
Type-Based Information Flow Analysis for Bytecode
Languages with Variable Object Field Policies

Francisco Bavera
Dept. de Computación, FCEFQyN, UNRC,

Argentina and CONICET

pancho@dc.exa.unrc.edu.ar

Eduardo Bonelli
LIFIA, Fac. de Informática, UNLP, Argentina and

CONICET
eduardo@lifia.info.unlp.edu.ar

ABSTRACT
Static, type-based information flow analysis techniques tar-
geted at Java and JVM-like code typically assume a global
security policy on object fields: all fields are assigned a fixed
security level. In essence they are treated as standard vari-
ables. However different objects may be created under vary-
ing security contexts, particularly for widely used classes
such as wrapper or collection classes. This entails an im-
portant loss in precision of the analysis. We present a flow-
sensitive type system for statically detecting illegal flows of
information in a JVM-like language that allows the level of
a field to vary at different object creation points. Also, we
prove a noninterference result for this language.

1. INTRODUCTION
Information flow analysis (IFA) [12] based on type systems

for programming languages [13] has received considerable at-
tention given its potential to enforce secure, end-to-end flow
of data at the source code level. Although initial work was
developed for imperative languages, most current efforts are
geared towards object-oriented and concurrent languages.
Somewhat orthogonally, and sparked mainly by the success
of Java and the JVM [11], also low-level code formats are
being studied. This allows the direct analysis of Java applets
and other code distributed over the Internet.

Most extant literature on type-based IFA [1, 2, 5, 6, 4]
assumes that the fields of objects are assigned some fixed
security label given that, once assigned a value, they do
behave similarly to variables in imperative languages. How-
ever, some objects such as instances of, say, class Collection
or WrapInt (wrapper class for integers), are meant to be used
in different contexts. Consider the aforementioned WrapInt
class that has a field for storing integers. We illustrate our
argument by means of the following example. This program
loads the value of x, which we assume to be secret, on the
stack, creates a new instance of WrapInt and assigns 0 to
its only field f (the possible security levels for f and their
consequences are discussed below). It then branches on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

secret value of x. Instructions 6 to 8 thus depend on this
value and hence the value 1 assigned to field f of the new
instance of WrapInt shall be considered secret.

1. load x
2. new WrapInt
3. push 0
4. putfield f
5. if 9
6. new WrapInt
7. push 1
8. putfield f
9. return

If field f of WrapInt is declared public, then the assignment
on line 4 is safe but not the one on line 7. Since this would
render the wrapper useless, one could decide to declare f
secret. This time both assignments are acceptable, however
the public value 0 is unnecessarily coerced to secret with the
consequent loss in precision.

In this paper we propose JVMs (“s” is for “safe”), a core
bytecode language together with a type system that per-
forms IFA in a setting where the security level assigned to
fields may vary at different points of the program where
their host object is created. Two further contributions, less
significant although worthy of mention, are that local vari-
ables are allowed to be reused with different security levels
and also that we enhance precision on how information flow
through the stack is handled. Even though variable reuse
can be avoided in the analysis by transforming the byte-
code so that different uses of a variable become different
variables [10], this makes the security framework dependent
on yet another component. Moreover, this transformation
is not viable in other low-level code such as assembly lan-
guage where the number of registers is fixed. Regarding
the operand stack the extant literature on type-based IFA
for bytecode [5, 6, 4] take the approach of modifying the
level of the elements of the stack when evaluating branch-
ing instructions. In particular, whenever a conditional on a
secret expression is evaluated, the security level of all the
elements in the stack are set to secret. Since Java compilers
use the operand stack for evaluation of expressions and thus
is empty at the beginning and end of each instruction, this is
not a severe limitation. However, this entails that the preci-
sion of the analysis depends on the fact that the bytecode is
produced by a Java compiler. To sum up, although less sig-
nificant, these are worthy contributions towards minimizing
the assumptions on the code that is to be analysed hence
furthering its span of applicability.

Further details. Due to space limitations a description
of related work and further details and extensions to this

I ::= prim op primitive operation
| push j push j on stack
| pop pop from stack
| load x load value of x on stack
| store x store top of stack in x
| ifeq j conditional jump
| goto j unconditional jump
| return return
| new C create new object in heap
| getfield f load value of field f on stack
| putfield f store top of stack in field f

where op is + or ×, x ∈ X, j ∈ N, and f ∈ F.

Figure 1: Bytecode instructions

paper may be found elsewhere [8].

2. SYNTAX AND SEMANTICS
A program B is a sequence of bytecode instructions (Fig. 1).

We write Dom(B) for the set of program points of B and
B(i), with i ∈ 1..n and n the length of B, for the ith in-
struction of B. Furthermore, x ranges over a set of local
variables X, and f over a fixed set of field identifiers F. C is
our universe of class names.

A value v is either an integer i, a (heap) location o or the
null object null . Thus, if L stands for the set of locations,
then the values are V = Z ∪ L ∪ {null}. Machine states
are tuples 〈i, α, σ, η〉, where i ∈ N is the program counter
that points to the next instruction to be executed; α, (local
variable array) is a mapping from local variables to values;
σ (stack) is an operand stack; and η (heap) is a mapping
from locations to objects. Objects are modeled as functions
assigning values to their fields1. A machine state for B is
one in which the program counter points to an element in
Dom(B). The small-step operational semantics of JVMs is
described as a binary relation s1 −→ s2 that states how s2 is
obtained from s1 by one step of reduction. Sample reduction
schemes are depicted below.

(O-New)

B(i) = new C o = Fresh(η)

〈i, α, σ, η〉 −→B 〈i + 1, α, o · σ, η ⊕ {o 7→ Default(C)}〉

(O-PtFld)

B(i) = putfield f o ∈ Dom(η) f ∈ Dom(η(o))

〈i, α, v · o · σ, η〉 −→B 〈i + 1, α, σ, η ⊕ {o 7→ η(o)⊕ {f 7→ v}}〉

(O-GtFld)

B(i) = getfield f o ∈ Dom(η) η(o)(f) = v

〈i, α, o · σ, η〉 −→B 〈i + 1, α, v · σ, η〉

There are also expressions of the form 〈v, η〉 are referred
to as final states. A non-final state s may either reduce
to another non-final state or to a final state. Initial states
take the form 〈1, α, ε, η〉, where ε denotes the empty stack.
Summing up, −→B⊆ State × (State + (V × Heap)), where
State denotes the set of states and Heap the set of heaps.
We write �B for the reflexive-transitive closure of −→B .

3. TYPE SYSTEM
We assume given a set {L, H} of security levels (l) equipped

with �, the least partial order satisfying L � H, and write

1We assume that the field names of all classes are different.

t,u for the induced supremum and infimum. Security la-
bels (κ) are expressions of the form 〈{a1, . . . , an}, l〉 where
ai, i ∈ 0..n, ranges over a given infinite set of symbolic loca-
tions (motivated shortly). If n = 0, then the security label
is 〈∅, l〉. We say ai (for each i ∈ 1..n) and l are the sym-
bolic locations and level of the security label, respectively.
We occasionally write 〈 , l〉, or l, when the set of symbolic
locations is irrelevant. The ordering on security labels is
defined as 〈R1, l1〉 v 〈R2, l2〉 iff R1 ⊆ R2 and l1 � l2. By
abuse of notation we write κ v l (resp. κ 6v l) to indi-
cate that the level of κ is (resp. not) below or equal to l
and κ 6= l to indicate that the level of κ is different from
l. The supremum on security labels is defined as follows:
〈R1, l1〉 t 〈R2, l2〉 = 〈R1 ∪R2, l1 t l2〉.

A method M is an expression of the form ((x1 : κ1, . . . , xn :
κn, κr), B) abbreviated ((~x : κ, κr), B), where B is a pro-
gram referred to as its body and κ1, . . . , κn, κr are the se-
curity labels of the formal parameters x1, . . . , xn and the
value returned by the method, resp. Methods M are typed
by means of a typing judgement : V,S,A, T � M . Each of
V,S,A and T are called typing contexts. Typing contexts
supply information needed to type each instruction of M . As
such they constitute families of either functions (V,S, T) or
labels (A) indexed by a finite set of instruction addresses.
We write Vi to refer to the ith element of the family and
similarly with the others. The first typing context assigns a
variable array type V to each instruction (of M). A variable
array type is a function assigning security labels to each local
variable. Thus Vi indicates the types of the local variables
at instruction i. The S typing context assigns a stack type
S to each instruction. A stack type is a function assigning
security labels to numbers from 1 to n, where n is assumed
to be the length of the stack. A indicates the level (L or
H) of each instruction. Finally, T associates a heap type T ,
explained below, to each instruction.

The field of each class is assigned either a (fixed) security
label 〈∅, l〉 or the special symbol ? for declaring the field
polymorphic as explained below. This is determined by a
function ft : F → κ∪{?}. Fields declared polymorphic adopt
a level determined by the type system at the point where
creation of its host object takes place. The field is given
the security level of the context in which the corresponding
new instruction is executed. Given that multiple instances of
the same class may have possibly different security labels for
the same fields, we need some bookkeeping. This is achieved
by associating with each location a symbolic location. Heap
types map symbolic locations to expressions of the form [f1 :
κ1, . . . , fn : κn] called object types. An object type gives
information on the security label of each field. We write
T (a, f) for the label associated to field f of the object type
T (a).

Two further ingredients are required before formulating
the type system. The first is a notion of subtyping for vari-
able array, heap and stack types.

∀x ∈ X.V1(x) v V2(x)

V1 ≤ V2

Dom(T1) ⊆ Dom(T2)

T1 ≤ T2

|S1| = |S2| = n

∀j ∈ 1..n.

S1(j) v S2(j) if l v S1(j),
S1(j) = S2(j) otherwise

S1 ≤l S2

Variable array types are compared pointwise using the or-
dering on security labels. A heap type T1 is a subtype of T2

if the domain of T1 is included in that of T2. S1 ≤l S2 asserts
that stack type S1 is a subtype of S2 at level l. Stack types
may only be compared if they are of the same size. Further-
more, we allow depth subtyping at position i provided that
S(i) is at least l. The other requirement is the availability
of control dependence region information [5, 6, 4].

High-level languages have control-flow constructs that ex-
plicitly state dependency. Given that such constructs are
absent from JVMs, as is the case in most low-level lan-
guages, and that they may be the source of unwanted infor-
mation flows, our type system requires this information to
be supplied. Let Dom(B)] denote the set of program points
of B where branching instructions occur (i.e. Dom(B)] =
{k ∈ Dom(B) | B(k) = if i}). We assume given two func-
tions (℘ below denotes the powerset operator): (1) region:
Dom(B)] → ℘(Dom(B)) and (2) jun: Dom(B)] → Dom(B).

The first computes the control dependence region, an over-
approximation of the range of branching instructions and the
second the unique junction point of a branching instruction
at a given program point. Following previous work [3, 6, 4]
we only require some abstract conditions on these functions
to hold, referred to as the safe over approximation property
or SOAP. SOAP states how regions and junctions points
relate to one another [8].

3.1 Typing Schemes
A set of typing schemes define when a method is to be

considered well-typed. We assume that this method is valid
JVM code in the sense that it passes the bytecode verifier.
For example, in an instruction such as prim + we do not
check whether the operands are indeed numbers. The typing
schemes rely on previously supplied region and jun satisfying
the SOAP properties.

Method M is well-typed if there exist typing contexts V,
S, A and T , such that the type judgement V,S,A, T � M
holds. The typing rule defining this judgement is

∀xj ∈ ~x.V1(xj) = κj ∀xj ∈ ~x.T1(κj) defined S1 = ε
∀i ∈ Dom(B).V,S,A, T , i � ((~x : κ, κr), B)

V,S,A, T � ((~x : κ, κr), B)

The variable array type V1 must provide labels for all
parameters and must agree with the ones assigned to each
of them by the declaration ~x : κ. Also, if the label of a
parameter has a nonempty set of symbolic locations, then
T1 does not leave out these references. The stack is assumed
to be empty. Finally, all program points should be well-
typed under the typing contexts V,S,A and T . A program
point i of B is well-typed if the judgement V,S,A, T , i �

((~x : κ, κr), B) holds. This will be the case if it is derivable
using the typing schemes for instructions, a sample of which
are provided in Fig. 2.

T-PRIMOP requests that Si have at least two elements
on the top and that the top element of Si+1, the stack type of
the successor instruction, have at least that of these elements
joined with the current program counter level. We write
Si+1(0) for the topmost element of the stack type Si+1 and
Si+1\0 for Si+1 without the topmost element. Subtyping
(rather than equality) for variable array, stack and heap
types are required given that instruction i + 1 may have
other predecessors apart from i. T-RET simply requires
that the label of the topmost element of the stack does not
leak any information. Here κr is the label of the result of
the method body. Note that A(i) is not resorted to given

that by assumption there is a unique return instruction and
this instruction is executed with A(i) at low.

In order to type new C a fresh symbolic location is created
and the heap type of the successor of i is required to define an
object type for it. This object type assigns a security label
to each field according to ftA(i). For those fields declared
polymorphic, the level A(i) is assigned. T-PTFLD requires
that no information about the value written to field f , the
reference of the object (l) nor the current security context be
leaked. Note that label 〈R, l〉 may contain multiple symbolic
references in R. For example, this would be the case if a new
object was created in two different branches of a conditional
before merging and then executing the putfield instruction.
The remaining schemes may be understood along similar
lines.

Regarding type checking, it can be implemented as a (mono-
variant) control flow analysis algorithm that explores ab-
stract execution paths [8].

4. NONINTERFERENCE
Noninterference [9] ensures that any two computations

that are fired from initial states that differ only in values
indistinguishable for an external observer, are equivalent.
The principle effort in proving this result is in obtaining
an appropriate notion of indistinguishable states. This of
course depends on the types of illicit flows that are to be
captured. In particular, we have to provide a definition that
caters for the features advertised in the the introduction,
including unrestricted reuse of local variables and a more
precise control of the operand stack.

We begin our discussion with some preliminary notions.
Given that in any two runs of a program different heap lo-
cations may be allocated, it is convenient to introduce a
(partial) bijection β between locations [2]. For example,
two runs of new C could allocate different heap locations,
say o1 and o2, in the heap to the new object. This bijection
helps establish that these locations are related by setting
β(o1) = o2. Given that JVMs tracks the types of fields via
symbolic locations we also introduce a pair of (partial) bijec-
tions between symbolic locations and locations themselves:
(β�, β�). In our example, β�(a) = o1 and β�(a) = o2.
Notice that both locations get assigned the same symbolic
location given that it arises from the typing derivation of
new C. The sum of β and (β�, β�) is called a location bijec-
tion set. Location bijection sets shall thus be required for
relating heaps (as explained below).

Definition 1. A location bijection set β consists of (1) a
(partial) bijection βloc between locations; and (2) a pair
of (partial) bijections (β�, β�) between symbolic locations
and locations where Dom(βloc) ⊆ Ran(β�) and Ran(βloc) ⊆
Ran(β�) s.t. for all o ∈ Dom(βloc), β�−1(o) = β�−1(β(o))).

By default, we write β(o) to mean βloc(o). We define
location bijection set β′ to be an extension of β, written β ⊆
β′, if βloc ⊆ β′loc and Ran(β�) ⊆ Ran(β′

�
) and Ran(β�) ⊆

Ran(β′
�

). We write id for a location bijection set β such
that βloc is the identity on locations.

4.1 Indistinguishability - Definitions
In order to relate states we need to be able to relate each of

its components. This includes values, variable arrays, stacks
and heaps. Values and stacks are standard; local variable

(T-PRIMOP)

B(i) = prim op
(A(i) t κ′ t κ′′) v Si+1(0)
Si ≤A(i) κ′ · κ′′ · (Si+1\0)
Vi ≤ Vi+1
Ti ≤ Ti+1
i + 1 ∈ Dom(B)

V,S,A, T , i � ((~x : κ, κr), B)

(T-IF)

B(i) = if i′

Vi ≤ Vi+1,Vi′
Si ≤A(i) κ · Si+1 = κ · Si′
Ti ≤ Ti+1, Ti′
∀k ∈ region(i).κ v A(k)
i + 1, i′ ∈ Dom(B)

V,S,A, T , i � ((~x : κ, κr), B)

(T-STR)

B(i) = store x
Si ≤A(i) Vi+1(x) · Si+1
Vi\x ≤ Vi+1\x
Ti ≤ Ti+1
A(i) v Vi+1(x)
i + 1 ∈ Dom(B)

V,S,A, T , i � ((~x : κ, κr), B)

(T-NEW)

B(i) = new C
a = Fresh(Ti)
Ti · a : [f1 : ftA(i)(f1), . . . , fn : ftA(i)(fn)] ≤ Ti+1
〈{a},A(i)〉 · Si ≤A(i) Si+1
Vi ≤ Vi+1
i + 1 ∈ Dom(B)

V,S,A, T , i � ((~x : κ, κr), B)

(T-PTFLD)

B(i) = putfield f
Si ≤A(i) κ′ · 〈R, l〉 · Si+1
A(i) t κ′ t l v

d
a∈R Ti(a, f),

Vi ≤ Vi+1
Ti ≤ Ti+1
i + 1 ∈ Dom(B)

V,S,A, T , i � ((~x : κ, κr), B)

(T-GTFLD)

B(i) = getfield f
A(i) v Si(0) = 〈R, l〉
κ =

F
a∈R Ti(a, f)

l t κ · (Si\0) ≤A(i) Si+1
Vi ≤ Vi+1
Ti ≤ Ti+1
i + 1 ∈ Dom(B)

V,S,A, T , i � ((~x : κ, κr), B)

Figure 2: Sample Typing Schemes

arrays requires considering whether they are to related in a
low or high-level region given that variable reuse may take
place [8]. Here we briefly discuss the case for heaps. In order
to compare heaps η1 and η2 we verify that all objects allo-
cated in η1 are indistinguishable with regards to their cor-
responding objects, as dictated by β, in the other heap (cf.
condition 5 of Def. 2). Before comparing objects it is deter-
mined whether references o allocated in η1 and which have a
related allocated reference β(o) in η2 are indeed of the same
type (cf. condition 4 of Def. 2). Then, they are compared
field by field using the security level given by the heap type
at the relevant program point (if the instruction is i, then
it would be Ti(β

�−1(o), f)). The remaining conditions in
the definition below are sanity checks that are in fact pre-
served by reduction. Regarding the use of T1(β

�−1(o), f)
in condition 5, rather than T2(β

�−1(β(o)), f), the reader
should note that the following invariant is seen to hold all
along the execution of the program: for every o ∈ Dom(β),
T1(β

�−1(o), f) = T2(β
�−1(β(o)), f).

Definition 2. Let η1, η2 be heaps, T1, T2 heap types and
β a location bijection set. We define η1 and η2 to be indis-
tinguishable at T1, T2 under β (η1 ∼β,(T1,T2) η2

2) if:

1. Dom(β) ⊆ Dom(η1) and Ran(β) ⊆ Dom(η2),

2. Ran(β�) ⊆ Dom(η1) and Ran(β�) ⊆ Dom(η2),

3. Dom(β�) ⊆ Dom(T1) and Dom(β�) ⊆ Dom(T2),

4. for every o ∈ Dom(β), Dom(η1(o)) = Dom(η2(β(o))),

5. for every o ∈ Dom(β), for every field f ∈ Dom(η1(o))

η1(o, f) ∼β,T1(β�−1(o),f) η2(β(o), f).

4.2 Indistinguishability - Properties
Determining that indistinguishability of values, local vari-

able arrays, stacks and heaps is an equivalence relation re-
quires careful consideration on how location bijection sets
are composed. Furthermore, in the presence of variable
reuse transitivity of indistinguishability of variable arrays

2In the case that T1 = T2 we often write η1 ∼β,T1 η2.

in fact fails unless additional conditions are imposed. These
issues are briefly discussed in this section.

In order to state transitivity of indistinguishability for val-
ues (or any component of a machine state) location bijec-
tion sets must be composed. A location bijection set β is
said to be composable with another location set γ if for all
o ∈ Dom(β), β�−1(β(o)) = γ�−1(β(o)). Note that any two
location sets may be assumed to be composable w.l.o.g. If β
is composable with γ, then we can define their composition
γ◦β as follows: (1) (γ◦β)loc = γloc◦βloc

3; (2) (γ◦β)� = β�

and (3) (γ ◦ β)� = γ�.
It may be verified that, as defined, γ◦β is indeed a location

bijection set. Also define the inverse of a location bijection
set β, denoted β̂, to be: β̂loc = β−1

loc and β̂� = β� and

β̂� = β�.
Variable reuse allows a public variable to be reused for

storing secret information in a high security execution con-
text. Suppose, therefore, that α1 ∼β,(V1,V2),H α2 and also
α2 ∼γ,(V2,V3),H α3 where, for some x, V1(x) = L, V2(x) = H

and V3(x) = L. Clearly it is not necessarily the case that
α1 ∼γ◦β,(V1,V3),H α3 given that α1(x) and α3(x) may differ.
We thus require that either V1 or V3 have at least the level
of V2 for this variable: V2(x) v V1(x) or V2(x) v V3(x). Of
course, it remains to be seen that such a condition can be
met when proving noninterference, we defer that discussion
to Sec. 4.3.

The case of stacks and heaps are dealt with similarly. To-
gether these results determine that machine state indistin-
guishability too is an equivalence relation.

4.3 Noninterference
Noninterference states that any two terminating runs of

a well-typed method starting from indistinguishable initial
states produce indistinguishable final states. Let M be a
well-typed method V,S,A, T � ((~x : κ, κr), B). We say M
satisfies noninterference, if for every α1, α2 variable arrays,
v1, v2 values, η1, η2, η

′
1, η

′
2 heaps and β a location bijection

set: (1) 〈1, α1, ε, η1〉 � 〈v1, η
′
1〉; (2) 〈1, α2, ε, η2〉 � 〈v2, η

′
2〉;

(3) α1 ∼β,V1,L α2 and (4)η1 ∼β,T1 η2, implies η′1 ∼β′,Ti
η′2

and v1 ∼β′,κr v2, for some location bijection set β′ ⊇ β.

3It is partial functions that are composed: Dom(γloc◦βloc) =
{o ∈ Dom(βloc) |βloc(o) ∈ Dom(γloc)}.

s1
B

L/HL // s2

s′1 B

L/HL //

β

O�
O�
O�

s′2

β′
O�
O�
O�

s1
B

HH // s2

s′1

β

O�
O�
O� β◦id

>~
>~

>~
>~

s

��

B

HH // // t

s
id

/o/o/o t

s1
B

LH // s2

s′1 B

LH //

β

O�
O�
O�

s′2

β

O�
O�
O�

(a) (b) (c) (d)

Figure 3: Unwinding lemmas

With the definition of noninterference in place we now
formulate the soundness result of our type system.

Proposition 1. M satisfies noninterference.

The proof relies on three unwinding lemmas depicted in
Fig. 3((a), (b) and (d)). Consider two runs of M , one from
s1 and another from s′1 as depicted below:

s1 // //

Fig.3(a)

sj
id1

// . . .
idk1

// sh1
//

Fig.3(d)

sh3
// . . . sn

s′1

β

O�
O�
O�

// // s′j

β1

O�
O�
O�

id′1

// . . .
id′k2

// s′h2

β̂3

O�
O�
O�

// s′h4

β2

O�
O�
O�

// . . . s′n

βm

O�
O�
O�

Computation from s1 and s′1 may be seen to unwind via
Fig. 3(a), in lock-step, until the security context is raised to
high at some states sj and s′j , resp. At this point, unwinding
continues independently in each of the computations start-
ing from sj and s′j until each of these reaches a goto in-
struction, say at state sh1 for the first computation and s′h2
for the second, that lowers the security level of the context
back to low. Since all values manipulated in these two inter-
mediate computations are high level values, sj is seen to be
high-indistinguishable from sh1 and, likewise, s′j is seen to
be high-indistinguishable from s′h2 , both facts are deduced
from Fig. 3(b) (whose proof relies on Fig. 3(c)). This final
step requires that we meet the condition on transitivity of
variable arrays, as discussed in Sec. 4.2. The only prob-
lematic case would be when (1) s1 −→ s2 reuses a secret
variable with public data and (2) s′1 declares this variable to
be public. Although (2) may of course hold, (1) cannot: any
value written to a variable in a high security context must
be secret as may be gleaned from the typing rule for store.

At this point both computations exit their high level re-
gions and coincide at the unique junction point of these re-
gions. The resulting states sh3 and s′h4 now become low-
indistinguishable according to Fig. 3(d).

5. CONCLUSIONS
We have presented a type system for ensuring secure in-

formation flow in a JVM-like language that allows instances
of a class to have fields with security levels depending on the
context in which they were instantiated. This differs over
the extant approach of assigning a global fixed security level
to a field, thus improving the precision of the analysis as de-
scribed in the introduction. We are currently experimenting
with our implementation on larger examples.

Regarding future work we are developing an extension of
our type system that supports method invocation. Support
for threads seems to be absent in the literature on IFA for
bytecode languages (a recent exception being [7]) and would

be welcome. The same applies to declassification. Regard-
ing the latter, it should be mentioned that some character-
istics of low level code such as variable reuse enhance the
capabilities of an attacker to declassify data. Some prelim-
inary results in this direction have been obtained and shall
be presented in forthcoming work.

Ack. To Gilles Barthe for fruitful discussions and the
referees for suggestions for improving the paper.

6. REFERENCES
[1] A. Banerjee and D. A. Naumann. Secure information

flow and pointer confinement in a java-like language.
In Proceedings of the Fifteenth IEEE Computer
Security Foundations Workshop (CSFW), pages
253–267. IEEE Computer Society Press, 2002.

[2] A. Banerjee and D. A. Naumann. Stack-based access
control and secure information flow. Journal of
Functional Programming, 15(2):131–177, 2005. Special
Issue on Language-Based Security.

[3] G. Barthe, A. Basu, and T. Rezk. Security types
preserving compilation. Journal of Computer
Languages, Systems and Structures, 2005.

[4] G. Barthe, D. Pichardie, and T. Rezk. A Certified
Lightweight Non-Interference Java Bytecode Verifier.
In Proc. of ESOP’07, volume 4421 of LNCS.
Springer-Verlag, 2007.

[5] G. Barthe and T. Rezk. Non-interference for a
JVM-like language. In Proc. of TLDI ’05, pages
103–112, New York, NY, USA, 2005. ACM Press.

[6] G. Barthe, T. Rezk, and D. A. Naumann. Deriving an
information flow checker and certifying compiler for
java. In S&P, pages 230–242. IEEE Computer Society,
2006.

[7] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld.
Security of multithreaded programs by compilation. In
Proc. of the 12th ESORICS, LNCS. Springer-Verlag,
2007. To appear.

[8] F. Bavera and E. Bonelli. www.lifia.info.unlp.edu.
ar/∼eduardo/publications/jvmsLong.pdf, 2007.

[9] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proc. IEEE Symp. on Security and
Privacy, pages 11–20, April, 1982.

[10] X. Leroy. Bytecode verification for java smart card.
Software Practice and Experience, 32:319–340, 2002.

[11] T. Lindholm and F. Yellin. The Java(TM) Virtual
Machine Specification. Addison Wesley, 1999.

[12] A. Sabelfeld and A. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1), 2003.

[13] D. Volpano and G. Smith. A type-based approach to
program security. In Proc. of TAPSOFT’97, volume
1214 of LNCS, pages 607–621, 1997.

