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Abstract. We show how higher-order rewriting may be encoded into
first-order rewriting modulo an equational theory E . We obtain a char-
acterization of the class of higher-order rewriting systems which can be
encoded by first-order rewriting modulo an empty theory (that is, E = ∅).
This class includes of course the λ-calculus. Our technique does not rely
on a particular substitution calculus but on a set of abstract properties
to be verified by the substitution calculus used in the translation.

1 Introduction

Higher-order substitution is a complex operation that consists in the replacement
of variables by terms in the context of languages having variable bindings. These
bound variables can be annotated by de Bruijn indices so that the renaming op-
eration (α-conversion) which is necessary to carry out higher-order substitution
can be avoided. However, substitution is still a complicated notion, which can-
not be expressed by simple replacement (a.k.a. grafting) of variables as is done
in first-order theories. To solve this problem, many researchers became inter-
ested in the formalization of higher-order substitution by explicit substitutions,
so that higher-order systems/formalisms could be expressible in first-order sys-
tems/formalisms: the notion of variable binding is dropped because substitution
becomes replacement. A well-known example of the combination of de Bruijn
indices and explicit substitutions is the formulation of different first-order cal-
culi for the λ-calculus [1,4,17,15,6,22], which is the paradigmatic example of a
higher-order (term) rewriting system. Other examples are the translations of
higher-order unification to first-order unification modulo [11], higher-order logic
to first-order logic modulo [12], higher-order theorem proving to first-order the-
orem proving modulo [9], etc.

All these translations have a theoretical interest because the expressive power
of higher and first-order formalisms is put in evidence, but another practical issue
arises, that of the possibility of transferring results developed in the first-order
framework to the higher-order one.

The goal of this paper is to give a translation of higher-order rewrite systems
(HORS) to a first-order formalism. As a consequence, properties and techniques
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developed for first-order rewriting could be exported to the higher-order formal-
ism. For example, techniques concerning confluence, termination, completion,
evaluation strategies, etc. This is very interesting since, on one hand it is still
not clear how to transfer techniques such as dependency pairs [2], semantic la-
belling [26] or completion [3] to the higher-order framework, on the other hand,
termination techniques such as RPO for higher-order systems [14] turn out to
be much more complicated than their respective first-order versions [7,16].

The main difficulty encountered in our translation can be intuitively ex-
plained by the fact that in higher-order rewriting a metavariable occurring on
the right-hand side in a higher-order rewrite rule may occur in a different bind-
ing context on the left-hand side: for example, in the usual presentation of the
extensional rule for functional types in λ-calculus (η):λα.app(X, α)−→ X, the
occurrence of X on the right-hand side of the rule, which does not appear in any
binding context, is related to the occurrence of X on the left-hand side, which
appears inside a binding context. The immediate consequence of this fact is that
the first-order translation of the rule (η) cannot be defined as the naive transla-
tion taking both sides of the rule independently. This would give the first-order
rule λ(app(X, 1))−→ X, which does not reflect the intended semantics and hence
the translation would be incorrect.

As mentioned before, the need for (α)-conversion immediately disappears
when de Bruijn notation is considered. Following the example recently intro-
duced, one can express the (η)-rule in a higher-order de Bruijn setting, such
as for example the SERSDB (Simplified Expression Reduction Systems) formal-
ism [5], by the rule (ηdB): λ(app(Xα, 1))−→ Xε. The notation used to translate
the metavariable X into the de Bruijn formalism enforces the fact that the oc-
currence of X on the right-hand side of the rule (η) does not appear in a binding
context, so it is translated as Xε where ε represents an empty binding path, while
the occurrence of X on the left-hand side of the rule appears inside a binding
context, so it is translated as Xα, where α represents a binding path of length 1
surrounding the metavariable X.

Now, the term λ(app(3, 1)) reduces to 2 via the (ηdB) rule. In an explicit
substitution setting, we have the alternative formulation:

(ηfo) : λ(app(X[↑], 1))−→ X

However, in order for the metaterm X[↑] to match the subterm 3 first-order
matching no longer suffices: we need E-matching, that is, matching modulo an
equational theory E . For an appropriate substitution calculus E we would need
to solve the equation 3 ?=E X[↑]. Equivalently, we could make use of the theory of
conditional rewriting: λ(app(Y, 1))−→ X where Y =E X[↑]. Another less evident
example is given by a commutation rule as for example

(C) : Implies(∃α.∀β.X,∀β.∃α.X)−→ true

which expresses that the formula appearing as the first argument of the Implies
function symbol implies the one in the second argument. The naive translation to
first-order Implies(∃(∀(X)),∀(∃(X)))−→ true is evidently not correct, so that
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we take its translation in the de Bruijn higher-order formalism SERSDB and then
translate it to first-order via the conversion presented in this work obtaining:

(Cfo) : Implies(∃(∀(X)),∀(∃(X[2 · 1 · id ])))−→ true

Now, the rule (Cfo) has exactly the same semantics as the original higher-order
rule (C). This difficulty does not seem to appear in other problems dealing with
translations from higher-order to first-order recently mentioned.

In this work we shall see how higher-order rewriting may be systematically
reduced to first-order rewriting modulo an equational theory E . To do this, we
choose to work with Expression Reduction Systems [18], and in particular, with
de Bruijn based SERSDB as defined in [5] which facilitates the translation of
higher-order systems to first-order ones. However, we claim that the same trans-
lation could be applied to other higher-order rewriting formalisms existing in
the literature. We obtain a characterization of the class of SERSDB (including
λ-calculus) for which a translation to a full (E = ∅) first-order rewrite system
exists. Thus the result mentioned above on the λ-calculus becomes a particular
case of our work.

To the best of our knowledge there is just one formalism, called XRS [24],
which studies higher-order rewrite formalisms based on de Bruijn index notation
and explicit substitutions. The formalism XRS, which is a first-order formalism,
is presented as a generalization of the first-order σ⇑-calculus [13] to higher-order
rewriting and not as a first-order formulation of higher-order rewriting. As a con-
sequence, many well-known higher-order rewriting systems cannot be expressed
in such a formalism [5]. Not only do we provide a first-order presentation of
higher-order rewriting, but we do not attach to the translation any particular
substitution calculus. Instead, we have chosen to work with an abstract formu-
lation of substitution calculi, as done for example in [17] to deal with confluence
proofs of λ-calculi with explicit substitutions. As a consequence, the method
we propose can be put to work in the presence of different calculi of explicit
substitution such as σ [1], σ⇑ [13], υ [4], f [17], d [17], s [15], χ [20].

The paper is organized as follows. Section 2 recalls the formalism of higher-
order rewriting with de Bruijn indices defined in [5], and Section 3 defines a
first-order syntax which will be used as target calculus in the conversion proce-
dure given in Section 4. Properties of the conversion procedure are studied in
Section 4.1: the conversion is a translation from higher-order rewriting to first-
order rewriting modulo, the translation is conservative and finally we give the
syntactical criterion to be used in order to decide if a given higher-order sys-
tem can be translated into a full first-order one (a first-order system modulo an
empty theory). We conclude in Section 5.

Due to lack of space proofs are omitted and only the main results are stated.
For further details the reader is referred to the full version accessible by ftp at
ftp://ftp.lri.fr/LRI/articles/kesner/ho-to-fo.ps.gz.
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2 The Higher-Order Framework

We briefly recall here the de Bruijn indices based higher-order rewrite formal-
ism called Simplified Expression Reduction Systems with de Bruijn Indices
(SERSDB ) which was introduced in [5]. In full precision we shall work with
SERSDB without i(ndex)-metavariables (c.f. full version for details).

Definition 1 (Labels). A label is a finite sequence of symbols of an alphabet.
We shall use k, l, li, . . . to denote arbitrary labels and ε for the empty label. If
α is a symbol and l is a label then α ∈ l means that the symbol α appears in
the label l. Other notations are |l| for the length of l and at(l, n) for the n-th
element of l assuming n ≤ |l|. Also, if α occurs (at least once) in l then pos(α, l)
denotes the position of the first occurrence of α in l. A simple label is a label
without repeated symbols.

Definition 2 (de Bruijn signature). Consider the denumerable and disjoint
infinite sets:

– {α1, α2, α3, . . .} a set of symbols called binder indicators, denoted α, β, . . .,
– {X1

l , X2
l , X3

l , . . .} a set of t-metavariables (t for term), where l ranges over
the set of labels built over binder indicators, denoted Xl, Yl, Zl, . . .,

– {f1, f2, f3, . . .} a set of function symbols equipped with a fixed (possibly zero)
arity, denoted f, g, h, . . .,

– {λ1, λ2, λ3, . . .} a set of binder symbols equipped with a fixed (non-zero) arity,
denoted λ, µ, ν, ξ, . . ..

Definition 3 (de Bruijn pre-metaterms). The set of de Bruijn pre-meta-
terms, denoted PMT db, is defined by the following two-sorted grammar:

metaindices I ::= 1 | S(I)
pre-metaterms A ::= I | Xl | f(A, . . . , A) | ξ(A, . . . , A) | A[[A]]

We shall use A, B, Ai, . . . to denote de Bruijn pre-metaterms. The symbol
.[[.]] is called de Bruijn metasubstitution operator. We assume the convention
that S0(1) = 1 and Sj+1(n) = S(Sj(n)). As usually done for indices, we shall
abbreviate Sj−1(1) as j.

We use MVar(A) to denote the set of metavariables of the de Bruijn pre-
metaterm A. An X-based t-metavariable is a t-metavariable of the form Xl

for some label l, we say in that case that X is the name of Xl. We shall use
NMVar(A) to denote the set of names of metavariables in A. In order to say
that a t-metavariable Xl occurs in a pre-metaterm A we write Xl ∈ A.

We shall need the notion of metaterm (well-formed pre-metaterm). The first
motivation is to guarantee that labels of t-metavariables are correct w.r.t the
context in which they appear, the second one is to ensure that indices like Si(1)
correspond to bound variables. Indeed, pre-metaterms like ξ(Xαβ) and ξ(ξ(4))
shall not make sense for us, and hence shall not be considered well-formed. Well-
formed pre-metaterms shall be used to describe rewrite rules.
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Definition 4 (de Bruijn metaterms). A pre-metaterm A ∈ PMT db is said
to be a metaterm iff the predicate WF (A) holds where WF (A) =def WFε(A)
and WF l(A) is defined as follows:

– WF l(Sj(1)) iff j + 1 ≤ |l|
– WF l(Xk) iff l = k and l is a simple label
– WF l(f(A1, . . . , An)) iff for all 1 ≤ i ≤ n we have WF l(Ai)
– WF l(ξ(A1, . . . , An)) iff there exists α /∈ l s.t. for all 1 ≤ i ≤ n, WFαl(Ai)
– WF l(A1[[A2]]) iff WF l(A2) and there exists α /∈ l such that WFαl(A1)

Example 1. Pre-metaterms ξ(Xα, λ(Yβα, 2)) and g(λ(ξ(h))) are metaterms,
while f(1, ξ(Xβ)), λ(ξ(Xαα)) and ξ(Xα, Xβ) (with α 6= β) are not.

Definition 5 (de Bruijn terms and de Bruijn contexts). The set of de
Bruijn terms, denoted Tdb, and the set of de Bruijn contexts are defined by:

de Bruijn indices n ::= 1 | S(n)
de Bruijn terms a ::= n | f(a, . . . , a) | ξ(a, . . . , a)
de Bruijn contexts E ::= 2 | f(a, . . . , E, . . . , a) | ξ(a, . . . , E, . . . , a)

We use a, b, ai, bi, . . . for de Bruijn terms and E, F, . . . for de Bruijn contexts.
The binder path number of a context is the number of binders between the 2

and the root. For example the binder path of E = f(3, ξ(1, λ(2,2, 3)), 2) is 2.
Remark that de Bruijn terms are also de Bruijn pre-metaterms, that is,

Tdb ⊂ PMT db, although note that some de Bruijn terms may not be de Bruijn
metaterms, i.e. may not be well-formed de Bruijn pre-metaterms, e.g. ξ(ξ(4)).
The result of substituting a term b for the index n ≥ 1 in a term a is denoted
a{{n← b}}. This is defined as usual [15]. We now recall the definition of rewrite
rules, valuations, their validity, and reduction in SERSDB .

Definition 6 (de Bruijn rewrite rule). A de Bruijn rewrite rule is a pair of
de Bruijn metaterms (L, R) (also written L−→ R) such that the first symbol in
L is a function symbol or a binder symbol, NMVar(R) ⊆ NMVar(L), and the
metasubstitution operator .[[.]] does not occur in L.

Definition 7 (de Bruijn valuation). A de Bruijn valuation κ is a (partial)
function from t-metavariables to de Bruijn terms. A valuation κ determines in
a unique way a function κ (also called valuation) on pre-metaterms as follows:

κn =def n
κXl =def κXl

κf(A1, . . . , An) =def f(κA1, . . . , κAn)
κξ(A1, . . . , An) =def ξ(κA1, . . . , κAn)
κ(A1[[A2]]) =def κ(A1){{1← κA2}}

We write Dom(κ) for the set {Xl | κXl is defined}, called the domain of κ.
We now introduce the notion of value function which is used to give semantics

to metavariables with labels in the SERSDB formalism. The goal pursued by
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the labels of metavariables is that of incorporating “context” information as
a defining part of a metavariable. A typical example is given by a rule like
C : ξ(ξ(Xβα))−→ ξ(ξ(Xαβ)) where the X-occurrence on the RHS of the rule
denotes a permutation of the binding context of the X-occurrence on the LHS .

As a consequence, we must verify that the terms substituted for every oc-
currence of a fixed metavariable coincide “modulo” their corresponding context.
Dealing with such notion of “coherence” of substitutions in a de Bruijn formal-
ism is also present in other formalisms but in a more restricted form. Thus for
example a pre-cooking function1 is used in [9] to avoid variable capture in the
higher-order unification procedure. In XRS [24] the notions of binding arity and
pseudo-binding arity are introduced to take into account the binder path number
of rewrite rules. Our notion of “coherence” is implemented with valid valuations
(cf. Definition 9) and it turns out to be more general than the solutions proposed
in [9] and [24].

Definition 8 (Value function). Let a be a de Bruijn term and l be a label of
binder indicators. We define the value function V alue(l, a) as V alue0(l, a) where

V aluei(l, n) =def




n if n ≤ i
at(l, n− i) if 0 < n− i ≤ |l|
xn−i−|l| if n− i > |l|

V aluei(l, f(a1, . . . , an)) =def f(V aluei(l, a1), . . . V aluei(l, an))
V aluei(l, ξ(a1, . . . , an)) =def ξ(V aluei+1(l, a1), . . . , V aluei+1(l, an))

It is worth noting that V aluei(l, n) may give three different kinds of
results. This is just a technical resource. Indeed, V alue(αβ, ξ(f(3, 1))) =
ξ(f(β, 1)) = V alue(βα, ξ(f(2, 1))) and V alue(ε, f(ξ(1), λ(2)))=f(ξ(1), λ(x1)) 6=
f(ξ(1), λ(α)) =V alue(α, f(ξ(1), λ(2))). Thus the function V alue(l, a) interprets
the de Bruijn term a in an l-context: bound indices are left untouched, free in-
dices referring to the l-context are replaced by the corresponding binder indicator
and the remaining free indices are replaced by adequate variable names.

Definition 9 (Valid de Bruijn valuation). A de Bruijn valuation κ is said
to be valid if for every pair of t-metavariables Xl and Xl′ in Dom(κ) we have
V alue(l, κXl) = V alue(l′, κXl′). Likewise, we say that a de Bruijn valuation κ
is valid for a rewrite rule (L, R) if for every pair of t-metavariables Xl and Xl′

in (L, R) we have V alue(l, κXl) = V alue(l′, κXl′).

Example 2. Let us consider the de Bruijn rule C : ξ(ξ(Xβα))−→ ξ(ξ(Xαβ)). We
have that κ = {Xβα/2, Xαβ/1} is valid since V alue(βα, 2) = α = V alue(αβ, 1).
1 The pre-cooking function translates a de Bruijn λ-term with metavariables into a

λσ-term by suffixing each metavariable X with as many explicit shift operators as
the binder path number of the context obtained by replacing X by 2. This avoids
variable capture when the higher-order unification procedure finds solutions for the
t-metavariables.
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As already mentioned the η-contraction rule λx.app(X, x)−→ X can be ex-
pressed in the SERSDB formalism as the rule (ηdB) λ(app(Xα, 1))−→ Xε.
Our formalism, like other HORS in the literature, allows us to use rules like ηdB

because valid valuations will test for coherence of values.

Definition 10 (SERSDB -rewriting). Let R be a set of de Bruijn rewrite rules
and a, b be de Bruijn terms. We say that a R-reduces or rewrites to b, written
a−→R b, iff there is a de Bruijn rule (L, R) ∈ R, a de Bruijn valuation κ valid
for (L, R), and a de Bruijn context E such that a = E[κL] and b = E[κR].

Thus, the term λ(app(λ(app(1, 3)), 1)) rewrites by the ηdB rule to
λ(app(1, 2)), using the (valid) valuation
κ = {Xα/λ(app(1, 3)), Xε/λ(app(1, 2))}.

3 The First-Order Framework

In this section we introduce the first-order formalism called Explicit Expression
Reduction Systems (ExERS) used to translate higher-order rewriting systems
based on de Bruijn indices into first-order ones.

Definition 11. A substitution declaration is a (possibly empty) word over the
alphabet {T, S}. The symbol T is used to denote terms and S to denote substi-
tutions. A substitution signature is a set Γs of substitution symbols equipped
with an arity n and a substitution declaration of length n. We use σ : (w) where
w ∈ {T, S}n if the substitution symbol σ has arity n and substitution declaration
w. We use ε to denote the empty word.

Definition 12 (ExERS term algebra). An ExERS signature is a set Γ = Γf∪
Γb ∪ Γs where Γf = {f1, . . . , fn} is a set of function symbols, Γb = {λ1, . . . , λn}
is a set of binder symbols, Γs a substitution signature and Γf , Γb and Γs are
pairwise disjoint. Both binder and function symbols come equipped with an ar-
ity. Given a set of (term) variables V = {X1, X2, . . .}, the term algebra of an
ExERS of signature Γ generated by V, is denoted by T and contains all the objects
(denoted by letters o and p) generated by the following grammar:

indices n ::= 1 | S(n)
terms (T) a ::= X | n | a[s] | f(a1, . . . , an) | ξ(a1, . . . , an)
substitutions (S) s ::= σ(o1, . . . , on)

where X ranges over V, f over Γf , ξ over Γb, and σ over Γs. The arguments of
σ are assumed to respect the sorts prescribed in its substitution declaration and
function and binder symbols are assumed to respect their arities.

Letters a, b, c, . . . and s, si, . . . are used for terms and substitutions, respec-
tively. The .[.] operator is called the substitution operator. Binder symbols and
substitution operators are considered as having binding power. We shall use a[s]n
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to abbreviate a[s] . . . [s] (n-times). Terms without occurrences of the substitution
operator (resp. objects in V) are called pure (resp. ground) terms. A context is a
ground term with one (and only one) occurrence of a distinguished term variable
called a “hole” (and denoted 2). Letters E, Ei, . . . are used for contexts. The
notion of binder path number is defined for pure contexts exactly as in the case
of de Bruijn contexts.

The formalism of ExERS that we are going to use in order to encode higher-
order rewriting consists of two sets of rewrite rules:

1. A set of proper rewrite rules governing the behaviour of the function and
binder symbols in the signature.

2. A set of substitution rules, called the substitution calculus governing the
behaviour of the substitution symbols in the signature, and used for propa-
gating and performing/eliminating term substitutions.

Let us define these two concepts formally.

Definition 13 (Substitution macros). Let Γs be a substitution signature.
The following symbols not included in Γs are called substitution macros: cons :
(TS), lift : (S), id : (ε) and shiftj : (ε) for j ≥ 1. We shall abbreviate shift1 by
shift. Also, if j ≥ 0 then liftj(s) stands for s if j = 0 and for lift(liftj−1(s))
otherwise. Furthermore, cons(a1, . . . , ai, s) stands for cons(a1, . . . cons(ai, s)).

Definition 14 (Term rewrite and equational systems). Let Γ be an Ex-
ERS signature. An equation is a pair of terms L

.= R over Γ such that L and
R have the same sort and a term rewrite rule is a pair of terms (L, R) over Γ
such that (1) L and R have the same sort, (2) the head symbol of the LHS of
the rule is a function or a binder symbol, and (3) the set of variables of the LHS
includes those of the RHS. An equational (resp. term rewrite) system is a set of
equations (resp. term rewrite rules).

Definition 15 (Substitution calculus). A substitution calculus over an Ex-
ERS signature Γ consists of a set W of rewrite rules, and an interpretation of
each substitution macro as some combination of substitution symbols from Γs of
corresponding signature. Definition 16 shall require certain properties for these
interpretations to be considered meaningful.

An example of a substitution calculus is σ [1] with cons(t, s) =def t · s,
lift(s) =def 1 · (s◦ ↑), id =def id and shiftj =def↑ ◦ . . . (↑ ◦ ↑), where ↑ appears
j times.

Definition 16 (Basic substitution calculus). A substitution calculus W
over Γ is said to be basic if the following conditions are satisfied:

1. W is complete (strongly normalizing and confluent) over the ground terms
in T . We use W(a) to indicate the unique W-normal form of a.

2. W-normal forms of ground terms are pure terms.
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3. For each f ∈ Γf and ξ ∈ Γb: W(f(a1, . . . , an)) = f(W(a1), . . . ,W(an)) and
W(ξ(a1, . . . , an)) = ξ(W(a1), . . . ,W(an)).

4. Rules for propagating substitutions over function symbols and binders are
contained in W, for each f ∈ Γf and ξ ∈ Γb:

(funcf ) f(X1, . . . , Xn)[s] −→ f(X1[s], . . . , Xn[s])
(bindξ) ξ(X1, . . . , Xn)[s] −→ ξ(X1[lift(s)], . . . , Xn[lift(s)])

5. For every substitution s, 1[lift(s)] =W 1.
6. For every substitution s and every m ≥ 0, m + 1[lift(s)] =W m[s][shift ].
7. For every term a and substitution s we have 1[cons(a, s)] =W a.
8. For every term a, substitution s, m ≥ 0 we have m + 1[cons(a, s)] =W m[s].
9. For every m, j ≥ 1 we have m[shiftj ] =W m + j.

10. For every term a we have a[id ] =W a.

Example 3. The σ [1], σ⇑ [13] and φ [22] calculi are basic substitution calculi
where the set of function and binder symbols are {app} and {λ}, respectively.

The reader may have noted that the macro-based presentation of substi-
tution calculi makes use of parallel substitutions (since cons(., .) has substitu-
tion declaration TS). Nevertheless, the results presented in this work may be
achieved via a macro-based presentation using a simpler set of substitutions
(such as for example the one used in [17]), where scons(.) has substitution dec-
laration T and the macro shift i is only defined for i = 1. Indeed, the expression
b[cons(a1, . . . , an, shiftj)] could be denoted by the expression

b[liftn(shift)]j [scons(a1[shift ]n−1)] . . . [scons(an)]

Definition 17 (ExERS and FExERS). Let Γ be an ExERS signature, W a
basic substitution calculus over Γ and R a set of term rewrite rules. If each
rule of R has sort T then RW =def (Γ,R,W) is called an Explicit Expression
Reduction System (ExERS). If, in addition, the LHS of each rule in R contains
no occurrences of the substitution operator .[.] then RW is called a Fully Explicit
Expression Reduction System (FExERS).

Since reduction in SERSDB only takes place on terms, and first-order term
rewrite systems will be used to simulate higher-order reduction, all the rules of
a term rewrite system R are assumed to have sort T. However, rewrite rules of
W may have any sort.

Example 4. Consider the signature Γ formed by Γf = {app}, Γb = {λ} and Γs

any substitution signature. Let W be a basic substitution calculus over Γ . Then
for R : app(λ(X), Y )−→βdb X[cons(Y, id)] we have that RW is an FExERS, and
for R′ : R∪ {λ(app(X[shift ], 1))−→ηdb X}, R′

W is an ExERS.

Reduction in an ExERS RW is first-order reduction in R moduloW-equality. In
contrast, reduction in a FExERSRW is just first-order reduction inR∪W. Before
defining these notions more precisely we recall the definition of assignment.
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Definition 18 (Assignment (a.k.a. grafting)). Let ρ be a (partial) function
mapping variables in V to ground terms. We define an assignment ρ as the
unique homeomorphic extension of ρ over the set T .

Definition 19 (Reduction and Equality). Let o and p be two ground terms
of sort T or S. Given a rewrite system R, we say that o rewrites to p in one step,
denoted o−→R p, iff o = E[ρL] and p = E[ρR] for some assignment ρ, some
context E and some rewrite rule (L, R) in R. We shall use ∗−→R to denote the
reflexive transitive closure of the one-step rewrite relation.

Given an equational system E, we say that o equals p modulo E in one step,
denoted o =1

E p, iff o = E[ρL] and p = E[ρR] for some assignment ρ, some
context E and some equation L

.= R in E. We use =E to denote the reflexive
symmetric transitive closure of =1

E , and say that o equals p modulo E if o =E p.

Definition 20 (ExERS and FExERS-rewriting). Let RW be an ExERS, R′W
a FExERS and o, p ground terms of sort S or T. We say that o RW -reduces or
rewrites to p, written o−→RW p, iff o−→R/W p (i.e. o =W o′−→R p′ =W p);
and o R′

W -reduces to p, iff o−→R′∪W p.

3.1 Properties of Basic Substitution Calculi

This subsection takes a look at properties enjoyed by basic substitution calculi
and introduces a condition called the Scheme [17]. Basic substitution calculi
satisfying the scheme ease inductive reasoning when proving properties over them
without compromising the genericity achieved by the macro-based presentation.

Lemma 1 (Behavior of Substitutions in Basic Substitution Calculi).
Let W be a basic substitution calculus and m ≥ 1.

1. For all n ≥ 0 and s in S: m[liftn(s)] =W

{
m− n[s][shift ]n if m > n
m if m ≤ n

2. For all n ≥ m ≥ 1 and all terms a1, . . . , an: m[cons(a1, . . . , an, s)] =W am

3. For all pure terms a, b and m ≥ 1: a{{m← b}} =W a[liftm−1(cons(b, id))].

Definition 21 (The Scheme). We say that a basic substitution calculus W
obeys the scheme iff for every index m and every substitution symbol σ ∈ Γs of
arity q one of the following two conditions hold:

1. There exists a de Bruijn index n, positive numbers i1, . . . , ir (r ≥ 0) and
substitutions u1, . . . , uk (k ≥ 0) such that
– 1 ≤ i1, . . . , ir ≤ q and all the ij’s are distinct
– for all o1, . . . , oq we have: m[σ(o1, . . . , oq)] =W n[oi1 ] . . . [oir ][u1] . . . [uk]

2. There exists an index i (1 ≤ i ≤ q) such that for all o1, . . . , oq we have:
m[σ(o1, . . . , oq)] =W oi

We assume these equations to be well-typed: whenever the first case holds, then
oi1 , . . . , oir

are substitutions, whenever the second case holds, oi is of sort T.

Example 5. Example of calculi satisfying the scheme are σ, σ⇑, υ, f and d [17].
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4 From Higher-Order to First-Order Rewriting

In this section we give an algorithm, referred to as the Conversion Procedure, to
translate any higher-order rewrite system in the formalism SERSDB to a first-
order ExERS. The Conversion Procedure is somewhat involved since several
conditions, mainly related to the labels of t-metavariables, must be met in order
for a substitution to be admitted as valid. The idea is to replace all occurrences
of t-metavariables Xl by a first-order variable X followed by an appropriate
index-adjusting explicit substitution which computes valid valuations.

We first give the conversion rules of the translation, then we prove its prop-
erties in Section 4.1.

Definition 22 (Binding allowance). Let M be a metaterm and
{Xl1 , . . . , Xln} be the set of all the t-metavariables with name X occur-
ring in M . Then, the binding allowance of X in M , noted BaM (X), is the set⋂n

i=1 li. Likewise, we define the binding allowance of X in a rule (L, R), written
Ba(L,R)(X).

Example 6. Let M = f(ξ(Xα), ξ(λ(Xβα)), ν(ξ(Xαγ))), then BaM (X) = {α}.
Definition 23 (Shifting index). Let M be a metaterm, Xl a t-metavariable
occurring in M , and i a position in l. The shifting index determined by Xl in
M at position i, denoted Sh(M, Xl, i), is defined as

Sh(M, Xl, i) =def |{j | at(l, j) /∈ BaM (X), j ∈ 1..i− 1}|
Sh(M, Xl, i) is just the total number of binder indicators in l at positions 1..i−1
that do not belong to BaM (X) (thus Sh(M, Xl, 1) is always 0). Likewise, we
define the shifting index determined by Xl in a rule (L, R) at position i, written
Sh((L, R), Xl, i).

Example 7. Let M = f(ξ(Xα), ξ(λ(Xβα)), ν(ξ(Xαγ))). Then Sh(M, Xβα, 2) = 1
and Sh(M, Xα, 1) = Sh(M, Xαγ , 2) = 0.

Definition 24 (Pivot). Let (L, R) be a SERSDB -rewrite rule and let us sup-
pose that {Xl1 , . . . , Xln} is the set of all X-based t-metavariables in (L, R). If
Ba(L,R)(X) 6= ∅, then Xlj for some j ∈ 1..n is called an (X-based) pivot if
|lj | ≤ |li| for all i ∈ 1..n, and Xlj ∈ L whenever possible. A pivot set for a
rewrite rule (L, R) is a set of pivot t-metavariables, one for each name X in
L such that Ba(L,R)(X) 6= ∅. This notion extends to a set of rewrite rules as
expected.

Note that Definition 24 admits the existence of more than one X-based
pivot t-metavariable. A pivot set for (L, R) fixes a t-metavariable for each t-
metavariable name having a non-empty binding allowance.

Example 8. Both t-metavariables Xαβ and Xβα can be chosen as X-based pivot
in the rewrite rule R : Implies(∃(∀(Xαβ)),∀(∃(Xβα)))−→ true. In the rewrite
rule R′ : f(Yε, λ(ξ(Xαβ)), ν(λ(Xβα)))−→ µ(Xα, Yα) the t-metavariable Xα is
the only possible X-based pivot.
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Definition 25 (Conversion of t-metavariables). Consider a SERSDB -
rewrite rule (L, R) and a pivot set for (L, R). We consider the following cases
for every t-metavariable name X occurring in L:

1. Ba(L,R)(X) = ∅. Then replace each t-metavariable Xl in (L, R) by the
metaterm X[shift |l|], and those t-metavariables Xl with l = ε simply by X.
This shall allow for example the rule f(λ(app(Xα, 1), Xε))−→ Xε to be con-
verted to f(λ(app(X[shift ], 1), X))−→ X.

2. Ba(L,R)(X) = {β1, . . . , βm} with m > 0. Let Xl be the pivot t-metavariable
for X given by the hypothesis. We replace all occurrences of a t-metavariable
Xk in (L, R) by the term X[cons(b1, . . . , b|l|, shift

j)] where j =def |k| + |l \
Ba(L,R)(X)| and the bi’s depend on whether Xk is a pivot t-metavariable or
not. As an optimization and in the particular case that the resulting term
X[cons(b1, . . . , b|l|, shift

j)] is of the form cons(1, . . . , |l|, shift |l|), then we sim-
ply replace Xk by X. The substitution cons(b1, . . . , b|l|, shift

j) is called the
index-adjusting substitution corresponding to Xk and it is defined as follows:
a) if Xk is the pivot (hence l = k), then bi = i if at(l, i) ∈ Ba(L,R)(X) and

bi = |l|+ 1 + Sh((L, R), Xl, i) if at(l, i) /∈ Ba(L,R)(X).
b) if Xk is not the pivot then bi = pos(βh, k) if i = pos(βh, l) for some

βh ∈ Ba(L,R)(X) and bi = |k|+ 1 + Sh((L, R), Xl, i) otherwise.

Note that for an index-adjusting substitution X[cons(b1, . . . , b|l|, shift
j)] each

bi is a distinct de Bruijn index and less than or equal to j. Substitutions of this
form have been called pattern substitutions in [10], where unification of higher-
order patterns via explicit substitutions is studied.

Definition 26 (The Conversion Procedure). Given a SERSDB R the fol-
lowing actions are taken:

1. Convert rules. The transformation of Definition 25 is applied to all rules
in R prior selection of some set of pivot sets for R.

2. Replace metasubstitution operator. All submetaterms of the form
M [[N ]] in R are replaced by the term substitution operator M [cons(N, id)].

Example 9. Below we present some examples of conversion of rules. We have
fixed W to be the σ-calculus.

Let (L, R) be a SERSDB -rule and P a pivot set for (L, R). We write CP (L, R)
for the result of applying the conversion of Definition 26 to (L, R) with pivot set
P . We refer to CP (L, R) as the converted version of (L, R) via P .

Note that if the SERSDB -rewrite rule (L, R) which is input to the Conversion
Procedure is such that for every name X in (L, R) there is a label l with all
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metavariables in (L, R) of the form Xl, then all Xl are replaced simply by X.
This is the case of the rule βdb of Example 9.

Also, observe that if we replace our cons(., .) macro by a scons(.) of sub-
stitution declaration T as defined in [17] then the “Replace metasubstitution
operator” step in Definition 26 converts a metaterm of the form M [[N ]] into
M [scons(N)], yielding first-order systems based on substitution calculi, such as
λυ, which do not implement parallel substitution.

The resulting system of the Conversion Procedure is coded as an ExERS,
a framework for defining first-order rewrite systems where E-matching is used,
E being an equational theory governing the behaviour of the index adjustment
substitutions. Moreover, if it is possible, an ExERS may further be coded as a
FExERS where reduction is defined on first-order terms and matching is just
syntactic first-order matching, obtaining a full first-order system.

Definition 27 (First-order version of R). Let Γ be an ExERS signature
and let R be a SERSDB . Consider the system fo(R) obtained by applying the
Conversion Procedure to R and let W be a substitution calculus over Γ . Then
the ExERS fo(R)W is called a first order-version of R.

In what follows we shall assume given some fixed basic substitution calculus
W. Thus, given a SERSDB R we shall speak of the first-order version of R. This
requires considering pivot selection, an issue we take up next.

Assume given some rewrite rule (L, R) and different pivot sets P and Q for
this rule. It is clear that CP (L, R) and CQ(L, R) shall not be identical. Never-
theless, we may show that the reduction relation generated by both of these
converted rewrite rules is identical.

Proposition 1. Let (L, R) be a SERSDB -rewrite rule and let P and Q be differ-
ent pivot sets for this rule. Then the rewrite relation generated by both CP (L, R)
and CQ(L, R) are identical.

4.1 Properties of the Conversion

The Conversion Procedure satisfies two important properties: each higher-order
rewrite step may be simulated by first-order rewriting (simulation) and rewrite
steps in the first-order version of a higher-order system R can be projected in
R (conservation).

Proposition 2 (Simulation). Let R be an SERSDB and let fo(R)W be
its first-order version. Suppose a−→R b. If fo(R)W is an ExERS then
a−→fo(R)/W b. If fo(R)W is a FExERS then a−→fo(R) ◦ ∗−→W b where ◦
denotes relation composition.

Proposition 3 (Conservation). Let R be a SERSDB and fo(R)W its first-
order version with W satisfying the scheme. If a−→fo(R)W b then W(a) ∗−→R
W(b).
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4.2 Essentially First-Order HORS

This last subsection gives a very simple syntactical criterion that can be used to
decide if a given higher-order rewrite system can be converted into a full first-
order rewrite system (modulo an empty theory). In particular, we can check that
many higher-order calculi in the literature, e.g. λ-calculus, verify this property.

Definition 28 (Essentially first-order HORS). A SERSDB R is called es-
sentially first-order if fo(R)W is a FExERS for W a basic substitution calculus.

Definition 29 (fo-condition). A SERSDB R satisfies the fo-condition if every
rewrite rule (L, R) ∈ R satisfies: for every name X in L let Xl1 , . . . , Xln be all
the X-based t-metavariables in L, then l1 = l2 . . . = ln and (the underlying set
of) l1 is Ba(L,R)(X), and for all Xk ∈ R we have |k| ≥ |l1|.

In the above definition note that l1 = l2 . . . = ln means that labels l1, . . . , ln
must be identical (for example αβ 6= βα). Also, by Definition 6, l1 is simple.

Example 10. Consider the βdb-calculus: app(λ(Xα), Zε)−→βdb Xα[[Zε]]. The βdb-
calculus satisfies the fo-condition.

Proposition 4 puts forward the importance of the fo-condition. Its proof relies
on a close inspection of the Conversion Procedure.

Proposition 4. Let R be a SERSDB satisfying the fo-condition. Then R is
essentially first-order.

Note that many results on higher-order systems (e.g. perpetuality [19], stan-
dardization [21]) require left-linearity (a metavariable may occur at most once on
the LHS of a rewrite rule), and fully-extendedness or locality (if a metavariable
X(t1, . . . , tn) occurs on the LHS of a rewrite rule then t1, . . . , tn is the list of
variables bound above it). The reader may find it interesting to observe that
these conditions together seem to imply the fo-condition. A proof of this fact
would require either developing the results of this work in the above mentioned
HORS or via some suitable translation to the SERSDB formalism.

5 Conclusions and Future Work

This work presents an encoding of higher-order term rewriting systems into first-
order rewriting systems modulo an equational theory. This equational theory
takes care of the substitution process. The encoding has furthermore allowed
us to identify in a simple syntactical manner, via the so-called fo-condition, a
class of HORS that are fully first-order in that they may be encoded as first-
order rewrite systems modulo an empty equational theory. This amounts to
incorporating, into the first-order notion of reduction, not only the computation
of substitutions but also the higher-order (pattern) matching process. It is fair to
say that a higher-order rewrite system satisfying this condition requires a simple
matching process, in contrast to those that do not satisfy this condition (such as
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the λβη-calculus). Other syntactical restrictions, such as linearity and locality,
imposed on higher-order rewrite systems in [19,21] in order to reason about their
properties can be related to the fo-condition in a very simple way. This justifies
that the fo-condition, even if obtained very technically in this paper, may be
seen as an interpretation of what a well-behaved higher-order rewrite system is.

Moreover, this encoding has been achieved by working with a general pre-
sentation of substitution calculi rather than dealing with some particular sub-
stitution calculus. Any calculus of explicit substitutions satisfying this general
presentation based on macros will do.

Some further research directions are summarized below:

– As already mentioned, the encoding opens up the possibility of transferring
results concerning confluence, termination, completion, evaluation strategies,
implementation techniques, etc. from the first-order framework to the higher-
order framework.

– Given a SERSDB R note that the LHS s of rules in fo(R) may contain oc-
currences of the substitution operator (pattern substitutions). It would be
interesting to deal with pattern substitutions and “regular” term substitu-
tions (those arising from the conversion of the de Bruijn metasubstitution
operator .[[.]]) as different substitution operators at the object-level. This
would neatly separate the explicit matching computation from that of the
usual substitution replacing terms for variables.

– This work has been developed in a type-free framework. The notion of type is
central to Computer Science. This calls for a detailed study of the encoding
process dealing with typed higher-order rewrite systems such as HRS [23].

– The ideas presented in this paper could be used to relax conditions in [9]
where only rewrite systems with atomic propositions on the LHS s of rules
are considered.

Acknowledgements. We thank Bruno Guillaume for helpful remarks.
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