θ ′ u′} decided imply {p′/θ ′ u′} positive; cf. Lemma 7.2. Let x ∈ θ ′ ∩ fv(t′|c′). Then Lemma 7.8 implies
x ∈ fv(t|c) ∨ (a � c ∧ x ∈ fv(u)).

Given b′ < c′ , Lemma 7.6 implies b < c or (b ‖ c ∧a2 ≤ c). The latter case implies a �� c (since a2 ≤ c) and θ ′ ∩fv(t|c) = ∅
(since b ‖ c and t|b = (λθ ′ p′′.s′′)u′′), contradicting x ∈ fv(t|c) ∨ a � c. Hence b < c. An analysis of the three possible cases
w.r.t. a, i.e. a < b < c, b < a < c and b < c < a, allows to conclude. See [9] for further details. �

Lemma 7.10 (Grip–Convexity). Let a, b, c ∈Red(t) such that a � b and c < b. Then a � c ∨ c ≤ a.

Proof. Observe that a < b and c < b implies that either c ≤ a or a < c. In the former case we immediately conclude.
Otherwise, it suffices to notice that a < c < b, a12 ≤ b and t|c being a redex imply a12 ≤ c, and that c < b, along with the
variable convention, implies θ ∩ fv(t|b) ⊆ θ ∩ fv(t|c), where t|a = (λθ p.s)u. Therefore ∅ �= θ ∩ fv(t|c) so that we conclude
a � c. �

The axioms FD and SO.
FD is a consequence of the gripping axioms. Thm. 3.2. in [20] states that an ARS satisfying the gripping axioms along with
Self Reduction, Finite Residuals and Linearity, and whose embedding and gripping relations are acyclic, also enjoys FD. For
the ARS modelling PPC, we have verified all the required axioms. The embedding relation being an order, and the gripping
relation being included in the former, imply immediately that both are acyclic. Hence we obtain FD.

For the axiom SO, the interesting case is when the steps are nested, i.e. a < b. Let t|a = (λθ p.s)u, t
b→ t′ , and t′|a =

(λθ p′.s′)u′ . If {p/θ u} = fail is a matching failure, it suffices to observe that {p′/θ u′} = fail, cf. Lemma 7.2. If {p/θ u}
is positive, then a simple, yet extensive, analysis resorting to various properties related to substitutions (e.g. that reduction
steps, their targets, and residuals, are preserved by substitutions), suffices to conclude.

7.1.3. A reduction strategy for PPC
This section introduces a normalising strategy S for PPC. A prestep is a term of the form (λθ p.t)u, regardless of

whether the match {p/θ u} is decided or not. The rationale behind the definition of S can be described through two
observations. First, it focuses on the leftmost–outermost (LO) prestep of t , entailing that when PPC is restricted to the
λ-calculus it behaves exactly as the LO strategy for the λ-calculus. Second, if the match corresponding to the LO occurrence
of a prestep is not decided, then the strategy selects only the (outermost) step, or steps, in that subterm which should be
contracted to get it “closer” to a decided match. E.g. in the term (λ{x,y} a x̂ (c ŷ).y x) (a r1 r2), where all the ri ’s are
steps, the match {a ̂x (c ŷ)/{x,y} a r1 r2} is not decided and the rôle played by r1 is different from that of r2 in obtain-
ing a decided match. Replacing r1 by an arbitrary term t1 does not yield a decided match, i.e. {a x̂ (c ŷ)/{x,y} a t1 r2}
is not decided. However, replacing r2 by c s2 (resp. by d s2) does: {a ̂x (c ŷ)/{x,y} a r1 (c s2)} = {x → r1, y → s2} (resp.
{a x̂ (c ŷ)/{x,y} a r1 (d s2)} = fail). Hence, contraction of r2 can contribute towards obtaining a decided match, while
contraction of r1 does not. A different example, in which multiple steps (including one in the pattern) are selected, is
(λ{x,y} a (b ̂x) r1.r2) (a r3 (d r4)), where all the ri ’s are steps. The strategy selects r1 and r3. Moreover, notice that contrac-
tion of r4 is delayed since the match operation is not decided when the pattern is a redex (if the contractum of r1 were
e.g. either d ŷ or a, then the match w.r.t. d r4 would be decided without the need of reducing r4). We note that in both
examples, the decision made by the strategy (namely, to select r2 in the first case and {r1, r3} in the second one) coincides
for any term having the indicated form. This decision is based solely on the structure of the term, in order to avoid the
need for history or lookahead.

Formally, we define the reduction strategy S as a function from terms to sets of steps by means of an auxiliary func-
tion Sπ . This auxiliary function gives the positions of the steps to be selected: S(t) := {〈t, p〉 s.t. p ∈ Sπ (t)}.

In turn, the definition of Sπ resorts to an additional auxiliary function, called SM, that formulates the simultaneous
structural analysis of the argument and pattern of a prestep. The arguments of SM are the pattern and the argument of
a prestep. Its outcome is a pair of sets of positions, corresponding to steps inside the pattern and argument respectively,
which could contribute to turning a non-decided match into a decided one.

The formal definition of Sπ and SM follows. Recall that we write bm(t, θ) when t = x̂ for some x ∈ θ .

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 59
Sπ (x) := ∅
Sπ (̂x) := ∅

Sπ (λθ p.t) := 1Sπ (p) if p /∈ N F
Sπ (λθ p.t) := 2Sπ (t) if p ∈ N F

Sπ ((λθ p.t)u) := {ε} if {p/θ u} decided
Sπ ((λθ p.t)u) := 11G ∪ 2D if {p/θ u} = wait,SMθ (p, u) = 〈G, D〉 �= 〈∅,∅〉,
Sπ ((λθ p.t)u) := 11Sπ (p) if {p/θ u} = wait,SMθ (p, u) = 〈∅,∅〉, p /∈ N F
Sπ ((λθ p.t)u) := 12Sπ (t) if {p/θ u} = wait,SMθ (p, u) = 〈∅,∅〉, p ∈ N F , t /∈ N F
Sπ ((λθ p.t)u) := 2Sπ (u) if {p/θ u} = wait,SMθ (p, u) = 〈∅,∅〉, p ∈ N F , t ∈ N F

Sπ (tu) := 1Sπ (t) if t is not an abstraction and t /∈ N F
Sπ (tu) := 2Sπ (u) if t is not an abstraction and t ∈ N F

SMθ (̂x, t) := 〈∅,∅〉 if x ∈ θ

SMθ (̂x, x̂) := 〈∅,∅〉 if x /∈ θ

SMθ (p1 p2, t1t2) := 〈1G1 ∪ 2G2,1D1 ∪ 2D2〉 if t1t2, p1 p2 ∈ M F ,SMθ (pi, ti) = 〈Gi, Di〉
SMθ (p, t) := 〈Sπ (p),∅〉 if p /∈ M F
SMθ (p, t) := 〈∅,Sπ (t)〉 if p ∈ M F & t /∈ M F & ¬bm(p, θ)

Notice the similarities between the first three clauses in the definition of SM and those of the definition of the matching
operation (cf. Sec. 7.1.1). Also notice that whenever a non-decided match can be turned into a decided one, the function
SM chooses at least one (contributing) step. Formally, it can be proved that, given p and u such that {p/θ u} = wait, if
p′ and u′ exist such that p −�◦ p′ , u −�◦ u′ and {p′/θ u′} is decided, then SMθ (p, u) �= 〈∅, ∅〉.

Let us analyse briefly the clauses in the definition of Sπ . The focus on the LO prestep of a term is formalised in the
first four and the last two clauses. If the LO prestep is in fact a step, then the strategy selects exactly that step; this is the
meaning of the fifth clause. If the LO prestep is not a step, then SM is used. If it returns some steps which could contribute
towards a decided match, then the strategy selects them (sixth clause). Otherwise, as we already remarked, the prestep will
never turn into a step, so that the strategy looks for the LO prestep inside the components of the term (seventh, eighth and
ninth clauses).

While the strategy focuses on the obtaining of a decided match for the LO prestep, it can select more steps than needed
for that aim. E.g., for the term (λ{y} a b c ŷ.y) (a (I c) (I b) (I a)), the set selected by the strategy S is {I c, I b}, even if
the contraction of just one step of the set suffices to make the head match decided.

Notice that S collapses to the LO-strategy when considering the subset of PPC terms given by the terms of the
λ-calculus.

The reduction strategy S is complete, i.e., if t is not a normal form, then S(t) �= ∅. Moreover, all steps in S(t) are
outermost. On the other hand, notice that S is not outermost fair [25]. Indeed, given (λ c x.s) �, where � is a non-terminating
term, S continuously contracts �, even when s contains a step.

Additionally, the steps in S(t) are not always hereditarily outermost, i.e., universally <-external in the sense of [1] (cf.
Sec. 5.2). Thus for example, given the term t = (λxab̂x.t1)((Id)(Ib)t2), the strategy S selects the set of redexes {Id, Ib}. By
contracting only Id, we get t → t′ = (λxab̂x.t1)(d(Ib)t2), where t′ contains a (created) redex that embeds (the residual of
the original) Ib. Note that the created, embedding redex is a matching failure. Such is always the case whenever a redex
embeds a residual of S(t), observation which is used to prove that S(t) is never-gripping.

In fact, the term t = (λxaĉx.t1)((Id)(Ib)t2) shows that there may be no external redexes at all. Indeed, contracting either
of Id or Ib create matching failures.

7.1.4. Properties of the reduction strategy S
In this section we prove that S computes necessary (Proposition 7.14) and non-gripping (Proposition 7.16) sets. These

proofs rely on the notion of projection of a multireduction w.r.t. a position. We describe briefly this notion in the following.
See [9] for further details.

Let a be a position. Given b = 〈t, b〉, we say that a ≤ b iff a ≤ b. This definition is extended to multisteps and reduction
sequences: a ≤B iff a ≤ b for all b ∈ B, a ≤ δ is defined similarly.

If a ≤ b = 〈t, b〉, implying b = ab′ , then we define the projection of b w.r.t. a, as follows: b|a = 〈t|a, b′〉. If a ≤ B, then
the projection B|a is defined as expected. We define similarly δ|a if a ≤ δ. The targets of steps and reduction sequences, the
residual relation, and the developments of a multistep, are compatible with these projections.

A multistep B preserves a iff all b ∈ B verify b �< a (or equivalently a ≤ b or a ‖ b). If B preserves a, then this set can
be partitioned10 into two parts, say BF

a and BE
a , such that b ‖ a if b ∈ BF

a , and a ≤ b if b ∈BE
a . Observe that B =BF

a 	BE
a .

10 The relation preserves is similar to free-from (cf. Sec. 5.2). Moreover, the partition given by B =BF
a 	BE

a bears some similarity to that described after
the definition of free-from, albeit the former is restricted to multisteps that preserves some position, while the latter applies to any multistep. Additionally,
free-from is a relation on abstract steps, multisteps and multireduction, while preserves is a relation between PPC multisteps and positions (not necessarily
redexes).

60 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
If t B−→◦ t′ preserves a, then t′|a is determined by BE
a , i.e. t′|a = t′′|a where t

BE
a−�◦ t′′ . Therefore we can extend the definition

of the projection B|a to any B preserving a: BF
a is simply ignored.

In turn, a multireduction � preserves a iff all its elements do. Suppose � preserves a, and let t
�[1]−→◦ t1

�[2]−→◦ t2
�[3..]−�◦ t′ .

Observe that t|a
�[1]|a−�◦ t1|a

�[2]|a−�◦ t2|a This observation leads to define �|a , the projection of � w.r.t.a, as expected.
Some notions related to multireductions are compatible with projections:

Lemma 7.11. Let t
�−�◦ t′ and assume � preserves a. Then:

(i) t|a
�|a−�◦ t′|a.

(ii) If ac ∈Red(t), then ac���d iff d = ad1 and c��|a �d1 .
(iii) If ac ∈Red(t), then � uses ac iff �|a uses c.

Proof. This result admits a simple, though long, proof. See [9] for further details. �
In the remainder of this section, we show that S always selects necessary and never-gripping sets of redexes, along with

the needed auxiliary results.

Lemma 7.12. If { {p �θ u} } is positive, then SMθ (p, u) = 〈∅, ∅〉.

Proof. Observe that { {p �θ u} } positive implies p ∈ D S . Then a simple induction on p suffices. Particularly, if p = p1 p2, then
{ {p �θ u} } positive implies u = u1u2 and both { {pi �θ ui} } positive, so that the i.h. on each pi allows to conclude. �
Lemma 7.13. Let t, u be terms and p be a pattern.

(i) Let t
�−�◦ t′ where t /∈ M F , t′ ∈ M F . Then � uses S(t) and S(t)��� = ∅.

(ii) Let p
�−�◦ p′ and u

−�◦ u′ , where { {p �θ u} } = wait and { {p′ �θ u′} } is decided. Let 〈G, D〉 = SMθ (p, u). Then � uses G or
uses D. Moreover, { {p′ �θ u′} } positive implies G��� =D�� = ∅.

(iii) Let p
�−�◦ p′ and u

−�◦ u′ , where {p/θ u} = wait and {p′/θ u′} is decided. Let 〈G, D〉 = SMθ (p, u). Then � uses G or
uses D. Moreover, {p′/θ u′} positive implies G��� =D�� = ∅.

Proof. For items (i) and (ii), we proceed by simultaneous induction on |t| + |u| + |p|. The proof analyses the different cases
in the definitions of S and SM; it resorts to Lemma 7.11 and Lemma 7.12. Item (iii) follows easily from item (ii). See [9]
for further details. �
Proposition 7.14. Let t

�−�◦ t′ where t /∈ N F and t′ ∈ N F . Then � uses S(t).

Proof. We prove the proposition simultaneously with the following two statements.

Let p
�−�◦ p′ and u

−�◦ u′ where p′, u′ ∈ N F , 〈G, D〉 = SMθ (p, u) �= 〈∅, ∅〉, and { {p �θ u} } = { {p′ �θ u′} } = wait (resp.
{p/θ u} = {p′/θ u′} = wait). Then � uses G or uses D.

The structure of the proof is similar to that of Lemma 7.13, resorting to Lemma 7.11, Lemma 7.13, and Lemma 7.12.
See [9] for further details. �
Lemma 7.15. Let t

�−�◦ t′ , b ∈ S(t)���, and a verifying a < b. Then a is a matching failure.

Proof. The structure of the proof is similar to that of Proposition 7.14. The two statements which are proved simultaneously
follow.

Let p
�−�◦ p′ and u

−�◦ u′ such that { {p �θ u} } = wait (resp. {p/θ u} = wait), b ∈G��� or b ∈D�� where SMθ (p, u) =
〈G, D〉, and a verifying a < b. Then a is a matching failure.

See [9] for further details. �
Proposition 7.16. Let t be a term not in normal form. Then S(t) is a non-gripping set.

Proof. Let t
�−�◦ u, a ∈ Red(u), b ∈ S(t)���; it suffices to deduce that b does not grip a. If a �< b, then we immediately

conclude. If a < b, then Lemma 7.15 entails that a is a matching failure so b cannot grip a. �

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 61
7.2. λ-Calculus with parallel-or

The lambda calculus extended with parallel-or also falls within the scope of our abstract proof. Its terms are given by
the grammar:

t ::= x | λx.t | t t | or(t, t) | tt
The reduction rules are

(λx.s)u → s{x ← u}
or(t,tt) → tt
or(tt, t) → tt

It may be seen as an ARS under the standard reading of each of its elements. Two comments on this. First the notion of
gripping. A step 〈s, p〉 grips a step 〈s, q〉 where s|q = (λy.u′) v ′ , if q1 ≤ p and s|p has a free occurrence of y (we assume
the standard variable convention). Second, the fact that although this is an almost-orthogonal higher-order rewrite system,
from the point of view of the underlying ARS it enjoys semantic orthogonality since the critical pair is trivial.

The reduction strategy S is defined by means of an auxiliary function Sπ that gives the positions of the steps to be
selected, as described for PPC in Sec. 7.1.3. In turn, Sπ is defined as follows

Sπ ((λx.s) u) := {ε}
Sπ (or(tt, u)) := {ε}
Sπ (or(u,tt)) := {ε}

Sπ (s u) := 1Sπ (s) if s �= λx.s′ and s /∈ N F
Sπ (s u) := 2Sπ (u) if s �= λx.s′ and s ∈ N F

Sπ (λx.t) := 1S(t)
Sπ (or(s, u)) := 1Sπ (s) ∪ 2Sπ (u) if s �= tt and u �= tt

Sπ (tt) := ∅
This strategy may be proved to produce necessary and never-gripping sets of redexes following the lines of the (more

complicated) proofs developed for PPC. As a consequence, Theorem 6.11 is applicable and allows us to infer that S is
normalising.

8. Conclusions

Relying on an axiomatic presentation of rewriting [20], we study normalisation for a wide class of rewriting systems.
The main result of this paper states that multistep strategies that contract sets of necessary and never-gripping steps are
normalising, i.e. they reach a normal form, if it exists.

This is particularly appealing for non-sequential rewrite systems, in which terms that are not in normal form may not
have any needed redex, where strategies that contract only a single step rather than a set of steps and rely only on the term
itself to decide which redex to reduce, cannot be normalising.

We give a concrete example of such a phenomenon by means of the pattern calculus PPC, that fails to be sequential,
and hence includes reducible terms without any needed redex. More precisely, this behaviour is manifested by the failure
mechanism of PPC. Consider for example the term t = (λ{x}a b c.b d)(a r1r2) where r1 and r2 are redexes. If r1 rewrites to d,
then t can be reduced to t′ = (λ{x}a b c.b d)(a d r2) which rewrites to the normal-form I in one step, because the match of
the pattern a b c against the argument a d r2 yields fail. A similar situation holds if r2 rewrites to d. Consequently, either
r1 or r2 could be selected to yield a normal form from t . But choosing always r1 would be a bad decision for other terms,
as for example u = (λ{x}a b c.b d)(a r′

1r′
2), where r′

1 leads to an infinite reduction, whilst r′
2 rewrites to d. An analogous

reasoning invalidates the selection of r2.
Since the reduction strategy S (cf. Sec. 7.1.3) for PPC chooses a set of redexes (both steps r1 and r2 are selected in our

example t), it is then a multistep reduction strategy. We prove that S computes necessary and never-gripping sets of steps.
Following the above mentioned abstract normalisation result, this implies that the multistep strategy is normalising for PPC.
This result can then be seen as an extension of needed normalising strategies to non-sequential rewrite systems. Moreover,
our strategy S coincides with the leftmost–outermost strategy when restricting PPC to the λ-calculus.

Another interesting remark concerns the recent embedding [26] of PPC into higher-order pattern rewriting systems,
which was motivated by the fact that one can understand some properties of PPC by just looking at the corresponding
properties of the image of the embedding. However, as explained in Section 7.1.3, the strategy S is not outermost-fair, so
that no available normalisation result for higher-order rewriting can be applied in our case. More importantly, the results
developed in this paper can be applied to other higher-order rewriting systems for which outermost-fair strategies are, in
general, difficult to compute or to express inductively.

This work also shows that the notion of gripping can be a useful tool to study fine properties of reduction in λ-calculi.
We already noted, in Sec. 4.3, that gripping is used in an abstract proof of the finiteness of developments. We cite other
links between gripping and λ-calculi.

62 E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63
1. Gripping explains the size-exploding phenomenon described in [2]. Let t0 = yxx and tn+1 = (λx.tn)(yxx). The term tn

reduces in n steps to a term whose size is exponential in n, while the size of tn is linear in n. We observe that the
n redexes present in tn are all linked by gripping. E.g., in t3 = (λx3.(λx2.(λx1.yx1x1)(yx2x2))(yx3x3))(yxx) we have
a3 � a2 � a1, where ai is the redex corresponding to the bound xi . The successive gripping between redexes produces
the multiplication of variable occurrences, and thus the explosion in the size of the normal form.

2. A link also exists between gripping and the box order on redexes in the linear substitution calculus [1]. In this calculus,
the term x[x/y][y/z] has two substitution redexes, corresponding to the bound occurrences of the variables x and y. In
the box order, the x-redex precedes the y-redex. Beta-expansion of this term yields (λy.(λx.x)y)z, where the x-redex
grips the y-redex.

3. Finally, we observe that a variant of gripping is used in [13] to characterise the cases in which α-conversion is un-
avoidable in calculi containing the rewrite rule μx.M → M[x := μx.M]. E.g., in the term t = μx.F (y, μy.x), the inner
redex μy.x grips the outer one. Observe that the step t → F (y, μy′.(μx.F (y, μy.x))) forces the renaming of the bound
variable associated to the (residual of the) gripping redex.

The scope of our work could be expanded in several ways. First, we believe that the main ideas underlying the definition
of S for PPC can lead to reduction strategies for other abstract rewriting formats, such as HRS, CRS or ERS. These strategies
could be proved to be normalising by resorting to the abstract normalisation proof given in this paper. This would give a
powerful extension of the results in [22] to higher-order rewriting.

A second research direction is to broaden the scope of the normalisation proof presented in Section 6. More precisely, the
abstract proof has been instantiated for PPC with the strategy S , which always selects a subset of the outermost steps in a
term. On the other hand, the proof does not apply to the parallel-outermost reduction strategy, which simultaneously selects
all the outermost steps in a term. This is due to the fact that A ⊆ B and A never-gripping does not imply B never-gripping.
For example, consider:

t = (λ{x}a x. Dx︸︷︷︸
b

)(I(ab)︸ ︷︷ ︸
a

)

whose only steps are a and b. Let S(t) = {a} ⊆ {a, b} =O(t). Remark that S(t) is the set of redexes selected by the strategy
S and O(t) is the set of all outermost steps of t . The set S(t) is indeed never-gripping. However, the set O(t) does not
satisfies the never-gripping property in the general case. Indeed, contracting a results in

c′
︷ ︸︸ ︷
(λ{x}a x. Dx︸︷︷︸

b′
)(ab)

where b�a�b′ and c′ � b′ . Hence O(t) does not enjoy the never-gripping property.
We conjecture that some variation of the given proof could apply to the parallel-outermost strategy in some cases, for

example for PPC. In this perspective, it could be possible that the property of always selecting necessary sets of steps could
suffice to guarantee that a reduction strategy is normalising. A proof of this conjecture, or a counterexample falsifying it,
would be an interesting result in this direction.

Acknowledgements

To Vincent van Oostrom for having pointed out a mistake in a previous version of this work. To Yann Régis-Gianas for
discussions on coinduction. To Beniamino Accattoli who provided valuable comments. This work was partially supported by
LIA INFINIS, the ECOS-Sud cooperation program between France and Argentina, and by the grants PUNQ of the Universidad
Nacional de Quilmes and UBACyT of the Universidad de Buenos Aires, Argentina.

References

[1] B. Accattoli, E. Bonelli, D. Kesner, C. Lombardi, A nonstandard standardization theorem, in: S. Jagannathan, P. Sewell (Eds.), POPL ’14, ACM, 2014,
pp. 659–670.

[2] B. Accattoli, U. Dal Lago, Beta reduction is invariant, indeed, in: T. Henzinger, D. Miller (Eds.), CSL-LICS ’14, ACM, 2014, pp. 8:1–8:10.
[3] S. Antoy, A. Middeldorp, A sequential reduction strategy, Theoret. Comput. Sci. 165 (1) (1996) 75–95.
[4] T. Balabonski, On the implementation of dynamic patterns, in: E. Bonelli (Ed.), HOR ’10, in: Electronic Proceedings in Theoretical Computer Science,

vol. 49, July 2010, pp. 16–30.
[5] T. Balabonski, Optimality for dynamic patterns: extended abstract, in: M. Fernández, T. Kutsia, W. Schreiner (Eds.), PPDP ’10, ACM, July 2010, pp. 16–30.
[6] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, Elsevier, Amsterdam, 1984.
[7] G. Berry, Bottom-up computations of recursive programs, RAIRO Theor. Inform. Appl. 10 (3) (1976) 47–82.
[8] E. Bonelli, D. Kesner, C. Lombardi, A. Ríos, Normalisation for dynamic pattern calculi, in: A. Tiwari (Ed.), RTA, in: LIPIcs, vol. 15, Schloss Dagstuhl –

Leibniz-Zentrum fuer Informatik, 2012, pp. 117–132.
[9] E. Bonelli, D. Kesner, C. Lombardi, A. Ríos, An abstract normalisation result with applications to non-sequential calculi, http://arxiv.org/abs/1412.2118,

2014.
[10] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, 1998.

http://refhub.elsevier.com/S0304-3975(17)30101-9/bib44424C503A636F6E662F706F706C2F4163636174746F6C69424B4C3134s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib44424C503A636F6E662F706F706C2F4163636174746F6C69424B4C3134s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib44424C503A636F6E662F63736C2F4163636174746F6C694C3134s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib416E746F794D696464656C646F72703A31393936s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib42616C686F723130s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib42616C686F723130s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib42616C707064703130s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib626172656E6472656774s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib67757374617665s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib626B6C722D7274612D32303132s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib626B6C722D7274612D32303132s1
http://arxiv.org/abs/1412.2118
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib6261616465722D6E69706B6F77s1

E. Bonelli et al. / Theoretical Computer Science 672 (2017) 36–63 63
[11] G. Boudol, Computational semantics of term rewriting systems, in: M. Nivat, J.C. Reynolds (Eds.), Algebraic Methods in Semantics, Cambridge University
Press, 1985, pp. 169–236.

[12] H.B. Curry, R. Feys, Combinatory Logic, North-Holland Publishing Company, Amsterdam, 1958.
[13] J. Endrullis, C. Grabmayer, J-W. Klop, V. van Oostrom, On equal μ-terms, Theoret. Comput. Sci. 412 (28) (2011) 3175–3202.
[14] G.P. Huet, J-J. Lévy, Computations in orthogonal rewriting systems, I and II, in: Computational Logic – Essays in Honor of A. Robinson, 1991,

pp. 395–443.
[15] B. Jay, Pattern Calculus: Computing with Functions and Structures, Springer Publishing Company, Incorporated, 2009.
[16] B. Jay, D. Kesner, Pure pattern calculus, in: Peter Sestoft (Ed.), ESOP ’06, in: LNCS, vol. 3924, Springer-Verlag, 2006, pp. 100–114.
[17] B. Jay, D. Kesner, First-class patterns, J. Funct. Programming 19 (2) (2009) 191–225.
[18] R. Kennaway, Sequential evaluation strategies for parallel-or and related reduction systems, Ann. Pure Appl. Logic 43 (1) (1989) 31–56.
[19] J-W. Klop, Combinatory Reduction Systems, PhD thesis, Utrecht University, 1980.
[20] P-A. Melliès, Description abstraite des Systèmes de Réécriture, PhD thesis, Université Paris VII, 1996.
[21] M.J. O’Donnell, Computing in Systems Described by Equations, LNCS, vol. 58, Springer-Verlag, 1977.
[22] R.C. Sekar, I.V. Ramakrishnan, Programming in equational logic: beyond strong sequentiality, Inform. and Comput. 104 (1) (1993) 78–109.
[23] V. van Oostrom, Normalisation in weakly orthogonal rewriting, in: P. Narendran, M. Rusinowitch (Eds.), RTA, in: LNCS, vol. 1631, Springer-Verlag, 1999,

pp. 60–74.
[24] F. van Raamsdonk, Confluence and Normalisation for Higher-Order Rewriting, PhD thesis, Vrije University, 1996.
[25] F. van Raamsdonk, Outermost-fair rewriting, in: P. de Groote (Ed.), TLCA, in: LNCS, vol. 1210, Springer-Verlag, 1997, pp. 284–299.
[26] F. van Raamsdonk, V. van Oostrom, The dynamic pattern calculus as a higher-order pattern rewriting system, in: K. Rose (Ed.), HOR ’14, July 2014.

http://refhub.elsevier.com/S0304-3975(17)30101-9/bib426F75646F6C3A31393835s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib426F75646F6C3A31393835s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib63757272792D66657973s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib44424C503A6A6F75726E616C732F7463732F456E6472756C6C6973474B4F3131s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib484C3A313939316162s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib484C3A313939316162s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib4A6179626F6F6Bs1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib6A6B2D707063s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib6A6B2D6A6670s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib44424C503A6A6F75726E616C732F6170616C2F4B656E6E617761793839s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib7468657369732D6B6C6F70s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib7468657369732D6D656C6C696573s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib4F446F6E6E656C6C3A31393737s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib73656B61722D72616D61s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib76616E4F6F7374726F6D3A31393939s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib76616E4F6F7374726F6D3A31393939s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib7468657369732D76616E5261616D73646F6E6Bs1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib76616E5261616D73646F6E6B3A31393937s1
http://refhub.elsevier.com/S0304-3975(17)30101-9/bib76616E5261616D73646F6E6B76616E4F6F7374726F6D3A32303134s1

	On abstract normalisation beyond neededness
	1 Introduction
	2 A study companion: the simple pattern calculus
	3 Abstract rewriting systems
	3.1 Basic components
	3.2 Reduction sequences, multisteps and developments

	4 Axioms for ARS
	4.1 Fundamental axioms
	4.2 Embedding axioms
	4.3 Gripping axioms
	4.4 An additional axiom: stability

	5 Multireductions over an ARS
	5.1 Multireductions
	5.2 Key concepts

	6 Necessary normalisation for ARS
	6.1 Relevance of gripping
	6.2 Normalisation proof

	7 Applications
	7.1 The pure pattern calculus (and the simple pattern calculus)
	7.1.1 Overview of PPC
	Substitution and matching

	7.1.2 PPC as an ARS
	7.1.3 A reduction strategy for PPC
	7.1.4 Properties of the reduction strategy S

	7.2 λ-Calculus with parallel-or

	8 Conclusions
	Acknowledgements
	References

