
A de Bruijn Notation for Higher-Order

Rewriting

(Extended Abstract)

Eduardo Bonelli1,2, Delia Kesner2 , and Alejandro Rı́os1

1 Departamento de Computación - Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires, Pabellón I

Ciudad Universitaria (1428), Buenos Aires, Argentina
{ebonelli,rios}@dc.uba.ar

2 LRI (UMR 8623) - Bât 490, Université de Paris-Sud
91405 Orsay Cedex, France

kesner@lri.fr

Abstract. We propose a formalism for higher-order rewriting in de
Bruijn notation. This notation not only is used for terms (as usually
done in the literature) but also for metaterms, which are the syntactical
objects used to express general higher-order rewrite systems. We give for-
mal translations from higher-order rewriting with names to higher-order
rewriting with de Bruijn indices, and vice-versa. These translations can
be viewed as an interface in programming languages based on higher-
order rewrite systems, and they are also used to show some properties,
namely, that both formalisms are operationally equivalent, and that con-
fluence is preserved when translating one formalism into the other.

1 Introduction

Higher-order (term) rewriting concerns the transformation of terms in the pres-
ence of binding mechanisms for variables. Implementing higher-order rewriting
requires, beforehand, taking care of a complex notion of substitution operation
and of renaming of bound variables (α-conversion). As a paradigmatic example,
the β-reduction axiom of λ-calculus [1], expressed (λx.M)N−→β M{x ← N},
may be interpreted as: the result of executing function λx.M over argument
N is obtained by substituting N for all (free) occurrences of x in M . Any im-
plementation of higher-order rewriting must include instructions for computing
this substitution. Although from the meta-level the execution of a substitution
is atomic, the cost of computing it highly depends on the form of the terms, spe-
cially if unwanted variable capture conflicts must be avoided by renaming bound
variables. De Bruijn indices take care of renaming because the representation of
variables by indices completely eliminates unwanted capture of variables. How-
ever, de Bruijn formalisms have only been studied for particular systems (and
only on the term level) and no general framework of higher-order rewriting with
indices has been proposed. We address this problem here by focusing not only

L. Bachmair (Ed.): RTA 2000, LNCS 1833, pp. 62–79, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A de Bruijn Notation for Higher-Order Rewriting 63

on de Bruijn terms (as usually done in the literature for λ-calculus [11]) but also
on de Bruijn metaterms, which are the syntactical objects used to express any
general higher-order rewrite system formulated in a de Bruijn context.

Many higher-order rewrite systems (HORS) exist and work in the area is
currently very active: CRS [14], ERS [12], CERS [13], HRS [15], the systems
in [22] and [20]. We choose in this work to use ERS because their syntax and
semantics are simple and natural (they allow for example to write β-reduction in
λ-calculus as usual while CRS do not) and the correspondence between ERS and
HRS has already been established [21]. We shall begin with (a slightly simplified
version of) the ERS formalism, that we shall call SERS (S for simplified) and
introduce the de Bruijn index based higher-order rewrite system SERSDB .

Our work is the first step in the construction of a formal interpretation of
higher-order rewriting via a first-order theory. This kind of simulation would be
possible with the aid of explicit substitutions. Indeed, this work follows, in some
sense, the lines of [8] which interprets higher-order formalisms/problems into
their respective first-order ones.

Our formalism is developed in order to be used as an interface of a program-
ming language based on higher-order rewriting. Of course, the use of variable
name based formalisms are necessary for humans to interact with computers in a
user-friendly way. Clearly technical resources like de Bruijn indices and explicit
substitutions should live behind the scene, in other words, should be implemen-
tation concerns. Moreover, it is required of whatever is behind the scene to be
as faithful as possible as regards the formalism it is implementing. So a key is-
sue shall be the detailed study of the relationship between SERS and SERSDB .
The translations we propose between them are extensions to higher-order of the
translations studied in [11] and presented in [5].

As regards existing higher-order rewrite formalisms based on de Bruijn index
notation and/or explicit substitutions to the best of the authors’ knowledge there
are but two: Explicit CRS [3] and XRS [16]. In [3] explicit substitutions a la λx
[19,2] are added to the CRS formalism as a first step towards using higher-order
rewriting with explicit substitutions for modeling the evaluation of functional
programs in a faithful way. Since this is done in a variable name setting α-
conversion must be dealt with as in CRS. Pagano’s XRS constitutes the first
HORS which fuses de Bruijn index notation and explicit substitutions. It is
presented as a generalization of the λσ⇑-calculus [6] but no connection has been
established between XRS and well-known systems such as CRS, ERS and HRS.
Indeed, it is not clear at all how some seemingly natural rules expressible, say,
in the ERS formalism, may be written in an XRS. As an example, consider a
rewrite system for logical expressions such that if imply(e1 , e2) reduces to the
constant true then e1 logically implies e2 in classical first-order predicate logic.
A possible rewrite rule could be:

(imp) imply(∃x∀yM, ∀y∃xM)−→ true

A näıve attempt might consider the rewrite rule

(impdb) imply(∃∀M, ∀∃M)−→ true

64 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

as a possible representation of this rule in the XRS formalism, but it does not
have the desired effect since ∃∀M and ∀∃M correspond to ∃x∀yM and ∀x∃yM
but ∀x∃yM and ∀y∃xM are not equivalent. Note that regardless of the fact that
XRS incorporate explicit substitutions, this problem arises already at the level
of de Bruijn notation. Another example of interest is:

(η) λx.(Mx)−→ M if x is not free in M

which is usually expressed in a de Bruijn based system with explicit substitutions

(ηdb) λ(M1)−→ N if M =C N [↑]
where M =C N means that M and N are equivalent modulo the theory of
explicit substitutions C. Neither the (imp) rule nor (ηdb) is possible in the XRS
formalism so that they do not have in principle the same expressive power as
ERS . We shall propose de Bruijn based HORS that will allow such rules to be
faithfully represented.

The main contribution of this paper is a general de Bruijn notation for higher-
order syntax which bridges the gap between higher-order rewriting with names
and with indices. This formalism suggests a first-order tool to implement HORS,
which in contrast to [16] would represent all the HORS used in practice.

The rest of the paper is organized as follows. Section 2 introduces our work
and study scenario, the SERS formalism. The de Bruijn based formalism
SERSDB is defined in Section 3. Section 4 takes a close-up view of the relation-
ship, via appropriate translations, between the formalisms SERS and SERSDB .
Also, preservation of confluence is considered. Finally, we conclude.

By lack of space we only present here an extended abstract, and therefore
proofs, auxiliary lemmas and standard definitions are only hinted or just omitted,
but the interested reader will find full details in [4].

2 Simplified Expression Reduction Systems

We introduce the variable name based higher-order rewrite formalism SERS .

2.1 Metaterms and Terms

Definition 1 (Signature). Consider the denumerable and disjoint infinite sets:

– V = {x1, x2, x3, . . .} a set of variables, arbitrary variables are denoted x, y, . . .
– BMV = {α1, α2, α3, . . .} a set of pre-bound o-metavariables (o for object),

denoted α, β, . . .
– FMV = {α̂1, α̂2, α̂3, . . .} a set of pre-free o-metavariables, denoted α̂, β̂, . . .
– TMV = {X1, X2, X3, . . .} a set of t-metavariables (t for term), denoted

X, Y, Z, . . .
– F = {f1, f2, f3, . . .} a set of function symbols equipped with a fixed (possibly

zero) arity, denoted f, g, h, . . .
– B = {λ1, λ2, λ3, . . .} a set of binder symbols equipped with a fixed (non-zero)

arity, denoted λ, µ, ν, ξ, . . .

A de Bruijn Notation for Higher-Order Rewriting 65

The union of BMV and FMV is the set of o-metavariables of the signature.
When speaking of metavariables without further qualifiers we refer to o and t-
metavariables. Since all these alphabets are ordered, given any symbol s we shall
denote O(s) its position in the corresponding alphabet.

Definition 2 (Labels). A label is a finite sequence of symbols of an alphabet.
We shall use k, l, li, . . . to denote arbitrary labels and ε for the empty label. If
s is a symbol and l is a label then the notation s ∈ l means that the symbol s
appears in the label l, and also, we use sl to denote the new label whose head is s
and whose tail is l. Other notations are |l| for the length of l (number of symbols
in l) and at(l, n) for the n-th element of l assuming n ≤ |l|. Also, if s occurs
(at least once) in l then pos(s, l) denotes the position of the first occurrence of
s in l. If θ is a function defined on the alphabet of a label l ≡ s1 . . . sn, then θ(l)
denotes the label θ(s1) . . . θ(sn). In the sequel, we may use a label as a set (e.g.
S ∩ l denotes the intersection of a set S with the set containing the elements of
l) if no confusion arises. A simple label is a label without repeated symbols.

Definition 3 (Pre-metaterms). The set of SERS pre-metaterms1, denoted
PMT , is defined by:

M ::= α | α̂ | X | f(M, . . . , M) | ξα.(M, . . . , M) |M [α←M]

Arities are supposed to be respected and we shall use M, N, Mi, . . . to denote
pre-metaterms. The symbol .[. ← .] in the pre-metaterm M [α ← M] is called
metasubstitution operator. The o-metavariable α in a pre-metaterm of the form
ξα.(M, . . . , M) or M [α ← M] is referred to as the formal parameter. The set
of binder symbols together with the metasubstitution operator are called binder
operators, thus the metasubstitution operator is a binder operator (since it has
binding power) but not a binder symbol since it is not an element of B.

A pre-metaterm M has an associated tree, denoted tree(M), defined as ex-
pected. In the case of the metasubstitution operator we have: if T1, T2 are the
trees of M1, M2, then the tree of M1[α ← M2] has root “sub”, and sons “[]α”
(with son T1) and T2.

A position is a label over the alphabet IN. Given a pre-metaterm N appearing
in M , the set of occurrences of N in M is the set of positions of tree(M) where
N occurs (positions in trees are defined as usual). The parameter path of an
occurrence p in a tree T is the list containing all the (pre-bound) o-metavariables
occuring in the path from p to the root of T .
1 The main difference between SERS and ERS is that in the latter binders and

metasubstitutions are defined on multiple o-metavariables. Indeed, pre-metaterms
like ξα1 . . . αk.(M1, . . . ,Mm) and M [α1 . . . αk ← M1, . . . ,Mk] are possible in ERS ,
with the underlying hypothesis that α1 . . . αk are all distinct and with the underlying
semantics that M [α1 . . . αk ← M1, . . . ,Mk] denotes usual (parallel) substitution. It
is well known that multiple substitution can be simulated by simple substitution.
Furthermore, there is also a notion of scope indicator in ERS , used to express in
which arguments the variables are bound. Scope indicators shall not be considered
in SERS since they do not seem to contribute to the expressive power of ERS .

66 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

The following definition introduces the set of metaterms, which are pre-
metaterms that are well-formed in the sense that all the formal parameters
appearing in the same path of a pre-metaterm must be different and all the
metavariables in BMV only occur bound.

Definition 4 (Metaterms). A pre-metaterm M is a metaterm, denoted by
WF (M), iff the predicateWF ε(M) holds, where WF l(M) is defined as follows:

– WF l(α) iff α ∈ l
– WF l(α̂) and WF l(X) are always true
– WF l(f(M1 , . . . , Mn)) iff for all 1 ≤ i ≤ n we have WF l(Mi)
– WF l(ξα.(M1, . . . , Mn)) iff α /∈ l and for all 1 ≤ i ≤ n we have WFαl(Mi)
– WF l(M1[α←M2]) iff α /∈ l and WF l(M2) and WFαl(M1).

For example, f(ξα.(X), λα.(Y)), f(β̂, λα.(Y)) and g(λα.(ξβ.(h))) are meta-
terms, while the pre-metaterms f(α, ξα.(X)) and f(β̂, λα.(ξα.(X))) are not.

In the sequel, pre-bound (free) o-metavariables occurring in metaterms shall
simply be referred to as bound (free) o-metavariables. As we shall see, metaterms
are used to specify rewrite rules.

Definition 5 (Free Metavariables of Pre-metaterms). Let M be a pre-
metaterm, then FMVar(M) denotes the set of free metavariables of M , which is
defined as follows:

FMVar(X) def= {X} FMVar(α) def= {α} FMVar (α̂) def= {α̂}
FMVar(f(M1 , . . . , Mn)) def=

⋃n
i=1 FMVar(Mi)

FMVar(ξα.(M1, . . . , Mn)) def= (
⋃n

i=1 FMVar(Mi)) \ {α}
FMVar(M1[α←M2])

def= (FMVar (M1) \ {α}) ∪ FMVar (M2)
All metavariables which are not free are bound. We use BMVar(M) to denote

the bound metavariables of a metaterm M . Note that only o-metavariables may
occur bound in a metaterm. We denote the set of metavariables of a metaterm or
a pre-metaterm M by MVar(M). Note that if M is a metaterm, then FMVar(M)
does not contain pre-bound o-metavariables.

Definition 6 (Terms and Contexts). The set of SERS terms, denoted T ,
and contexts are defined by:

Terms t ::= x | f(t, . . . , t) | ξx.(t, . . . , t)
Contexts C ::= 2 | f(t, . . . , C, . . . , t) | ξx.(t, . . . , C, . . . , t)

where 2 denotes a “hole”. We shall use s, t, ti, . . . for terms and C, D for con-
texts. We remark that in contrast to other formalisms dealing with higher-order
rewriting, here the set of terms is not contained in the set of pre-metaterms since
the set of variables and the set of o-metavariables are disjoint. The set of free
(resp. bound) variables of a term t, denoted FV (t) (resp BV (t)) are defined as
usual.

With C[t] we denote the term obtained by replacing the term t for the hole
2 in the context C. Note that this operation may introduce variable capture. We
define the label of a context as a sequence of variables as follows:

A de Bruijn Notation for Higher-Order Rewriting 67

label(2) def= ε

label(f(t1 , . . . , C, . . ., tn)) def= label(C)
label(ξx.(t1, . . . , C, . . . , tn)) def= label(C)x

For example, the label of the context C ≡ f(λx.(z, ξy.(h(y, 2)))) is the se-
quence yx. The label of a context is a notion analogous to that of a parameter
path of an occurrence, but defined for terms instead of pre-metaterms and where
the only occurrence considered is that of the hole.

Definition 7 ((Restricted) Substitution of Terms). The (restricted) sub-
stitution of a term t for a variable x in a term s, denoted s{x← t}, is defined:

x{x← t} def= t

y{x← t} def= y if x 6≡ y

f(s1 , . . . , sn){x← t} def= f(s1{x← t}, . . . , sn{x← t})
ξx.(s1, . . . , sn){x← t} def= ξx.(s1, . . . , sn)
ξy.(s1 , . . . , sn){x← t} def= ξy.(s1{x← t}, . . . , sn{x← t})

if x 6≡ y, and (y /∈ FV (t) or x /∈ FV (s))

Thus .{. ← .} denotes the substitution operator on terms but it may not
apply α-conversion (renaming of bound variables) in order to avoid unwanted
variable captures. Therefore this notion of substitution is not defined for all
terms (hence its name). When defining the notion of reduction relation on terms
induced by rewrite rules we shall take α-conversion into consideration. We may
define α-conversion on terms as the smallest reflexive, symmetric and transitive
relation closed by contexts verifying the following equality:

(α) ξx.(s1, . . . , sn) ≡α ξy.(s1{x← y}, . . . , sn{x← y}) y not in s1, . . . , sn

Note that since y does not occur in s1, . . . , sn substitution is defined. We shall
use t ≡α s to denote that the terms t and s are α-convertible. This conversion
is sound in the sense that t ≡α s implies FV (t) = FV (s).

The notion of α-conversion for terms has a symmetrical one for pre-metaterms
which we call v-equivalence (v for variant). The intuitive meaning of two v-
equivalent pre-metaterms is that they are able to receive the same set of po-
tential “valuations” (c.f. Definition 10). Thus for example, as one would expect,
λα.(X) 6=v λβ.(X) because when α and X are replaced by x and β is replaced
by y, one obtains λx.(x) and λy.(x), which are not α-convertible. However,
since pre-metaterms contain t-metavariables, the notion of v-equivalence is not
straightforward as the notion of α-conversion in the case of terms.

Definition 8 (v-Equivalence for Pre-metaterms). Given pre-metaterms M
and N , we say that M is v-equivalent to N , iff M =v N where =v is the smallest
reflexive, symmetric and transitive relation closed by metacontexts2 verifying:

(v1) ξα.(P1, . . . , Pn) =v ξβ.(P1 �α←β� . . .Pn �α←β�)
(v2) P1[α← P0] =v P1 �α←β� [β ← P0]

2 Metacontexts are defined analogously to contexts. The notion of “label of a context”
is extended to metacontexts as expected.

68 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

where β is a pre-bound o-metavariable which does not occur in P1, . . . , Pn in
(v1) and does not occur in P1 in (v2), Pi does not contain t-metavariables for
1 ≤ i ≤ n, and P �α←Q� is the restricted substitution for pre-metaterms:

α�α←Q� def= Q

α′ �α←Q� def= α′ α 6≡ α′

α̂′ �α←Q� def= α̂′

X �α←Q� def= X

f(M1 , . . . , Mn)�α←Q� def= f(M1 �α←Q�, . . . , Mn �α←Q�)
(ξα.(M1, . . . , Mn))�α←Q� def= ξα.(M1, . . . , Mn)
(ξα′.(M1, . . . , Mn))�α←Q� def= ξα′.(M1 �α←Q�, . . . , Mn �α←Q�)

α 6≡ α′, (α′ /∈FMVar (Q) or α /∈FMVar(P))
(M1[α←M2])�α←Q� def= M1[α←M2 �α←Q�]
(M1[α′ ←M2])�α←Q� def= (M1 �α←Q�)[α′←M2 �α←Q�]

α 6≡α′, (α′ /∈FMVar(Q) or α /∈FMVar(M1))

Example 1. λα.(α) =v λβ.(β), λα.(f) =v λβ.(f), but λα.(X) 6=v λβ.(X),
λβ.(λα.(X)) 6=v λα.(λβ.(X)).

2.2 Reduction

Whereas the rewrite rules are specified by using metaterms, the reduction rela-
tion is defined on terms.

Definition 9 (SERS Rewrite Rule). An SERS rewrite rule is a pair of meta-
terms (G, D) (also written G−→ D) such that

– the first symbol in G is a function symbol or a binder symbol
– FMVar(D) ⊆ FMVar (G)
– G contains no occurrence of the metasubstitution operator

Example 2. The λx-calculus [3,19] is defined by the following SERS rewrite
rules:

@(λα.(X), Z) −→Beta Σ(σα.(X), Z)
Σ(σα.(@(X, Y)), Z) −→App @(Σ(σα.(X), Z), Σ(σα.(Y), Z))
Σ(σα.(λβ.(X)), Z) −→Lambda λβ.(Σ(σα.(X), Z))
Σ(σα.(α), Z) −→Var1 Z

Σ(σα.(β̂), Z) −→Var2 β̂

Note that our formalism allows us to specify the Var2 rule as originally
done in [19], while formalisms such as CRS force one to change this rule to a
stronger one, called gc, written as Σ(σα.(X), Z)−→gc X, where the admissibility
condition on valuations guarantees that if X/t is part of the valuation θ, then
θ(α) cannot be in FV (t).

A de Bruijn Notation for Higher-Order Rewriting 69

Example 3. The λ∆-calculus [18] is defined by the following SERS rewrite rules:

@(λα.(X), Z) −→Beta X[α← Z]
@(∆α.(X), Z) −→∆1 ∆β.(X[α← λγ.(@(β, @(γ, Z)))])
∆α.(@(α, X)) −→∆2 X
∆α.(@(α, (∆β.(@(α, X))))) −→∆3 X

Definition 10 (Valuation). A variable assignment is a (partial) function θv

from o-metavariables to variables with finite domain, such that for every pair of
o-metavariables α, β̂ we have θvα 6≡ θvβ̂ (pre-bound and pre-free o-metavariables
are assigned different values).

A valuation θ is a pair of (partial) functions (θv, θt) where θv is a vari-
able assignment and θt maps t-metavariables to terms. We write Dom(θ) for
Dom(θv)∪Dom(θt)3. A valuation θ may be extended in a unique way to the set
of pre-metaterms M such that MVar(M) ⊆ Dom(θ) as follows:

θα
def= θvα

θα̂
def= θvα̂

θX
def= θtX

θf(M1 , . . . , Mn) def= f(θM1, . . . , θMn)
θ(ξα.(M1, . . . , Mn)) def= ξθvα.(θM1, . . . , θMn)
θ(M1[α←M2])

def= θ(M1){θvα← θM2}

We shall not distinguish between θ and θ if no ambiguities arise. Also, we
sometimes write θ(M) thereby implicitly assuming that MVar(M) ⊆ Dom(θ).

Returning to the intuition behind v-equivalence the idea is that it can be
translated into α-conversion in the sense that M =v N implies θM ≡α θN
for any valuation θ such that θM and θN are defined. Indeed, coming back
to Example 1 and taking θ = {α/x, β/y, X/x}, we have θλα.(α) ≡ λx.(x) ≡α

λy.(y) ≡ θλβ.(β), θλα.(f) ≡ λx.(f) ≡α λy.(f) ≡ θλβ.(f), θλα.(X) ≡ λx.(x) 6≡α

λy.(x) ≡ θλβ.(X), θλβ.(λα.(X)) ≡ λy.(λx.(x)) 6≡α λx.(λy.(x)) ≡ θλα.(λβ.(X)).

Definition 11 (Safe Valuations). Let M ∈ PMT and θ a valuation with
MVar(M) ⊆ Dom(θ). We say that θ is safe for M if θM is defined. Likewise, if
(G, D) is a rewrite rule, we say that θ is safe for (G, D) if θD is defined.

Note that if the notion of substitution we are dealing with were not restricted
then α-conversion could be required in order to apply a valuation to a pre-
metaterm. Also, for any valuation θ and pre-metaterm M with MVar(M) ⊆
Dom(θ) that contains no occurrences of the metasubstitution operator θ is safe
for M . Thus, we only ask θ to be safe for D (not G) in the previous definition.

The following condition is the classical notion of admissibility used in higher-
order rewriting [21] to avoid inconsistencies in rewrite steps.

Definition 12 (Path Condition for T-Metavariables). Let X be a t-meta-
variable. Consider all the occurrences p1, . . . , pn of X in (G, D), and their respec-
tive parameter paths l1, . . . , ln in the trees corresponding to G and D. A valuation
θ verifies the path condition for X in (G, D) if for every x ∈ FV (θX), either
(∀1 ≤ i ≤ n we have x ∈ θli) or (∀1 ≤ i ≤ n we have x /∈ θli).
3 As usual, Dom(ψ) denotes the domain of the partial function ψ.

70 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

This definition may be read as: one occurrence of x ∈ FV (θX) with X in
(G, D) is in the scope of some binding occurrence of x iff every occurrence of
X in (G, D) is in the scope of a bound o-metavariable α with θα ≡ x. For
example, consider the SERS rule λα.(ξβ.(X))−→ ξβ.(X) and the valuations
θ1 = {α/x, β/y, X/z} and θ2 = {α/x, β/y, X/x}. Then θ1 verifies the path
condition for X, but θ2 does not since when instantiating the rewrite rule with
θ2 the variable x shall occur both bound (on the LHS) and free (on the RHS).
Definition 13 (Admissible Valuations). A valuation θ is said to be admis-
sible for a rewrite rule (G, D) iff
– θ is safe for (G, D)
– if α and β occur in (G, D) with α 6≡ β then θvα 6≡ θvβ
– θ verifies the path condition for every t-metavariable in (G, D)

Note that an admissible valuation is safe by definition, but a safe valuation
may not be admissible: consider the rule λα.app(X, α)−→ X, the valuation θ =
{α/x, X/x} is trivially safe but is not admissible since the path condition is not
verified: x∈θ(α) but x /∈θ(ε) (x occurs bound on the LHS and free on the RHS).

Now, there are two possible and equivalent ways to define reduction in a
higher-order framework. One can either define reduction via a notion of substi-
tution which makes explicit use of α-conversion, as it is usually done [10], or, as
it is done here, reduction is explicitly defined as reduction modulo α-conversion
and using a notion of restricted substitution which does not make use of α-
conversion. We choose this second (and more involved) approach since we prefer
to have a notion of reduction on terms in both formalisms (with names and de
Bruijn indices), which is similar enough to make technical proofs work easily.

Definition 14 (Reduction on Terms). Let R be a set of SERS rewrite rules
and s, t terms. We say that s R-reduces to t, written s−→R t, iff there exists a
rewrite rule (G, D) ∈ R, an admissible valuation θ for (G, D) and a context C
such that s ≡α C[θG] and t ≡α C[θD].

3 Simplified Expression Reduction Systems with Indices

We introduce de Bruijn indices based higher-order rewrite formalism SERSDB .

3.1 De Bruijn Metaterms and Terms

A classical way to avoid α-conversion is to use de Bruijn index notation [7],
where names of variables are replaced by natural numbers. When talking about
a set N of de Bruijn indices we may refer to Names(N) as the set of names of N
given by the order on the set of variables V introduced in Section 2. Indeed, if
N = {n1, . . . , nm}, then Names(N) = {xn1, . . . , xnm}.

In the sequel, in order to distinguish a concept defined for the SERS formal-
ism from its corresponding version (if it exists) in the SERSDB formalism we
may prefix it using the qualifying term “de Bruijn”, eg. “de Bruijn metaterms”.

Definition 15 (de Bruijn Signature). Consider the denumerable and disjoint
infinite sets:

A de Bruijn Notation for Higher-Order Rewriting 71

– {α1, α2, α3, . . .} a set of symbols called binder indicators, denoted α, β, . . .,
– IMV = {α̂1, α̂2, . . .} a set of i-metavariables (i for index), denoted α̂, β̂, . . .,
– TMV = {X1

l , X2
l , X3

l , . . .} a set of t-metavariables (t for term), where l
ranges over the set of labels built over binder indicators, denoted Xl, Yl, Zl, . . .,

– F = {f1, f2, f3, . . .} a set of function symbols equipped with a fixed (possibly
zero) arity, denoted f, g, h, . . .,

– B = {λ1, λ2, λ3, . . .} a set of binder symbols equipped with a fixed (non-zero)
arity, denoted λ, µ, ν, ξ,

We remark that the set of binder indicators is exactly the set of pre-bound o-
metavariables introduced in Definition 1. The reason for using the same alphabet
in both formalisms shall become clear in Section 4, but intuitively, we need a
mechanism to annotate binding paths in the de Bruijn setting to distinguish
metaterms like ξβ.(ξα.(X)) and ξα.(ξβ.(X)) appearing in the same rule when
translated into an SERSDB system.

Definition 16 (de Bruijn Pre-metaterms). The set of de Bruijn pre-meta-
terms, denoted PMT db, is defined by the following two-sorted grammar:

metaindices I ::= 1 | S(I) | α̂
pre-metaterms A ::= I | Xl | f(A, . . . , A) | ξ(A, . . . , A) | A[[A]]

The symbol .[[.]] in a pre-metaterm A[[A]] is called de Bruijn metasubstitution
operator. The binder symbols together with the de Bruijn metasubstitution oper-
ator are called binder operators, and the same remark of Definition 3 applies.

We shall use A, B, Ai, . . . to denote de Bruijn pre-metaterms and the con-
vention that S0(1) = 1, S0(α̂) = α̂ and Sj+1(n) = S(Sj(n)). As usually done for
indices, we shall abbreviate Sj−1(1) as j.

Even if the formal mechanism used to translate pre-metaterms with names
into pre-metaterms with de Bruijn indices will be given in Section 4, let us intro-
duce intuitively some ideas in order to justify the syntax used for i-metavariables.
In the formalism SERS there is a clear distinction between free and bound o-
metavariables. This fact must also be reflected in the formalism SERSDB , where
bound o-metavariables are represented with indices and free o-metavariables
are represented with i-metavariables (this distinction between free and bound
variables is also used in some formalizations of λ-calculus [17]). However, free
variables in SERSDB appear always in a binding context, so that a de Bruijn val-
uation of such kind of variables has to reflect the adjustment needed to represent
the same variables but in a different context. This can be done by surrounding
the i-metavariable by as many operators S as necessary. As an example consider
the pre-metaterm ξα.(β̂). If we translate it to ξ(β̂), then a de Bruijn valuation
like κ = {β̂/1} binds the variable whereas this is completely impossible in the
name formalism thanks to the conditions imposed on a name valuation (c.f. con-
dition on variable assignments in Definition 10). Our solution is then to translate
the pre-metaterm ξα.(β̂) by ξ(S(β̂)) in such a way that there is no capture of
variables since κ(ξ(S(β̂))) is exactly ξ(2). The solution adopted here is in some
sense what is called pre-cooking in [9].

72 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

We use MVar(A) (resp. MVari(A) and MVart(A)) to denote the set of all
metavariables (resp. i- and t-metavariables) of the de Bruijn pre-metaterm A.

As in the SERS formalism, we also need here a notion of well-formed pre-
metaterm. The first motivation is to guarantee that labels of t-metavariables
are correct w.r.t the context in which they appear, the second one is to ensure
that indices like Si(1) (resp. Si(α̂)) correspond to bound (resp. free) variables.
Indeed, the pre-metaterms ξ(Xαβ), ξ(ξ(4)) and ξ(α̂) shall not make sense for us,
and hence shall not be considered well-formed.

Definition 17 (de Bruijn Metaterms). A pre-metaterm A ∈ PMT db is said
to be a metaterm iff the predicateWF (A) holds, whereWF (A) iffWF ε(A), and
WF l(A) is defined as follows:
– WF l(Sj(1)) iff j + 1 ≤ |l|
– WF l(Sj(α̂)) iff j = |l|
– WF l(Xk) iff l = k and l is a simple label
– WF l(f(A1 , . . . , An)) iff for all 1 ≤ i ≤ n we have WF l(Ai)
– WF l(ξ(A1, . . . , An)) iff there exists α /∈ l such that for all 1 ≤ i ≤ n we have
WFαl(Ai)

– WF l(A1[[A2]]) iff WF l(A2) and there exists α /∈ l such that WFαl(A1)

Therefore indices of the form Sj(1) may only occur in metaterms if they
represent bound variables and well-formed metaindices of the form Sj(α̂) always
represent a free variable. Note that when considering WF l(M) and WF l(A) it
is Definitions 4 and 17 which are referenced, respectively.

Example 4. Pre-metaterms ξ(Xα, λ(Yβα, S(1))), f(β̂, λ(Yα, S(α̂))), g(λ(ξ(h))) are
metaterms, while f(S(α̂), ξ(Xβ)), λ(ξ(Xαα)), f(β̂, λ(ξ(S(β̂)))) are not.

Definition 18 (de Bruijn Terms and de Bruijn Contexts). The set of de
Bruijn terms, denoted Tdb, and the set of de Bruijn contexts are defined by:

de Bruijn indices n ::= 1 | S(n)
de Bruijn terms a ::= n | f(a, . . . , a) | ξ(a, . . . , a)
de Bruijn contexts E ::= 2 | f(a, . . . , E, . . . , a) | ξ(a, . . . , E, . . . , a)

We use a, b, ai, bi, . . . for de Bruijn terms and E, F, . . . for de Bruijn contexts.
We may refer to the binder path number of a context, which is the number of
binders between the 2 and the root.

We use FV (a) to denote the set of free variables (indices) in a; the result of
substituting a term b for the index n ≥ 1 in a term a is denoted a{{n← b}}; the
updating functions are denoted Un

i (.) for i ≥ 0 and n ≥ 1. All these concepts
are defined as usual.

Definition 19 (Free de Bruijn Metavariables). Let A be a de Bruijn pre-
metaterm. The set of free metavariables of A, FMVar(A), is defined as:

FMVar(1) def= ∅
FMVar(S(I)) def= FMVar(I)
FMVar(α̂) def= {α̂}
FMVar(Xl)

def= {Xl}

FMVar(f(A1 , . . . , An)) def=
⋃n

i=1 FMVar(Ai)
FMVar(ξ(A1, . . . , An)) def=

⋃n
i=1 FMVar(Ai)

FMVar(A1[[A2]])
def= FMVar(A1)∪FMVar (A2)

A de Bruijn Notation for Higher-Order Rewriting 73

Note that this definition also applies to de Bruijn metaterms. The set of
names of free metavariables of A is the set of free metavariables of A where each
Xl is replaced simply by X. This notion will be used in Definition 20.

3.2 Reduction

We define rewrite rules, valuations, their validity, and reduction in SERSDB .

Definition 20 (de Bruijn Rewrite Rule). A de Bruijn rewrite rule is a pair
of de Bruijn metaterms (L, R) (also written L−→ R) such that

– the first symbol in L is a function symbol or a binder symbol
– the set of names of FMVar(R) is included in the set of names of FMVar(L)
– the metasubstitution operator does not occur in L

Definition 21 (de Bruijn Valuation). A de Bruijn valuation κ is a pair
of (partial) functions (κi, κt) where κi is a function from i-metavariables to
integers, and κt is a function from t-metavariables to de Bruijn terms. We denote
by Dom(κ) the set Dom(κi) ∪ Dom(κt). A valuation κ determines in a unique
way a function κ from the set of pre-metaterms A with FMVar(A) ⊆ Dom(κ)
to the set of terms as follows:

κ1 def= 1
κS(I) def= S(κI)
κα̂

def= κiα̂

κXl
def= κtXl

κf(A1 , . . . , An) def= f(κA1, . . . , κAn)

κξ(A1, . . . , An) def= ξ(κA1, . . . , κAn)

κ(A1[[A2]])
def= κ(A1){{1← κA2}}

Note that in the above definition the substitution operator .{{. ← .}} refers
to the usual substitution defined on terms with de Bruijn indices.

We now introduce the notion of value function which is used to give seman-
tics to metavariables with labels in the SERSDB formalism. The goal pursued by
the labels of metavariables is that of incorporating “context” information as a
defining part of a metavariable. As a consequence, we must verify that the terms
substituted for every occurrence of a fixed metavariable coincide “modulo” their
corresponding context. Dealing with such notion of “coherence” of substitutions
in a de Bruijn formalism is also present in other formalisms but in a more re-
stricted form. Thus for example, as mentioned before, a pre-cooking function
is used in [9] in order to avoid variable capture in the higher-order unification
procedure. In XRS [16] the notions of binding arity and pseudo-binding arity
are introduced in order to take into account the parameter path of the different
occurrences of t-metavariables appearing in a rewrite rule. Our notion of “co-
herence” is implemented with valid valuations (cf. Definition 23) and it turns
out to be more general than the solutions proposed in [9] and [16].

Definition 22 (Value Function). Let a ∈ Tdb and l be a label of binder indi-
cators. Then we define the value function Value(l, a) as Value0(l, a) where

74 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

Valuei(l, n) def=




n if n ≤ i
at(l, n− i) if 0 < n− i ≤ |l|
xn−i−|l| if n− i > |l|

Valuei(l, f(a1, . . . , an)) def= f(Value i(l, a1), . . .Valuei(l, an))

Valuei(l, ξ(a1, . . . , an)) def= ξ(Valuei+1(l, a1), . . . , Valuei+1(l, an))

It is worth noting that Valuei(l, n) may give three different kinds of re-
sults. This is just a technical trick to make easier later proofs. Indeed, we
have for example Value (αβ, ξ(f(3, 1))) ≡ ξ(f(β, 1)) ≡ Value (βα, ξ(f(2, 1))) and
Value (ε, f(ξ(1), λ(2)))≡ f(ξ(1), λ(x1)) 6≡ f(ξ(1), λ(α))≡Value (α, f(ξ(1), λ(2))).
Thus the function Value(l, a) interprets the de Bruijn term a in an l-context:
bound indices are left untouched, free indices referring to the l-context are re-
placed by the corresponding binder indicator and the remaining free indices are
replaced by their corresponding variable names.

In order to introduce the notion of valid de Bruijn valuations let us consider
the following rule:

ξα.(ξβ.(X))−→r ξβ.(ξα.(X))

Even if translation of rewrite rules into de Bruijn rewrite rules has not been
defined yet (Section 4), one may guess that a reasonable translation would be
the following rule (called rDB):

ξ(ξ(Xβα))−→rDB ξ(ξ(Xαβ))

which indicates that β (resp. α) is the first bound occurrence in the LHS (resp.
RHS) while α (resp. β) is the second bound occurrence in the LHS (resp. RHS).
Now, if X is instantiated by x, α by x and β by y in the SERS system, then we
have a r-reduction step ξx.(ξy.(x))−→ ξy.(ξx.(x)). However, to reflect this fact
in the corresponding SERSDB system we need to instantiate Xβα by 2 and Xαβ

by 1, thus obtaining a rDB-reduction step ξ(ξ(2))−→ ξ(ξ(1)). This clearly shows
that de Bruijn t-metavariables having the same name but different label cannot
be instantiated arbitrarily as they have to reflect the renaming of variables which
is indicated by their labels. This is exactly the role of the property of validity:

Definition 23 (Valid de Bruijn Valuation). A de Bruijn valuation κ is said
to be valid if for every pair of t-metavariables Xl and Xl′ in Dom(κ) we have
Value(l, κXl) ≡ Value(l′, κXl′). Likewise, we say that a de Bruijn valuation κ
is valid for a rewrite rule (L, R) if for every pair of t-metavariables Xl and Xl′

in (L, R) we have Value(l, κXl) ≡ Value(l′, κXl′).

It is interesting to note that there is no concept analogous to safeness (cf.
Definition 11) as used for named SERS due to the use of de Bruijn indices. Also,
the last condition in the definition of an admissible valuation (cf. Definition 13)
is subsumed by the above Definition 23 in the setting of SERSDB .

Example 5. Returning to the example just after Definition 22 we have that κ =
{Xβα/2, Xαβ/1} is valid since Value(βα, 2) ≡ α ≡ Value(αβ, 1).

A de Bruijn Notation for Higher-Order Rewriting 75

Another interesting example is the well-known η-contraction rule λx.@(X, x)-
−→ X if x 6∈ FV (X). It can be expressed in the SERS formalism as the rule
(ηn) λα.@(X, α)−→ X, and in the SERSDB formalism as the rule (ηdb) -
λ(@(Xα, 1))−→ Xε.

Remark that this kind of rule cannot be expressed in the XRS formalism [16]
since it does not verify the binding arity condition. Our formalism allows us to
write rules like ηdb because valid valuations will test for coherence of values.
Indeed, an admissible valuation for ηn is a valuation θ such that θX does not
contain a free occurrence of θ(α). This is exactly the condition used in any usual
formalization of the η-rule.

Definition 24 (Reduction on de Bruijn Terms). Let R be a set of de Bruijn
rules and a, b de Bruijn terms. We say that a R-reduces to b, written a−→R b,
iff there is a de Bruijn rule (L, R) ∈ R and a de Bruijn valuation κ valid for
(L, R) such that a ≡ E[κL] and b ≡ E[κR], where E is a de Bruijn context.

Thus, the term λ(app(λ(app(1, 3)), 1)) rewrites by the ηdb rule to λ(app(1, 2)),
using the (valid) valuation κ = {Xα/λ(app(1, 3), Xε/λ(app(1, 2))}.

4 Relating SERS and SERSDB

In this section we show how reduction in the SERS formalism may be simulated
in the SERSDB formalism and vice-versa.

Definition 25 (From Terms (and Contexts) to de Bruijn Terms (and
Contexts)). The translation of a term t, denoted T (t), is defined as Tε(t) where

Tk(x) def=
{
pos(x, k) if x ∈ k
O(x) + |k| if x /∈ k

Tk(f(t1 , . . . , tn)) def= f(Tk(t1), . . . , Tk(tn))

Tk(ξx.(t1, . . . , tn)) def= ξ(Txk(t1), . . . , Txk(tn))

The translation of a context, denoted T (C), adds the clause Tk(2) def= 2.

Definition 26 (From Pre-metaterms to de Bruijn Pre-metaterms). The
translation of a pre-metaterm M , denoted T (M), is defined as Tε(M) where:

Tk(α) def= pos(α, k), if α∈k

Tk(α̂) def= S|k|(α̂)
Tk(X) def= Xk

Tk(f(M1 , . . . , Mn)) def= f(Tk(M1), . . . , Tk(Mn))
Tk(ξα.(M1, . . . , Mn)) def= ξ(Tαk(M1),...,Tαk(Mn))

Tk(M1[α←M2])
def= Tαk(M1)[[Tk(M2)]]

Note that if M is a metaterm, then T (M) will be a de Bruijn metaterm
and only have t-metavariables with simple labels. Note also that, for some pre-
metaterms, such as ξα.(β), the translation T (.) is not defined.

Lemma 1 (T Preserves Well-Formedness). If M is a metaterm, then T (M)
is a de Bruijn metaterm.

76 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

Definition 27 (From SERS Rewrite Rules to SERSDB Rewrite Rules).
Let (G, D) be a rewrite rule in the SERS formalism. Then T (G, D) denotes the
translation of the rewrite rule, defined as (T (G), T (D)).

As an immediate consequence of Lemma 1 and Definition 27, if (G, D) is an
SERS rewrite rule, then T (G, D) is an SERSDB rewrite rule.

Example 6. Following Example 2, the specification of λx in the SERSDB formal-
ism is given below.

@(λ(Xα), Zε) −→ Σ(σ(Xα), Zε)
Σ(σ(@(Xα , Yα)), Zε) −→ @(Σ(σ(Xα), Zε), Σ(σ(Yα), Zε))
Σ(σ(λ(Xβα)), Zε) −→ λ(Σ(σ(Xαβ), Zβ))
Σ(σ(1), Zε) −→ Zε

Σ(σ(S(β̂)), Zε) −→ β̂

The rule Σ(σ(λ(Xβα)), Zε)−→ λ(Σ(σ(Xαβ), Zβ)) is interesting since it illus-
trates the use of binder commutation from Xβα to Xαβ and shows how some
index adjustment shall be necessary when going from Zε to Zβ .

Example 7. The translation of the λ∆-calculus (Example 3) yields the following
rewrite rules in the SERSDB formalism

@(λ(Xα), Zε) −→ Xα[[Zε]]
@(∆(Xα), Zε) −→ ∆(Xαβ[[λ(@(S(1), @(1, Zγβ)))]])
∆(@(1, Xα)) −→ Xε

∆(@(1, (∆(@(S(1), Xβα))))) −→ Xε

We remark that the translation of ∆1, ∆2 and ∆3 would not be possible in
XRS [16].

Proposition 1 (Simulating SERS Reduction via SERSDB Reduction).
Suppose s−→ t in the SERS formalism using the rewrite rule (G, D). Then we
have T (s)−→ T (t) in the SERSDB formalism using the rule T (G, D).

We now consider how reduction in SERSDB may be simulated in SERS .

Definition 28 (From de Bruijn Terms (Contexts) toTerms (Contexts)).
We define the translation of a ∈ Tdb , denoted U(a), as U

Names(FV (a))
ε (a) where,

for every finite set of variables S, and label of variables k, US
k (a) is defined by:

US
k (n) def=

{
at(k, n) if n ≤ |k|
xn−|k| if n > |k| and xn−|k| ∈ S

US
k (f(a1, . . . , an)) def= f(US

k (a1), . . . , US
k (an))

US
k (ξ(a1, . . . , an)) def= ξx.(US

xk(a1), . . . , US
xk(an)) for any x /∈ k ∪ S

The translation of a de Bruijn context E, denoted U(E), is defined as above
but adding the clause US

k (2) def= 2. We remark that we can always choose x /∈
k ∪ S since both k and S are finite.

A de Bruijn Notation for Higher-Order Rewriting 77

Note that U(.) is not a function in the sense that the choice of bound variables
is non-deterministic. However, if t and t′ belong both to U(a), then t ≡α t′. Thus,
U(.) can be seen as a function from de Bruijn terms to α-equivalence classes.
Definition 29 (From de Bruijn Pre-metaterms to Pre-metaterms). The
translation of a de Bruijn pre-metaterm A, denoted U(A), is defined as Uε(A),
where Ul(A) is defined as follows:

Ul(Si(1)) def= at(l, i + 1) if i + 1 ≤ |l|
Ul(S|l|(α̂)) def= α̂

Ul(Xl)
def= X

Ul(f(A1 , . . . , An)) def= f(Ul(A1), . . . , Ul(An))
Ul(ξ(A1, . . . , An)) def= ξα.(Uαl(A1), . . . , Uαl(An))

if 1 ≤ i ≤ n WFαl(Ai) for some α /∈ l

Ul(A1[[A2]])
def= Uαl(A1)[α← Ul(A2)]

if WFαl(A1) for some α /∈ l

As in Definition 28 we remark that the translation of a de Bruijn pre-
metaterm is not a function since it depends on the choice of the names for
o-metavariables. Indeed, two different pre-metaterms obtained by this transla-
tion will be v-equivalent. Also, for some de Bruijn pre-metaterms such as ξ(2), the
translation may not be defined. However, it is defined on de Bruijn metaterms.

Definition 30 (From SERSDB Rewrite Rules to SERS Rewrite Rules).
Let (L, R) be a de Bruijn rewrite rule then its translation, denoted U (L, R), is
the pair of metaterms (Uε(L), Uε(R)).

Note that if WF l(A) holds then Ul(A) is also a named metaterm, that is,
WF l(Ul(A)) also holds. Therefore, by Definition 9 the translation of a de Bruijn
rule is a rule in SERS . As mentioned above, if a de Bruijn pre-metaterm A is
not a de Bruijn metaterm then Ul(A) may not be defined.

Example 8. Consider the rule @(∆(Xα), Zε)−→ ∆(Xαβ[[λ(@(S(1), @(1, Zγβ)))]])
from Example 7. The translation in Definition 29 yields the rule @(∆α.(X), Z)-
−→ ∆β.(X[α← λγ.(@(β, @(γ, Z)))]) and the translation in Definition 29 on the
rule Σ(σ(S(β̂)), Zε)−→ β̂ yields Σ(σγ.(β̂), Z)−→ β̂ for some bound metavariable
γ.

Proposition 2 (Simulating SERSDB Reduction via SERS Reduction).
Suppose a−→ b in the SERSDB formalism using rewrite rule (L, R). Then we
have U(a)−→ U(b) in the SERS formalism using rule U(L, R).

As regards the relationship between the translations over pre-metaterms and
terms introduced above we may obtain two results stating, respectively, that
given a metaterm M then U(T (M)) is v-equivalent to M and that given a de
Bruijn metaterm A then T (U(A)) is identical to A. These results are used to
show that confluence is preserved when translating in both directions.
Theorem 1 (Preservation of Confluence).
1. If R is a confluent SERS then T (R) is a confluent SERSDB .
2. If R is a confluent SERSDB then U(R) is a confluent SERS .

78 Eduardo Bonelli, Delia Kesner, and Alejandro Ŕıos

5 Conclusions

We have proposed a formalism for higher-order rewriting with de Bruijn nota-
tion and we have shown that rewriting with names and rewriting with indices are
semantically equivalent. We have given formal translations from one formalism
into the other which can be viewed as an interface in programming languages
based on higher-order rewrite systems. This work fills the gap between classical
presentations of higher-order rewriting with names existing in the literature and
first-order presentations of higher-order rewriting such as [16]. Moreover, it ex-
plicitly suggests that XRS are not sufficient to express an arbitrary higher-order
rewrite system.

Further ongoing work uses the formalism presented here to propose a tool for
implementing higher-order rewrite systems via first-order ones. This tool would
incorporate not only de Bruijn notation but also explicit substitutions in a very
general form.

References

1. H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam, 1984. Revised
edition.

2. R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eind-
hoven University, 1997.

3. R. Bloo and K. Rose. Combinatory reduction systems with explicit substitution
that preserve strong normalisation. In RTA, LNCS 1103, pages 169-183. 1996.

4. E. Bonelli, D. Kesner, and A. Ŕıos. A de Bruijn notation for higher-order rewriting,
2000. Available as ftp://ftp.lri.fr/LRI/articles/kesner/dBhor.ps.gz.

5. P.-L. Curien. Categorical combinators, sequential algorithms and functional pro-
gramming. Progress in Theoretical Computer Science. Birkhaüser, 1993. Second
edition.

6. P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM, 43(2):362–397, march 1996.

7. N. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Indag.
Mat., 5(35):381–392, 1972.

8. G. Dowek. La part du calcul. Univesité de Paris VII, 1999. Thèse d’Habilitation à
diriger des recherches.

9. G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit sub-
stitutions. In LICS, 1995.

10. R. Hindley and J.P. Seldin. Introduction to Combinators and λ-calculus. London
Mathematical Society. 1980.

11. F. Kamareddine and A. Ŕıos. Bridging de bruijn indices and variable names in
explicit substitutions calculi. Logic Journal of the Interest Group of Pure and
Applied Logic (IGPL), 6(6):843–874, 1998.

12. Z. Khasidashvili. Expression reduction systems. In Proceedings of I. Vekua Institute
of Applied Mathematics, volume 36, Tbilisi, 1990.

ftp://ftp.lri.fr/LRI/articles/kesner/dBhor.ps.gz

A de Bruijn Notation for Higher-Order Rewriting 79

13. Z. Khasidashvili and V. van Oostrom. Context-sensitive Conditional Expres-
sion Reduction Systems. In ENTCS, Vol.2, Proceedings of the Joint COMPU-
GRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation (SEG-
RAGRA’95), Volterra, 1995.

14. J. W. Klop. Combinatory Reduction Systems, vol. 127 of Mathematical Centre
Tracts. CWI, Amsterdam, 1980. PhD Thesis.

15. T. Nipkow. Higher order critical pairs. In LICS, pages 342–349, 1991.
16. B. Pagano. Des Calculs de SusbtitutionExplicite et leur application à la compilation

des langages fonctionnels. PhD thesis, Université Paris VI, 1998.
17. R. Pollack. Closure under alpha-conversion. In TYPES, LNCS 806. 1993.
18. J. Rehof and M. H. Sørensen. The λ∆ calculus. In TACS, LNCS 789, pages

516–542. 1994.
19. K. Rose. Explicit cyclic substitutions. In CTRS, LNCS 656, pages 36–50, 1992.
20. V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence:

the higher-order case. In LFCS, LNCS 813, pages 379–392, 1994.
21. F. van Raamsdonk. Confluence and Normalization for higher-Order Rewriting.

PhD thesis, Amsterdam University, The Netherlands, 1996.
22. D. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1993.

	Introduction
	Simplified Expression Reduction Systems
	Metaterms and Terms
	Reduction

	Simplified Expression Reduction Systems with Indices
	De Bruijn Metaterms and Terms
	Reduction

	Relating ensuremath SERS and SERS_DB
	Conclusions

