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Abstract

Resource types are types that statically quantify some aspect of program execution. They
come in various guises; this paper focusses on a manifestation of resource types known as
non-idempotent intersection types. We use them to characterize weak normalisation for a
type-erased lambda calculus for the Calculus of Inductive Construction (λe), as introduced by
Gregoire and Leroy. The λe calculus consists of the lambda calculus together with constructors,
pattern matching and a fixed-point operator. The characterization is then used to prove the
completeness of a strong call-by-need strategy for λe. This strategy operates on open terms:

∗This is an extended report of the work communicated in PPDP 2018
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rather than having evaluation stop when it reaches an abstraction, as in weak call-by-need,
it computes strong normal forms by admitting reduction inside the body of abstractions and
substitutions. Moreover, argument evaluation is by-need: arguments are evaluated when
needed and at most once. Such a notion of reduction is of interest in areas such as partial
evaluation and proof-checkers such as Coq.

1 Introduction

This paper is about the lambda calculus, the programming language that lies at the core of all
Functional Programming Languages (FPL). FPLs evaluate programs until a value is obtained, if
such a value exists at all. Programs are modeled as closed lambda calculus terms; values are
a subset of programs that represent the possible results that one obtains by evaluation, typical
examples being numerals, booleans and abstractions. FPLs implement an evaluation strategy called
weak reduction since evaluation does not take place under an abstraction. When computing values
from programs, such strategies typically also implement some form of memoization or sharing in
order to avoid performing duplicate work. Moreover, this work is only performed if it is actually
needed for obtaining a value. One thus speaks of call-by-need strategies for weak reduction, a
notion that originates in the seminal work of Wadsworth [Wad71].

Often one is interested in reducing inside the bodies of abstractions. One simple example is
a technique known as partial evaluation (PE). In PE one has knowledge about some, but not all,
of the arguments to a function, the remaining ones being supplied at a later stage. In this case,
one can specialize the code of the function to those specific arguments. Here is a classic example.
Assume we have a function for computing mn, n ≥ 0:

pow := λn.λm.ifn = 0 then 1 else m ∗ pow (n− 1) m

If we know the value of n to be 2, then we can produce a more efficient version of pow 2 as follows:

pow 2→ λm.if 2 = 0 then 1 else m ∗ (pow (2− 1) m)

→ λm.m ∗ (pow (2− 1) m)

→ λm.m ∗ (if 1 = 0 then 1 else m ∗ (pow (1− 1) m))

→ λm.m ∗ (m ∗ (pow (1− 1) m))

→ λm.m ∗ (m ∗ (if 0 = 0 then 1 else m ∗ (pow (0− 1) m)))

→ λm.m ∗ (m ∗ 1)

→ λm.m ∗m

Notice that all the reduction steps depicted above, take place under the lambda abstraction λm.
Such a notion of reduction is called strong reduction. The values computed are normal forms which
we refer to as strong normal forms to distinguish them from the normal forms of weak reduction.

Another area of interest of strong reduction is in the implementation of proof assistants that
require checking for definitional equality. Proof assistants, such as Coq, that rely on definitional
equality of types typically include a typing rule called conversion:

Γ ` t : τ τ ≡ σ

Γ ` t : σ
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Checking that types τ and σ are definitionally equal, denoted by the judgement τ ≡ σ, involves
computing the strong normal form of these types. In turn, this involves computing the strong
normal form of the terms that occur in them. The reason that terms occur in types is that the
type theory on which such proof assistants are erected are dependent type theories. These terms
include constants for building values of inductive types and fixed-point operators for encoding
recursive functions over inductive types.

The Extended Lambda Calculus. The Extended Lambda Calculus [GL02] (referred in
op.cit. as the “type-erased lambda calculus”), denoted λe, extends the lambda calculus with
constants, pattern matching and fixed-points. Here is an example of a term in λe that computes
the length of a list encoded with constants nil and cons (see Sec. 2 for a detailed definition of λe):

fix (l. λxs. case xs of (nil⇒ zero) · (conshd tl⇒ succ (l tl)))

The Extended Lambda Calculus is a subset of Gallina, the specification language of Coq. Gregoire
and Leroy [GL02] study judicious mechanisms for implementing strong reduction in λe in order
to apply it to check type-conversion. They propose a notion of strong reduction for λe on open
terms (i.e. terms possibly containing free variables) called symbolic call-by-value. Symbolic CBV
iterates call-by-value, accumulating terms for which computation cannot progress. No notion of
sharing is addressed. Indeed, unnecessary computation may be performed. For example, consider
the following λe term, where id abbreviates the identity term λz.z:

case c (id id) of cx⇒ d (1)

This term is a case expression that has condition c (id id) and branch cx⇒ d, the pattern of the
branch being cx and the target d. Notice that the branch does not make use of x in the target.
However, Symbolic CBV will contract the redex id id since the argument of c must be a value
before selecting the matching branch.

Adding Sharing to Strong Reduction. This paper proposes a notion of strong reduction
for λe that only reduces redexes that are needed in order to obtain the (strong) normal form. e.g.
our strategy will not reduce the id id redex in (1). Arguments to functions will be suspended until
needed. Moreover, they will be reduced at most once. The latter requires us to extend λe with
an additional syntactic construct to hold such suspended arguments: explicit substitutions. The
resulting theory of sharing (λsh) replaces the usual β rule in the lambda calculus (λx.t) s→β t{x :=
s} with (λx.t) s →dB t[x\s]. The term t[x\s] is also often written let x = s in t. Notice that
rather than substitute all free occurrences of x in t with s, the latter suspends this substitution
process. Moreover, since explicit substitutions may now hide redexes, such as in (λx.x)[x\y] z, a
slightly more general formulation of dB is adopted, namely (λx.t)L s →dB t[x\s]L. The notation L

denotes a possibly empty list of explicit substitutions [AK10].
In order to make use of an argument suspended in an explicit substitution it has to have been

fully evaluated to a result. As mentioned above, results typically include numerals, booleans and
abstractions. In our setting, values shall either be abstractions or terms headed with constants
(cf. Sec. 2). An additional consideration is that values v may be “polluted” with explicit substitu-
tions L. We thus have the following rule to be able to use a suspended argument: C[[x]][x\vL]→lsv

C[v][x\v]L. Note how this rule makes use of a context C and the notation C[[x]] to mean that
there is a free occurrence of x. For example, (xx)[x\λy.y] →lsv ((λy.y)x)[x\λy.y] and also
(xx)[x\λy.y]→lsv (x (λy.y))[x\λy.y]. Of course, also ((λy.z)x)[x\λy.y]→lsv ((λy.z) (λy.y))[x\λy.y],
even though x is not needed since it will be discarded by (λy.z). Selecting only needed occurrences
of x to be replaced by results will be achieved by imposing a specific reduction strategy on →sh, as
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described below. Additional rules for dealing with case expressions and fixed-points are discussed
in Sec. 2.

Resource Types for the Lambda Calculus. The challenge in establishing that the strong
call-by-need theory is well-behaved is proving that every term in λe that has a normal form also
has a normal form in λe with sharing (λsh). That is, that the restricted notion of replacement of
results is general enough to capture all normalising derivations in λe.

t ∈WN(λe)⇒ t ∈WN(λsh)

The notation WN(λe) denotes the set of λe-terms that have a normal form via λe and similarly
for WN(λsh). Arguably this has been the main technical hurdle in prior works for weak reduction
such as [MOW98, AFM+95] which introduced ad hoc notions of development, redex tracking and
dags with boxes. It was recently noticed [Kes16] that by devising an appropriate non-idempotent
intersection type system T for λsh, one could achieve this as follows:

t ∈WN(λe)

Step 1︷︸︸︷⇒ t ∈ Typable(T )

Step 2︷︸︸︷⇒ t ∈WN(λsh) (2)

Non-idempotent intersection types [Gar94] track/count the uses of variables in terms and thus
restrict reduction properties of its typable terms e.g., they may be used to characterize weak,
head and strongly normalising terms [BKV17]. If one writes non-idempotent intersection types as
multisets of types, then x : [τ1, τ2] means that x has to be used twice with the indicated types.
Similarly, y : [[τ1, τ2] → τ3] means that y has to be used once and that the argument to y has to
be typed twice, once with type τ1 and once with τ2.

The argument behind Step 1 is roughly as follows. Given a term in normal form, for any
variable x, one “counts” each of its occurrences by giving it a type and then takes the multiset of
all those types as the type of x. Then one shows a Subject Expansion result: if the contractum via
a reduction step of a term is typable, then so is the term itself. For those variables that reduction
does not erase, their type in the contractum can be used to type the redex, those that are erased
are not typed at all in the redex (they occur in subterms that are typed with the empty multiset).

The argument behind Step 2 involves showing that reduction of redexes that are typed in T
decreases the size of the type derivation. Reduction of redexes that are not typed could lead to
non-termination [Kes16, BBBK17]. For example, xΩ, where Ω is (λx.x x) (λx.x x), is typable by
setting x to have type [] → α, for α a type variable; the empty multiset of type [] allowing the
typing of Ω to not be accounted for. However, the term is not normalising in λsh or any theory of
sharing that allows β to be simulated.

Resource Types for the Extended Lambda Calculus. We must adapt this counting
technique to the setting of case and fixed points. It turns out that the challenge lies in dealing
with case (however, see Rem. 2). Consider the term:

case c of (c⇒ d) · (d⇒ Ω)

It will evaluate to d and hence should be typable in T (cf. Step 1). Since Ω does not participate
at all in computing d, there is no need for T to account for it. Thus our proposed typing rules will
only type branches that are actually used to compute the normal form. This, however, beckons
the question of what happens with case expressions that block. In an expression such as:

case c of (d⇒ d) · (e⇒ e)
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all its subexpressions are part of the normal form and hence should be typed. Our proposed typing
rule shall ensure this, thus avoiding typing terms such as:

case c of (d⇒ d) · (e⇒ Ω)

where, although matching is blocked, have not strong normal form in λe or λsh. Since blocked case
expressions could be applied to arguments, further considerations are required. Consider the term:

(case c of d⇒ d) Ω

It does not have a normal form in λe or λsh and hence should not be typable (Step 2). To ensure
that, we need the type assigned to this term to provide access to the types of the arguments to
which it is applied, namely Ω, so that constraints on these types may be placed. In other words,
we need to devise T such that it gives case c of (d⇒ d) Ω a type that includes that of Ω. This
would enable us to state conditions that do not allow this term to be typed but do allow a term
such as (case c of d ⇒ d) e to be typed. This motivates our notions of error type and error log
(cf. Sec. 3).

The above examples were all closed terms. Open terms pose additional problems. Consider the
term:

case x of (c⇒ d) · (e⇒ Ω)

Although it does not have a normal form in λsh, it is typable with type d, if x : [c]. Notice,
moreover, that the empty multiset of types does not occur in the type of x (in fact, it meets all the
requirements of [Kes16, BBBK17]). The reason it is typable is that Ω is never accounted: since x
is known to have type [c], only the c ⇒ d branch is typed. Hence some restrictions on the types
of free variables in Step 2 must be put forward, clearly variables cannot be assigned any type. In
particular, it seems we should not allow contant types such as c to occur positively in the types
of free variables. Indeed, we will require that constant types do not occur positively in the typing
context and negatively in error logs and in the predicate (cf. notion of good typing judgements
in Sec. 4.1). Note that constants can occur negatively in the types of variables. This allows terms
such as x c to be typable.

One final consideration is that collecting all the requirements, both on empty multiset types
and type constants, should still allow weakly normalising terms in λe to be typable in T . We will
see that this will indeed be the case.

A Strong Call-by-Need Strategy. As mentioned, reduction in the theory of sharing may
involve reducing redexes that are not needed. By restricting reduction in →sh to a subset of the
contexts where reduction can take place, we can ensure that only needed redexes are reduced. We
next illustrate, through an example, our call-by-need strategy. The strategy will be denoted �sh,
“sh” for sharing. Consider the term:

(case (λy.x y)(id id) of c⇒ d) (id c)

It consists of a case expression applied to an argument. This case expression has a condition
(λy.x y)(id id), a branch c ⇒ d with pattern c and target d, and is applied to an argument id c.
The first reduction step for this term is the same as for weak call-by-need, namely reducing the
β-redex (λy.x y)(id id) in the condition of the case. It must be reduced in order to determine which
branch, if any, is to be selected. This β-redex is turned into (x y)[y\id id]. The resulting term is:

(case (x y)[y\id id] of c⇒ d)(id c)
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A weak call-by-need strategy would stop there, since the case expression is stuck. In the strong
case, however, reduction should continue to complete the evaluation of the term until a strong
normal form is reached. Both the body of the explicit substitution id id and also the argument of
the stuck case expression id c are needed to produce the strong normal form. Thus evaluation must
continue with these redexes. That these redexes are indeed selected and, moreover, which one is
selected first, depends on an appropriate notion of evaluation context. Our strategy will include
an evaluation context C of the form (case (x y)[y\�] of c ⇒ d)(id c) and hence the body of the
explicit substitution will be reduced next. Notice that in order for the focus of computation to be
placed in the body of an explicit substitution, its target y should be needed. In this particular
case, it is because x is free but y is needed for computing the strong normal form. However, in a
term such λx.c[y\id id], the β-redex id id is not needed for the strong normal form and hence will
not be selected by the strategy.

The remaining computation steps leading to the strong normal form are depicted below.

(case (λy.x y)(id id) of c⇒ d)(id c)
�sh (case (x y)[y\id id] of c⇒ d)(id c)
�sh (case (x y)[y\z[z\id]] of c⇒ d)(id c)
�sh (case (x y)[y\id[z\id]] of c⇒ d)(id c)
�sh (case (x id)[y\id][z\id] of c⇒ d)(id c) (∗)
�sh (case (x id)[y\id][z\id] of c⇒ d)(z[z\c])
�sh (case (x id)[y\id][z\id] of c⇒ d)(c[z\c])

Note that in the fourth step (indicated with an asterisk), y has been replaced by id. As in weak
call-by-need, only answers shall be substituted for variables. Answers are abstractions under a
possibly empty list of explicit substitutions or data structures possibly interspersed with explicit
substitutions. Finally, crucial to defining the strong call-by-need strategy will be identifying vari-
ables and case expressions that will persist. The former are referred to as frozen variables and are
free variables (or those that are bound under abstractions and branches of case expressions) that we
know will never be substituted by an answer. The latter are referred to as error terms and are case
expressions that we know will be stuck forever. An example of the former is x y in (x y)[y\id id]; an
example of the latter is case (x id)[y\id][z\id] of c⇒ d in (case (x id)[y\id][z\id] of c⇒ d)(id c).

Contribution. The main contributions of this paper are:

• A non-idempotent intersection type system for λe satisfying (2).

• A strong call-by-need strategy for λe.

• A proof of completeness of the strategy.

Discussion. Although comparison with related work is developed in Sec. 7, we would like to
comment on [BBBK17], the most closely related work (co-authored by two of the present authors).
The work in [BBBK17] proposes a strong call-by-need strategy for the lambda calculus without
matching and fixed point. It should perhaps be mentioned that standard encodings of inductive
types in the untyped lambda calculus such as the Church or Scott encodings do not address the
above mentioned problems. The culprit is the absence of a high-level construct such as “case”
which makes the notion of “blocked case” not obvious in terms of the underlying encoding. Eg.
consider the standard Church encoding of a constant ci of arity a(i):

λx1 . . . xa(i).λc1 . . . cn.ci (x1 ~c) . . . (xn ~c)
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How would the blocked case expression case c of (d⇒ d) be encoded? Resorting to the iterators
of Church encodings, we would have: (λcd.c) ? (λcd.d), where the question mark is the missing
branch. Consider also case x of (c ⇒ d; d ⇒ Ω) with x : [c]. This would be encoded as
x (λcd.d) (λcd.Ω). The non-idempotent intersection type system of [BBBK17] does not account for
Ω.

Structure of the paper. We revisit the Extended Lambda Calculus λe in Sec. 2 and also
introduce the theory of sharing for it λsh in the same section. Sec. 3 introduces the type system
T . Sec. 4 addresses Step 1 and 2 as described above. We present the strong call-by-need strategy
in Sec. 5 and address the final completeness result (standardization theorem) in Sec. 6. Finally,
we comment on related work and conclude, suggesting further avenues to pursue.

2 A Theory of Sharing for the Extended Lambda Calculus

We assume given a denumerable set of variables x, y, z, . . . and constants c, c′, c′′, . . ..

Definition 1. The terms of the Extended Lambda Calculus Λe are defined as follows:

Terms t, s, u, . . . ::= x |λx.t | t s | c | case t of b̄ | fix(x.t)
Branch b ::= cx̄⇒ t
Contexts C ::= � |λx.C | C t | t C | fix(x.C) | case C of b̄

| case t of (c1x̄1 ⇒ s1) . . .
. . . (cix̄i ⇒ C) . . . (cnx̄n ⇒ sn)

In addition to the standard terms of the lambda calculus, variables, abstraction and appli-
cation, we have constants, case expressions and fixed-point expressions. In case t of b̄
we say t is the condition of the case and b̄ are its branches; b̄ is shorthand for a (possibly
empty) sequence of branches. If I = {1, 2, . . . , n}, we sometimes write case t of (cix̄i ⇒ si)i∈I
for case expressions. Branches are assumed to be syntactically restricted so that if i 6= j then
(ci, |x̄i|) 6= (cj , |x̄j |), where |x̄j | denotes the length of the sequence x̄j . Moreover, the list x̄i of
formal parameters in each branch is assumed to have no repeats. We write fix(x.t) for the stan-
dard fixed-point expression. We often write λx̄.t for λx1. . . . λxn.t if x̄ is the sequence of variables
x1 · . . . · xn and similarly ts̄ stands for ts1 . . . sn if s̄ = s1 · . . . · sn. Free and bound variables
are defined as expected. In particular, x is bound by a fixed point operator fix(x.t), and all the
variables x1, . . . , xn are bound in a branch cx1 . . . xn ⇒ t. Terms are considered up to renaming
of bound variables. A context is a term C with a single free occurrence of a hole �, and the
variable-capturing substitution of the hole � by a term t is written C[t]; C[[t]] has the additional
requirement that no free variables in t are bound in C.

Remark 2. In [GL02] a family of fixed-point operators fixn, for n a positive integer, is used. The
index n indicates the expected number of arguments and also the index of the argument that is used
to guard recursion to avoid infinite unfoldings. The type system of the Calculus of Constructions
guarantees that the recursive function is applied to strict subterms of the n-th argument. Although
we use the more general fixed-point operator fix in our calculus similar ideas to “case” can be
applied to fixn which “blocks” if given less than n arguments.

Definition 3. The Extended Lambda Calculus λe is given by the following reduction rules
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over Λe, closed by arbitrary contexts. We write →e for the resulting reduction relation.

(λx.t)s 7→dB t{x := s} (β)
fix(x.t) 7→fix t{x := fix(x.t)} (fix)

case cj t̄ of (cix̄i ⇒ si)i∈I 7→case sj{x̄j := t̄} (case)
if j ∈ I and |t̄| = |x̄j |

Capture-avoiding substitution of a variable x by a term s in a term t is written t{x := s}.
Similarly, the simultaneous capture-avoiding substitution of a list of variables x̄ by a list of terms
s̄ of the same length in a term t is written t{x̄ := s̄}. A term t matches with a branch cx̄ ⇒ s
if t = cs̄ with |s̄| = |x̄|. A term t matches with a list of branches if it matches with at least one
branch. Given our syntactic formation condition on case-expressions, in λe terms in fact match
with at most one branch. Note that term reduction may become blocked if the condition of a case
does not match any branch (and never will). The normal forms of λe may be characterized as
follows:

Lemma 4 (Normal forms). The normal forms of λe are characterized by the grammar:

N ::= λx̄.xN̄ |λx̄.cN̄ |λx̄.(case N0 of (cix̄i ⇒ Ni)i∈I)N̄

where N0 does not match with (cix̄i ⇒ Ni)i∈I . Note that the lists x̄ and N̄ may be empty.

Proof. By structural induction on the set of terms.

• x. The first case applies where x̄ is empty and so is N̄ .

• λx.t. Then t must be in normal form too, the i.h. applies and we conclude from that.

• t s. Then both t and s are in normal form and we resort to the i.h. on each to obtain t = N1

and s = N2. Moreover, t is not an abstraction so it must be one of the following:

– xN̄ . Then t s = xN̄ N2 and we conclude.

– cN̄ . Then t s = cN̄ N2 and we conclude.

– (case N0 of (cix̄i ⇒ Ni)i∈I)N̄ , where N0 does not match with (cix̄i ⇒ Ni)i∈I . Then
t s = (case N0 of (cix̄i ⇒ Ni)i∈I)N̄ N2 and we conclude.

• fix(x.t). This case is not possible since the term is not in normal form.

• c. The second case applies where x̄ is empty and so is N̄ .

• case t of (cix̄i ⇒ si)i∈I with t and (si)i∈I , all in normal form. We apply the i.h. to
these terms and deduce t = N0 and (si)i∈I = (Ni)i∈I . Note that N0 does not match the
branches (cix̄i ⇒ Ni)i∈I for otherwise the original term would not have been in normal form.
Therefore, we conclude.

Remark 5. From Lem. 4 every normal form is in one of the forms: λx.N , xN̄ , cN̄ or (case N0 of (cix̄i ⇒
Ni)i∈I)N̄ , where N0 does not match with (cix̄i ⇒ Ni)i∈I .
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Remark 6. Since we work in an untyped setting blocked terms such as case c of d⇒ e must be
admitted. In the Calculus of Inductive Constructions, case analysis must be exhaustive.

We conclude this section with some standard terminology on rewrite systems. Given a notion of
reduction R over a set of terms, we use the following rewriting concepts. A term t is in R-normal
form (R-nf) if there is no s such that t →R s. We write nR for any term in R-normal form.
We write �R for the reflexive and transitive closure of any reduction relation →R. A term t is
weakly R-normalising, if there exists s in R-normal form s.t. t �R s. NF(→R) denotes the
set of R-normal forms and WN(→R) the set of weakly R-normalising terms. We write ↔∗R for the
reflexive, symmetric, transitive closure of →R. We say that t is definable as s in →R, if t↔∗R s
for s ∈ NF(R). Also, t is definable in →R if it is definable as s, for some s, in →R. We use “:=”
for definitional equality.

Remark 7. t is definable in λe iff t ∈ WN(→e). This follows from confluence of →e.

2.1 A Theory of Sharing

Definition 8. The terms of the theory of sharing terms Λsh are defined as follows:

t, s, u, . . . ::= x |λx.t | t s | fix(x.t) | c | case t of b̄ | t[x\s]

A term t[x\s] is called a closure, and [x\s] is called an explicit substitution. Terms without
explicit substitutions are called pure terms. Closures are often written as let x be s in t in
the literature (e.g. [AFM+95]). The notions of free and bound variables of extended terms are
defined as usual, in particular, fv(t[x\s]) = (fv(t)\{x})∪ fv(s) and bv(t[x\s]) = bv(t)∪{x}∪bv(s).

Definition 9. A pure term t� is obtained from any t ∈ Λsh by unsharing:

x� := x
c� := c

(λx.t)� := λx.t�

(t s)� := t� s�

fix(x.t)� := fix(x.t�)
(case t of b̄)� := case t� of b̄�

(t[x\s])� := t�{x := s�}
(cx̄⇒ t)� := cx̄⇒ t�

e.g. ((case z of c ⇒ z)[z\d d])� = case d d of c ⇒ d d. Additional syntactic categories will
be required for describing reduction in λsh. First of all, in call-by-need computation one cannot
substitute arbitrary terms for variables, rather one substitutes values for variables. In our theory
of sharing apart from abstractions as values we also have terms headed by constants as values.
Also, values may be embraced by pending explicit substitutions. This leads to the definition of
answers.

Answers a ::= L[v]
Values v ::= λx.t | A[c]
Constant Context A ::= � | L[A] t
Substitution Context L ::= � | L[x\t]

A term of the form L[v] is sometimes written vL and called an answer. An answer of the form
(λx.t)L is an abstraction answer and one of the form A[c]L is a constant answer. An example
of the latter is ((cx)[x\y] d)[y\s].

Second, reduction in λsh will take place under arbitrary contexts. We define such a set of full
contexts next:

9



Full Context C ::= � |λx.C | C t | t C | fix(x.C)
| case C of b̄
| case t of (c1x̄1 ⇒ s1) . . .

. . . (cix̄i ⇒ C) . . . (cnx̄n ⇒ sn)
| C[x\s] | t[x\C]

Definition 10. The theory of sharing λsh consists of the reduction rules over Λsh given below,
closed by full contexts. We write →sh for the reduction relation.

(λx.t)L s 7→dB t[x\s]L
C[[x]][x\vL] 7→lsv C[v][x\v]L

t[x\s] 7→gc t, if x 6∈ fv(t)
fix(x.t) 7→fix t[x\fix(x.t)]

case A[cj ]L of (cix̄i ⇒ si)i∈I 7→case sj [x̄j\A]L
if |A| = |x̄j | and j ∈ I

The dB rule transforms an application of an abstraction (possibly under multiple explicit sub-
stitutions) to an argument, into the body of the abstraction t subject to a new explicit substitution
[x\s]. The lsv rule substitutes a free occurrence of x with the value v. Since variables in v might
be bound in L and we do not wish to duplicate L, the scope of the substitution context is ad-
justed. This rule is said to operate at a distance since the explicit substitution is not required to
propagate to variables before it is executed [AK10]. It is closely related with the notion of linear
head reduction [AC17]. Rule gc removes garbage substitutions. Rule fix is standard. Rule case

tests whether the condition of the case “matches” one of its branches. Note that the condition
A[cj ]L may have explicit substitutions interspersed. The length of a constant context is defined
as follows: |�| := 0 and |L[A] t| := 1 + |A|. Given a list of variables x̄ and a constant context A

s.t. their lengths coincide, we define the substitution context [x̄\A] as follows: [ε\�] := � and
[x̄, y\L[A] t] := [x̄\A]L[y\t]. The reduct of 7→case uses this notion to build an appropriate list of
explicit substitutions for each parameter of the branch.

Remark 11. t definable in λsh iff t ∈ WN(→sh). This follows from confluence of →sh.

A characterization of the →sh-normal forms is given in Fig. 1. The normal form judgement
t ∈ N is defined simultaneously with four other judgements, namely constant normal forms
t ∈ K, structure normal forms t ∈ S, error normal forms t ∈ E, and abstraction normal
forms t ∈ L. We comment on some salient rules. First note that rule eNfStrt captures a blocked
case where its condition is not a blocked case itself. If the condition of the case is t ∈ L ∪ S, then
we know that it cannot possibly match any branch. If t ∈ K, we must make sure of this, as
explained next. We say a term t enables a branch in a list of branches (cix̄i ⇒ si)i∈I , written
t � (cix̄i ⇒ si)i∈I , if t = A[cj ]L, for some A, L, and j ∈ I and |A| = |x̄j |. This is the natural
extension of the notion of t matching a branch in λe but where t may be “polluted” with explicit
substitutions. Note that if t � (cix̄i ⇒ si)i∈I , then either, 1) t 6= A[c]L for any A, c, L; or 2)
t = A[c]L with c /∈ {ci}i∈I ; or 3) t = A[c]L and c = cj for some j ∈ I but |A| 6= |x̄j |. Rule nfSub
is actually a rule scheme in which X can be any of S, L, E, or K. Condition x ∈ fv(t) is required
since we would otherwise have a gc-redex. Condition s ∈ S ∪ E is required too since we would
otherwise have a lsv redex.

Further insight into the fine structure of the terms in each of these judgements is given by
Lem. 13. A description of this fine structure requires identifying so called weak structures and

10



Figure 1 The set of →sh-normal forms (X ∈ {S,L, E,K})

cNfCons
c ∈ K

t ∈ K s ∈ N
cNfApp

t s ∈ K

sNfVar
x ∈ S

t ∈ S s ∈ N
sNfApp

t s ∈ S

t ∈ K ∪ L ∪ S t � (cix̄i ⇒ si)i∈I (si ∈ N)i∈I
eNfStrt

case t of (cix̄i ⇒ si)i∈I ∈ E

t ∈ E s ∈ N
eNfApp

t s ∈ E

t ∈ E (si ∈ N)i∈I
eNfCase

case t of (cix̄i ⇒ si)i∈I ∈ E

t ∈ N
lNfLam

λx.t ∈ L

t ∈ X s ∈ S ∪ E x ∈ fv(t)
nfSub

t[x\s] ∈ X

t ∈ K
nfCons

t ∈ N

t ∈ S
nfStruct

t ∈ N

t ∈ E
nfError

t ∈ N

t ∈ L
nfLam

t ∈ N

weak error terms. A term of the form E[x] is called a weak structure and a term of the form
F[case s of b̄], with s an answer or weak structure and s � b̄, is called a weak error term, where
contexts E and F are defined as follows:

Weak Context E ::= � | E t | E[[x]][x\E] | E[x\t]
Weak Error Context F ::= � | F t | E[[x]][x\F] | F[x\t] | case F of b̄

Lemma 12 (Weak structures and weak error terms are not answers). E[x] is not an answer, for
any variable x. Neither is F[case s of b̄], for any answer or weak structure s and branches b̄ s.t.
s � b̄.

Proof. We first prove that E[x] is not an answer, by induction on the size of E. If E = �, the result
is immediate. We consider the inductive cases:

• E = E1 t. From the i.h. we know that E1[x] is not an answer and, in particular, not a constant
answer. Hence neither is E[x].

• E = E1[[y]][y\E2]. From the i.h. on E1 we know that E1[[y]] is not an answer. Hence neither is
E[x].

• E = E1[y\t]. From the i.h. on E1 we know that E1[x] is not an answer. Hence neither is E[x].

The proof that F[case s of b̄], is not an answer is by induction on F and uses the previous item.

Lemma 13 (Characterization of Sharing Normal Forms). 1. t ∈ K iff t = A[c]L and t ∈ NF(→sh

).
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2. t ∈ S iff t = E[x] and t ∈ NF(→sh).

3. t ∈ E iff t = F[case s of b̄], s is an answer or a weak structure, s � b̄ and t ∈ NF(→sh).

4. t ∈ L iff t = (λx.s)L and t ∈ NF(→sh).

5. t ∈ N iff t ∈ NF(→sh).

Proof. For the “only if” direction we proceed by simultaneous induction on the derivations of
t ∈ K, t ∈ S, t ∈ E, t ∈ L and t ∈ N.

• cNfCons. Immediate.

• cNfApp. The derivation ends in:

u ∈ K s ∈ N
cNfApp

u s ∈ K

The i.h. w.r.t. u ∈ K gives us A′, L′ and c′ s.t. u = A′[c′]L′ and u ∈ NF(→sh). We set
A = A′L′ s and L = ε. The i.h. w.r.t. s ∈ N implies s ∈ NF(→sh). Since u is not an
abstraction answer, u s is in →sh-normal form.

• sNfVar. Immediate.

• sNfApp. The derivation ends in:

u ∈ S s ∈ N
sNfApp

u s ∈ S

The i.h. on s ∈ N yields s ∈ NF(→sh). The i.h. on u ∈ S yields u ∈ NF(→sh) and the
existence of E′ s.t. u = E′[x]. We set E = E′ s. Since E′[x] is not an abstraction answer,
E′[x] s ∈ NF(→sh).

• eNfStrt. The derivation ends in:

s ∈ K ∪ L ∪ S t � (cix̄i ⇒ si)i∈I (ui ∈ N)i∈I
eNfStrt

case s of (cix̄i ⇒ ui)i∈I ∈ E

The i.h. on s ∈ K ∪ L ∪ S, s ∈ NF(→sh). The i.h. on each (ui)i∈I yields ui ∈ NF(→sh), for
each i ∈ I. That t ∈ NF(→sh) follows from the hypothesis t � (cix̄i ⇒ si)i∈I . We set F := �
and conclude.

• eNfApp. The derivation ends in:

s ∈ E u ∈ N
eNfApp

s u ∈ E
The i.h. on s ∈ E yields s ∈ NF(→sh) and s = F1[case r of b̄′] and r ∈ L ∪K ∪S and r � b̄′.
The i.h. on u ∈ N yields u ∈ NF(→sh). We set F = F1 u and conclude from that t ∈ NF(→sh)
from Lem. 12.
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• eNfCase. The derivation ends in:

s ∈ E (ui ∈ N)i∈I
eNfCase

case s of (cix̄i ⇒ ui)i∈I ∈ E

The i.h. on s ∈ E yields s ∈ NF(→sh) and s = F1[case r of b̄′] and r ∈ L ∪K ∪S and r � b̄′.
The i.h. on ui ∈ N, for each i ∈ I, yields ui ∈ NF(→sh). We set F = case F1 of (cix̄i ⇒ ui)i∈I
and conclude that t ∈ NF(→sh) from Lem. 12.

• lNfLam. The derivation ends in:

s ∈ N
lNfLam

λx.s ∈ L

By the i.h., s ∈ NF(→sh). We set L = ε and conclude.

• nfSub. The derivation ends in:

u ∈ X s ∈ S ∪ E x ∈ fv(u)
nfSub

u[x\s] ∈ X

The i.h. on s ∈ S ∪ E, we know either s = E[x] or s = E[case s′ of b̄] and s′ ∈ L ∪ K and
s′ � b̄ and s ∈ NF(→sh). In any case, by Lem. 12, s is not an answer. Hence u[x\s] is not an
lsv-redex. We next consider three cases depending on the value of X.

– X = K. By the i.h. on u ∈ K, u = A′[c]L′ and u ∈ NF(→sh). We set A = A′ and
L = L′[x\s].

– X = S. By the i.h. on u ∈ S, u = E′[x] and u ∈ NF(→sh). We set E = E′[x\s] and
conclude.

– X = E. By the i.h. on u ∈ E, u = F′[case r of b̄] and r ∈ L ∪ K ∪ S and r � b̄ and
u ∈ NF(→sh). We set F = F′[x\s] and conclude.

– X = L. By the i.h. on u ∈ L, u = (λy.r)L′ and u ∈ NF(→sh). We set L = L′[x\s] and
conclude.

• nfCons, nfStruct, nfError, and nfLam. Immediate from the i.h.

For the “if” direction we proceed by induction on t. Suppose t ∈ NF(→sh).

• t = x. We set E := �. E[x] = x ∈ S is immediate from sNfVar. Hence also x ∈ N, from
nfStruct. Thus we prove items 2 and 5.

• t = λx.s. We know that s ∈ NF(→sh). By the i.h. s ∈ N. Item 3 follows from lNfLam;
item 5 further follows from nfLam.

• t = t1 t2. We know t1 ∈ NF(→sh) and t2 ∈ NF(→sh). By the i.h. w.r.t. the fifth item, t1 ∈ N
and t2 ∈ N. We now consider three cases:

– Suppose t1 t2 = A[c]L for some A, c and L. Then L = ε and A = A′L′ t2 with A′[c]L′ = t1.
The i.h. w.r.t. the first item indicates that t1 ∈ K. We conclude that t1 t2 ∈ K by using
cNfApp.
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– Suppose t1t2 = E[x]. Then E = E′ t2 and t1 = E′[x]. From the i.h. w.r.t. the second
item we obtain t1 ∈ S and conclude that t1 t2 ∈ S from t2 ∈ N and sNfApp.

– Suppose t1 t2 = F[case s of b̄] and s ∈ L ∪ K ∪ S and s � b̄, we proceed similarly,
noting that the target of every branch in b̄ must be in N given that these branches are
in NF(→sh) and that we can resort to the i.h. w.r.t. the fifth item.

– The case t1 t2 = (λx.s)L does not hold and hence item 3 holds trivially.

• t = fix(x.s). This case is not possible since t ∈ NF(→sh).

• t = c. We set A := � and conclude from cNfCons. This concludes item 1; item 5 then
follows from nfCons.

• t = case s of b̄. Since t ∈ NF(→sh), s � b̄. Moreover, by i.h. w.r.t. item 5, s ∈ N and each
ri ∈ N. From the former, s ∈ L ∪ S ∪ E ∪ K. If s ∈ E, then we conclude using eNfCase, if
s ∈ L ∪ S ∪ K, then we conclude from eNfStrt.

• t = t1[x\t2]. Since t ∈ NF(→sh), it must be the case that x ∈ fv(t1) and t2 is not an answer.
Moreover, from t1, t2 ∈ NF(→sh) and the i.h. w.r.t. the fifth item, t1, t2 ∈ N and hence
t1, t2 ∈ L ∪ S ∪ K ∪ E. Since t2 is not an answer, t2 ∈ S ∪ E. We conclude from nfSub.

We conclude with a simple result that relates reduction in →sh with that in →e.

Lemma 14. Let t, s ∈ Λsh.

1. If t→sh s, then t� �e s
�.

2. t ∈ NF(→sh) implies t� ∈ NF(→e).

3 Intersection Types for the Theory of Sharing

This section introduces T , a non-idempotent intersection type system for λsh. We assume α, β, γ, . . .
to range over a set of type variables. The set of types is ranged over by τ, σ, ρ, . . ., and fi-
nite multisets of types are ranged over by M,N ,P, . . .. The empty multiset is written [],
and [τ1, . . . , τn] stands for the multiset containing each of the types τi with their correspond-
ing multiplicities. Moreover, M + N stands for the (additive) union of multisets. For instance
[a,b] + [b, c] = [a,b,b, c].

Definition 15. The types of T are defined as follows:

Types τ ::= α |M → τ |D |E
Datatypes D ::= c |DM
PreError type G ::= e τ B̄ |Gτ
Error types E ::= 〈G〉 |E τ
Branch type B ::= M̄ ⇒ τ

14



Figure 2 Typing rules for T
tVar

x : [τ ]; Σ ` x : τ
tCons

∅; Σ ` c : c

Γ⊕ x ::M; Σ ` t : τ
tAbs

Γ; Σ ` λx.t :M→ τ

Γ; Σ ` t : τ τ @M⇒ σ ∆; Σ ` s :M
tApp

Γ + ∆; Σ ` ts : σ

Γ⊕ x ::M; Σ ` t : τ ∆; Σ ` fix(x.t) :M
tFix

Γ + ∆; Σ ` fix(x.t) : τ

Γ; Σ ` t : τ τ 〈b̄〉 ∆; Σ, σ
tCase

Γ + ∆; Σ ` case t of b̄ : σ

Γ⊕ x ::M; Σ ` t : τ ∆; Σ ` s :M
tES

Γ + ∆; Σ ` t[x\s] : τ

(Γi; Σ ` t : τi)1≤i≤n (n ≥ 0)
tMulti

n∑
i=1

Γi; Σ ` t :

n∑
i=1

[τi]

tAppFun
M→ τ @M⇒ τ

tAppData
D @M⇒ DM

τ̄ = τ1 . . . τn
tAppErr

〈G〉 τ̄ @ [τ1]⇒ 〈Gτ1〉 τ2 . . . τn

cjM̄ matches (cix̄i ⇒ si)i∈I Γ⊕ x̄j :: M̄; Σ ` sj : σj
tCMatch

cjM̄ 〈(cix̄i ⇒ si)i∈I〉 Γ; Σ, σj

τ does not match (cix̄i ⇒ si)i∈I
(
Γi ⊕ x̄i :: M̄i; Σ ` si : σi

)
i∈I tCMismatch

τ 〈(cix̄i ⇒ si)i∈I〉 (
∑
i∈I

Γi); Σ ∪ {〈e τ (M̄i ⇒ σi)i∈I〉 ρ̄}, 〈e τ (M̄i ⇒ σi)i∈I〉 ρ̄

The type α is a type variable,M→ τ is a function type, D is a datatype and E is an error type.
A datatype is either a constant type c or an applied datatype DM. Informally, cM1 . . .Mn is
the type of a constant applied to n arguments, each of which has been assigned a multiset of types.
PreError types are solely introduced for building error types; error types are used for typing case
expressions which will eventually become stuck. A case is stuck if, intuitively, it can be decided
that the condition cannot match any branch. An error type 〈e τ (M̄i ⇒ σi)i∈Iρ1 . . . ρj〉 ρj+1 . . . ρk
is the type of a case expression:

1. whose condition has type τ and branches type M̄i ⇒ σi;

2. which is stuck;

3. which has been applied to arguments of type ρ1 . . . ρj ; and

4. which is expecting arguments of type ρj+1 . . . ρk.

We call e an error type constructor.
Letters Γ,∆,Θ, . . . range over typing contexts, which are functions mapping variables to

multisets of types. Γ(x) is the multiset associated to the variable x. dom Γ is the domain of Γ,
namely the set of x s.t. Γ(x) 6= [].

Letters Σ,Υ, . . . range over error logs, sets of error types. The sum of typing contexts Γ + ∆
is defined as follows: dom(Γ + ∆) := dom Γ ∪ dom ∆ and (Γ + ∆)(x) := Γ(x) + ∆(x). The
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disjoint sum of typing contexts Γ ⊕ ∆ is defined as Γ + ∆ provided dom Γ ∩ dom ∆ = ∅. We
write Γ, x : M for Γ + {x : M} and Γ, x :: M for Γ ⊕ {x : M}. Also, we write x̄ : M̄ for
((xi)i∈I : (Mi)i∈I) :=

∑
i∈I(xi :Mi) and similarly for x̄ :: M̄.

Definition 16. The typing system T is defined by means of the typing rules of Fig. 2. These rules
introduce four, mutually recursive, typing judgements:

1. Typing (Γ; Σ ` t : τ)
Term t has type τ under context Γ and error log Σ.

2. Multi-typing (Γ; Σ ` t :M)
Term t has the types in M under context Γ and error log Σ.

3. Application (τ @M⇒ σ)
A term of type τ may be applied to an argument that has all the types in M, resulting in a
term of type σ.

4. Matching (τ 〈b̄〉 Γ; Σ, σ)
Type τ might be the condition of a case with branches b̄, which will result in a term of type
σ, provided certain hypotheses Γ and error logs Σ, or else fail.

We write π, ξ, . . . for typing derivations and π(Γ; Σ ` t : τ) if π is a typing derivation of the
judgement Γ; Σ ` t : τ . We comment on the salient typing rules. The axioms are linear w.r.t.
the typing context in that they require the typing context to be empty but for the type assigned
to x in tVar and the typing context to be empty in tCons. The error context, however, is said
to be intuitionistic in that it may hold any number of error types. Rule tApp caters for typing
applications of terms of functional type, data structures and error terms, to arguments by means
of the application judgement τ @M⇒ σ. Indeed, τ may be of the form M→ σ (cf. tAppFun),
or a datatype D in which case σ is DM (cf. tAppData), or an error type 〈G〉 τ1 . . . τn in which
case M must be a singleton [τ1] and σ of the 〈Gτ1〉 τ2 . . . τn (cf. tAppErr). The restriction to
a singleton type in the last case is due to the fact that all one wants to do is enforce that the
arguments of a stuck case be typable. Note also that typing contexts are multiplicative whereas
error logs are additive. The tFix splits its resources so that they are dealt out to be used for one
unfolding (Γ) and the rest of the unfoldings (∆). The tCase rule relies on the matching judgement
τ 〈b̄〉 ∆; Σ, σ. The latter checks whether the type of the condition τ matches the list of branches.
A type τ matches with a branch cx̄⇒ s if τ = cM̄ with |M̄| = |x̄|. A type matches with a list
of branches if it matches with at least one branch. Returning to our description of tCase, if τ
matches with a branch, then that branch is typed (cf. tCMatch). However, if τ does not match
any branch (cf. tCMismatch), then all branches have to be accounted for by the type system.
Moreover, the type of the case expression will be an error type of the form 〈e τ (M̄i ⇒ σi)i∈I〉 ρ̄,
which is recorded in the error log. Note that ρ̄ = ρ1, . . . , ρk are the types of the arguments to
which the stuck case expression will be allowed to be applied to. Finally, tMulti allows a term to
be typed with a multiset type. In this rule, if n = 0, then

∑n
i=1[τi] denotes the empty multiset [].

Remark 17. T does not enjoy unique typing. For example, it is possible to assign many types the
expression cons zero (cons zero nil), namely cons [] [] or cons [zero] [], or cons [zero, zero] [].
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Figure 3 Example derivation

(a)

tVar
n : [z];∅ ` n : z

π1

z 〈b̄〉 ∅;∅, s [z]
tCase

n : [z];∅ ` case n of b̄ : s [z]
tAbs

∅;∅ ` λn.case n of b̄ : [z]→ s [z]

TMulti
∅;∅ ` t : []

tFix
∅;∅ ` t : [z]→ s [z]

(b)

tCons
∅;∅ ` s : s

tAppData
s @ [z]⇒ s [z]

tCons
∅;∅ ` z : z tMulti
∅;∅ ` z : [z]

tApp
∅;∅ ` s z : s [z]

tCMatch
z 〈(z⇒ s z; sn⇒ sn ∗ f n)〉 ∅;∅, s [z]

(c)

TVar
n : [s [z, z]];∅ ` n : s [z, z]

ξ1

s [z, z] 〈b̄〉 {f : [[z]→ s [z]]};∅, s [z]
tCase

f : [[z]→ s [z]], n : [s [z, z]];∅ ` case n of b̄ : s [z]
tAbs

f : [[z]→ s [z]];∅ ` λn.case n of b̄ : [s [z, z]]→ s [z]

π
tMulti

∅ ` t : [[z]→ s [z]]

tFix
∅ ` t : [s [z, z]]→ s [z]

(d)

ξ2

n : [z];∅ ` sn : s [z]

f : [[z]→ s [z]];∅ ` f : [z]→ s [z] [z]→ s [z] @ [z]⇒ s [z] n : [z];∅ ` n : [z]
tApp

n : [z], f : [[z]→ s [z]];∅ ` f n : s [z]
tProd

f : [[z]→ s [z]], n : [z, z];∅ ` sn ∗ f n : s [z]
tCMatch

s [z, z] 〈b̄〉 {f : [[z]→ s [z]]};∅, s [z]
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3.1 An Example

Let t be the term fix(f.λn.case n of z⇒ s z; sn⇒ sn ∗ f n) representing the factorial function.
We exhibit type derivations for the judgements:

1. ∅;∅ ` t : [z]→ s [z]; and

2. ∅;∅ ` t : [s [z, z]]→ s [z].

We use b̄ to denote the branches z⇒ s z; sn⇒ sn ∗ f n. The derivation π for the first judgement
is in Fig. 3(a). Note the absence of f in the typing context of the judgement

∅;∅ ` λn.case n of z⇒ s z; sn⇒ sn ∗ f n : [z]→ s [z]

Since the type of n is [z] the branch with the recursive call will not be used and hence is not typed.
The missing subderivation of π called π1, of the judgement z 〈b̄〉 ∅, s [z], is given in Fig 3(b). Since
z matches with (z⇒ s z), we only type this branch.

A derivation ξ of ∅ ` t : [s [z, z]] → s [z] is in Fig. 3(c). We use the following typing rule for
the product:

Γ; Σ ` t : sn z ∆; Σ ` s : sm z
tProd

Γ + ∆; Σ ` t ∗ s : sn∗m z

The derivation ξ1 of s [z, z] 〈b̄〉 {f : [[z] → s [z]]};∅, s [z] is given in Fig. 3(d). The missing
subderivation ξ2 may be completed without trouble.

3.2 Metatheory

Lemma 18 (Generation Lemma for T ). Let π be a derivation in T .

1. π(Γ; Σ ` x : τ) implies Γ = x : [τ ].

2. π(Γ; Σ ` λx.t : τ) implies ∃σ and M s.t. τ =M→ σ and Γ⊕ x ::M; Σ ` t : σ.

3. π(Γ; Σ ` c : c) implies Γ = ∅.

4. π(Γ; Σ ` ts : τ) implies ∃Γ1,Γ2, σ,M s.t. Γ = Γ1 + Γ2 and Γ1; Σ ` t : σ, σ @ M ⇒ τ and
Γ2; Σ ` s :M

5. π(Γ; Σ ` fix(x.t) : τ) implies ∃Γ1,Γ2,M s.t. Γ = Γ1 + Γ2, and Γ1 ⊕ x :: M; Σ ` t : τ and
Γ2; Σ ` fix(x.t) :M

6. π(Γ; Σ ` case t of b̄ : τ) implies ∃Γ1,Γ2 s.t. Γ = Γ1+Γ2, and Γ1; Σ ` t : σ and σ 〈b̄〉 Γ2; Σ, τ .

7. π(Γ; Σ ` t[x\s] : τ) implies ∃Γ1,Γ2,M s.t. Γ = Γ1 + Γ2, and Γ1 ⊕ x :: M; Σ ` t : τ and
Γ2; Σ ` s :M are derivable.

8. π(Γ; Σ ` t : M) implies ∃n,Γi, τi, for i ∈ 1..n, s.t. Γ =
∑n
i=1 Γi and M =

∑n
i=1[τi] and

πi(Γi; Σ ` t : τi), for i ∈ 1..n.

Proof. By induction on π.

Lemma 19. If π(Γ; Σ ` t : τ), then dom Γ ⊆ fv(t).
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Proof. By induction on π.

Lemma 20 (Type of Answers). If π(Γ; Σ ` t : τ), then

• t = A[c]L implies τ = cM1 . . .Mn where n = |A|.

• t = (λx.s)L implies τ =M→ σ.

Proof. By induction on π.

Lemma 21 (Reverse substitution). If Γ; Σ ` t{x := s} : τ then there exist contexts Γ1, Γ2, and a
multiset of types M such that:

1. Γ1 ⊕ x ::M; Σ ` t : τ ;

2. Γ2; Σ ` s :M; and

3. Γ = Γ1 + Γ2.

Proof. By induction on the derivation of Γ; Σ ` t{x := s} : τ . Note that if t = x, then we set
Γ1 := ∅, M := [τ ], and Γ2 := Γ, and the result holds trivially. So we henceforth assume that
t 6= x. A word on notation in the proof below: we write Γ1Γ2 as shorthand for Γ1 + Γ2.

• tVar. t{x := s} = y and the derivation ends in:

tVar
y : [τ ]; Σ ` y : τ

Given the above mentioned comment, t = y. We set Γ1 := y : [τ ], M := [].

• tAbs. t{x := s} = λy.u and τ = N → σ and the derivation ends in:

Γ⊕ y :: N ; Σ ` u : σ
tAbs

Γ; Σ ` λy.u : N → σ

Then t = λy.r and u = r{x := s}. By the i.h. there exist Γ′1, Γ′2, and M′ s.t.

Γ′1 ⊕ x ::M′; Σ ` r : σ Γ′2; Σ ` s :M′ Γ⊕ y :: N = Γ′1 + Γ′2(= Γ′′1 ⊕ y :: N + Γ′2)

From Γ′′1 ⊕ y :: N ⊕ x ::M′; Σ ` r : σ we deduce Γ′′1 ⊕ x ::M′; Σ ` λy.r : N → σ. Thus we
set Γ1 := Γ′′1 , Γ2 := Γ′2, and conclude.

• tCons. t{x := s} = c and the derivation ends in:

tCons
∅; Σ ` c : c

Then t = c and we set Γ1 := ∅, M := [], and Γ2 := ∅, and the result holds trivially.
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• tApp. t{x := s} = ur and the derivation ends in:

Γ1; Σ ` u : σ σ @ P ⇒ τ Γ2; Σ ` r : P
tApp

Γ1 + Γ2; Σ ` ur : τ

where, Γ = Γ1 + Γ2. Given the above mentioned observation, t = t1 t2, for some terms t1 and
t2, and u = t1{x := s} and r = t2{x := s}. Thus we have:

Γ1; Σ ` t1{x := s} : σ σ @ P ⇒ τ Γ2; Σ ` t2{x := s} : P
tApp

Γ1 + Γ2; Σ ` (t1 t2){x := s} : τ

From the i.h. on Γ1; Σ ` t1{x := s} : σ we know there exist Γ11, Γ12, and N1 s.t.

Γ11 ⊕ x :: N1; Σ ` t1 : σ Γ12; Σ ` s :M1 Γ1 = Γ11 + Γ12

Let P = [ρ1, . . . ρk]. Then Γ2 =
∑k
i=1 Γ2i. From the i.h. on each Γ2i; Σ ` t2{x := s} : ρi, for

i ∈ 1..k, we know there exists Γ2i1, Γ2i2, and N2i s.t.

Γ2i1 ⊕ x :: N2i; Σ ` t2 : ρi Γ2i2; Σ ` s : N2i Γ2i = Γ2i1 + Γ2i2

We thus have
∑k
i=1 Γ2i1 ⊕

∑k
i=1M2i; Σ ` t2 : P and therefore, using tApp, also (Γ11 ⊕

x :: M1) + (
∑k
i=1 Γ2i1 ⊕

∑k
i=1M2i); Σ ` t1 t2 : σ. We set M := M1 +

∑k
i=1M2i and

Γ1 := Γ11 +
∑k
i=1 Γ2i1. This proves the first item.

For the second item we set Γ2 := Γ12 +
∑k
i=1 Γ2i2.

We are left to verify that Γ = Γ1 + Γ2 = Γ11 + Γ12 +
∑k
i=1 Γ2i. We reason as follows:

Γ11 + Γ12 +
∑k
i=1 Γ2i

= Γ11 + Γ12 +
∑k
i=1(Γ2i1 + Γ2i2)

= Γ11 +
∑k
i=1 Γ2i1 + Γ12 +

∑k
i=1 Γ2i2

= Γ1 + Γ2

• tFix. t{x := s} = fix(y.u) and the derivation ends in:

Γ1 ⊕ y :: N ; Σ ` u : τ Γ2; Σ ` fix(y.u) : N
tFix

Γ1 + Γ2; Σ ` fix(y.u) : τ

and Γ = Γ1 +Γ2. Then t = fix(y.t1), u = t1{x := s} and by the i.h. on Γ1⊕y :: N ; Σ ` u : τ ,
there exists Γ11,Γ12 and M1 s.t.

Γ11 ⊕ y :: N ⊕ x :M1; Σ ` t1 : τ Γ12; Σ ` s :M1 Γ1 = Γ11 ⊕ y :: N + Γ12 (3)

Similarly, by the i.h. on Γi2; Σ ` fix(y.u) : σi, where N = [σ1, . . . , σk] and Γ2 =
∑
i=1..k Γi2,

there exists Γi21,Γ
i
22 and Mi

2 s.t.

Γi21 ⊕ x :Mi
2; Σ ` fix(y.t1) : σi Γi22; Σ ` s :Mi

2 Γi2 = Γi21 ⊕ y ::Mi
2 + Γi22 (4)
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Let Γ21 =
∑
i=1..k Γi21 and Γ22 =

∑
i=1..k Γi22 andM2 =

∑
i=1..kMi

2. Then Γ21⊕x :M2; Σ `
fix(y.t1) : N . Thus we can derive:

Γ11 ⊕ y :: N ⊕ x :M1; Σ ` t1 : τ Γ21 ⊕ x :M2; Σ ` fix(y.t1) : N
tFix

Γ11 + Γ21 ⊕ x :M1 +M2; Σ ` fix(y.u) : τ

Notice also that:
Γ12Γ22; Σ ` s :M1 ∪M2

Thus we set M :=M1 +M2, Γ1 := Γ11Γ21 and Γ2 := Γ21Γ22.

• tCase. t{x := s} = case u of b̄ and the derivation ends in:

Γ1; Σ ` u : σ σ 〈b̄〉 Γ2; Σ, τ
tCase

Γ1 + Γ2; Σ ` case u of b̄ : τ

and Γ = Γ1 + Γ2. First let us assume that σ = cjM̄ and cjM̄ matches with b̄ = (cix̄i ⇒
si)i∈I . Then Γ2⊕x̄j :: M̄; Σ ` sj : σj and τ = σj . In this case we use the i.h. on Γ1; Σ ` u : σ
and Γ2 ⊕ x̄j :: M̄; Σ ` sj : σj .

If σ does not match with b̄ = (cix̄i ⇒ si)i∈I , then we know that (Γ2i⊕x̄i :: M̄i; Σ′ ` si : σi)i∈I
and Σ = Σ′ ∪ {ρ} and ρ := 〈e τ (M̄i ⇒ σi)i∈I〉 ρ̄ and also Γ2 =

∑
i∈I Γ2i and τ = ρ. Here we

use the i.h. on Γ1; Σ ` u : σ and on each of (Γ2i ⊕ x̄i :: M̄i; Σ′ ` si : σi)i∈I .

4 Towards Completeness of The Strategy

We next outline the proof method [BBBK17] that we use to prove that the strong call-by-need
strategy (to be introduced in Sec. 5) is correctly behaved w.r.t. reduction in λe.

• Step 1 (Sec. 4.1). Weakly normalising terms of λe are typable in the non-idempotent
intersection type system T .

• Step 2 (Sec. 4.2). Typable terms in T are weakly normalising in the theory of sharing λsh.

• Step 3 (Sec. 6). Factorization of the reduction sequence in λsh obtained in Step 2 into an
external part followed by an internal part, by means of a standardisation theorem. The former
part corresponds to the strong call-by-need strategy and the latter shown to be superfluous.
The end term of the external part is shown to be identical modulo unsharing (or unfolding
of explicit substitutions) to the original normal form from Step 1.

A corollary is that the strong call-by-need strategy is complete w.r.t reduction in the Extended
Lambda Calculus: if t reduces to a normal form s in λe, then the strategy computes a normal form
u such that s is the unsharing of u.

21



4.1 Definable Terms in λe are Typable (Step 1)

This section addresses Step 1 of the diagram below, where t ∈ λe:

t ∈WN(λe)

Step 1︷︸︸︷⇒ t ∈ Typable(T )

Step 2︷︸︸︷⇒ t ∈WN(λsh)

As discussed in the Introduction, we don’t want t to just be typable in T but to be typable
with some additional constraints so that Step 2 holds too. For example, we mentioned that xΩ
is typable by setting x to have type [] → α, for α a type variable; however, the term is not
normalising in λsh. We must require that the typing judgement Γ; Σ ` t : τ be such that [] /∈ N (Γ)
and [] /∈ P(τ) [BKV17]. Here N (Γ) and P(τ) refer to the usual notions of negative and positive
occurrences of types in τ (cf. Fig. 4). In the presence of constants and case expressions, this
constraint does not suffice. We introduce an extended set of constraints below that determines what
we call good judgements (cf. Def. 22). We revisit below some examples from the introduction
to motivate them.

Consider the term case c of (d⇒ d) Ω. It is typable with, for example, type 〈e c ( ¯[d]⇒ d)i∈I []〉.
Notice how the type of the blocked case includes occurrences of the types of arguments to which it
applies (in this case the empty multiset type). This will allow us to extend the above mentioned
constraint to blocked case expressions.

Consider now the term case x of (c ⇒ d) · (e ⇒ Ω). This term is typable with type d, if
x : [c], however, it is not weakly normalizing in λsh. This motivates the new constraints c /∈ P(Γ),
c /∈ N (Σ), and c /∈ N (τ) in Def. 22. In particular, in a term such as case x of (c⇒ d) · (e⇒ d)
which is in normal form, we will type it by assigning x an appropriate error type.

Finally, note that in pure lambda terms all terms in weak head normal form have a variable
at the head. Since the types of all variables are in the typing context Γ, we can place restrictions
on their type through Γ. For example, in the above mentioned term xΩ one may require that
[] /∈ Γ(x) to force the type system to account for Ω. However, now we may have term in weak
head normal form headed by blocked case expressions. In order to have access to their types so
that we may place restrictions on them, we have to record them. This is the role played by the
error logs and motivates the third, and final, item of our notion of good judgements, namely that
all occurrences of error types be accounted for in the error log.

We will make use of the following notions on error types. The first one,
−→
E , establishes a

canonical notation for error type E as defined below. The second is E1 ' E2 that holds if
−→
E1 =

−→
E2.

−−−−→
〈e τ B̄〉 := 〈e τ B̄〉
−−−→
〈Gτ〉 :=

−−→
〈G〉 τ

−→
E τ :=

−→
E τ

Definition 22 (Good types and typing judgements). The set of positive (resp. negative) types
occurring in τ , denoted P(τ) (resp. N (τ)), is defined in Fig 4. A type τ is good if c /∈ P(τ) and
[] /∈ N (τ). We say M is good if each τ ∈ M is good. A typing context Γ is good if Γ = ΓgΓe
and ∀x ∈ dom Γg, Γg(x) is good and ∀x ∈ dom Γe, Γe(x) is an error type. A typing judgement
Γ; Σ ` t : τ is good if

• Γ is good;

• [] /∈ P(Σ) and [] /∈ P(τ);
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Figure 4 Positive and negative types

P(α) := {α}
P(M→ τ) := N (M) ∪ P(τ) ∪ {M→ τ}

P(c) := {c}
P(DM) := P(D) ∪ P(M) ∪ {DM}
P(E τ) := P(E) ∪ P(τ) ∪ {E τ}
P(〈G〉) := P(G) ∪ {G}
P(Gτ) := P(G) ∪ P(τ) ∪ {Gτ}
P(e τ B̄) := P(τ) ∪ P(B̄) ∪ {e τ B̄}

P(M1, . . . ,Mn ⇒ τ) :=
⋃
i∈1..nN (Mi) ∪ P(τ) ∪ {M̄ ⇒ τ}

P(M) :=
⋃
τ∈M P(τ) ∪ {M}

P(Γ; Σ ` τ) := N (Γ) ∪ P(Σ) ∪ P(τ)
P(Γ) :=

⋃
P(Γ(x)), for all x ∈ dom Γ

N (α) := ∅
N (M→ τ) := P(M) ∪N (τ)

N (c) := ∅
N (DM) := N (D) ∪N (M)
N (E τ) := N (E) ∪N (τ)
N (〈G〉) := N (G)
N (Gτ) := N (G) ∪N (τ)
N (e τ B̄) := N (τ) ∪N (B̄)

N (M1, . . . ,Mn ⇒ τ) :=
⋃
i∈1..n P(Mi) ∪N (τ)

N (M) :=
⋃
τ∈MN (τ)

N (Γ; Σ ` τ) := P(Γ) ∪N (Σ) ∪N (τ)
N (Γ) :=

⋃
N (Γ(x)), for all x ∈ dom Γ

coveredΣ(Γ) :=
∧
x∈dom Γ coveredΣ(Γ(x))

coveredΣ(α)T := true
coveredΣ(M→ τ)T := coveredΣ(M)T ∧ coveredΣ(τ)T

coveredΣ(D)T := coveredΣ(D)D

coveredΣ(E)T := coveredΣ(E)E ∧
−→
E ∈ Σ

coveredΣ(c)D := true
coveredΣ(DM)D := coveredΣ(D)D ∧ coveredΣ(M)T

coveredΣ(e τ B̄)G := coveredΣ(τ)T ∧ coveredΣ(B̄)B
coveredΣ(Gτ)G := coveredΣ(G)G ∧ coveredΣ(τ)T

coveredΣ(〈G〉)E := coveredΣ(G)G
coveredΣ(E τ)E := coveredΣ(E)E ∧ coveredΣ(τ)T

coveredΣ(M̄ ⇒ τ)B := coveredΣ(M̄)T ∧ coveredΣ(τ)T

coveredΣ(M)M :=
⋃
τ∈M coveredΣ(τ)T

• c /∈ N (Σ) and c /∈ N (τ); and

• coveredΣ(Γ) and coveredΣ(τ).

The proof of Step 1, namely that terms definable in λe terms are typable (Thm. 25), consists of
two steps. First we show that →e-normal forms are typable with good typing judgements. These
typing judgements Γ; Σ ` t : τ , for t ∈ NF(→e), are such that constants do not occur negatively
in τ nor in Σ nor positively in Γ. However, constants may occur positively in τ such as when
typing the normal form c and also negatively in Γ such as when typing the normal form x c where
x : [[c]→ α].

Lemma 23 (Normal forms are typable). Let t ∈ NF(→e). Then there exists a context Γ, an error
context Σ and a type τ such that π(Γ; Σ ` t : τ), and Γ; Σ ` t : τ is good. Moreover, if t is of the
form:

• x N̄ , then τ is a type variable; and

• (case N0 of (cix̄i ⇒ Ni)i∈I)N̄ , where N0 does not match with (cix̄i ⇒ Ni)i∈I , then τ =
〈e τ (M̄i ⇒ σi)i∈I ρ1 . . . ρk〉 with k = |N̄ |.

Proof. By induction on the structure of t, according to the characterization of Lem. 4. We thus
consider three cases for t:

• t = λx̄.yN̄ where N̄ = N1, . . . , Nk. By the i.h. there exist contexts (Γi)i∈1..k, error contexts
(Σi)i∈1..k, types (τi)i∈1..k s.t. the typing judgements Γi; Σi ` τi are good, and derivations πi
s.t. πi(Γi; Σi ` Ni : τi)i∈1..k. Let Υ :=

⋃
Σi. Note that Γi; Σi ` τi good implies Γi; Υ ` τi

good. Also, Γi; Σi ` Ni : τi derivable implies Γi; Υ ` Ni : τi derivable. Let α be a fresh type
variable; we can build the following derivation:
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∑
Γi + y : [[τ1]→ [τ2]→ . . .→ [τk]→ α]; Υ ` yN̄ : α

Also, note that if x̄ is empty, then this proves item (1). Let ∆ :=
∑

Γi + y : [[τ1] → [τ2] →
. . .→ [τk]→ α]. We can use TAbs to deduce

∆ \ x̄; Υ ` λx̄.yN̄ : ∆(x1)→ . . .→ ∆(xk)→ α

[] 6∈ P(∆ \ x̄; Υ ` ∆(x1) → . . . → ∆(xk) → α) follows from [] 6∈ P(Γi; Σi ` τi) above.
Likewise, c 6∈ N (∆ \ x̄; Υ ` ∆(x1) → . . . → ∆(xk) → α) follows from c 6∈ N (Γi; Σi ` τi)
above.

• t = λx̄.cN̄ where N̄ = N1, . . . , Nk. By the i.h. there exist contexts (Γi)i∈1..k, error contexts
(Σi)i∈1..k, types (τi)i∈1..k s.t. the typing judgements Γi; Σi ` τi are good, and derivations πi
s.t. πi(Γi; Σi ` Ni : τi)i∈1..k. Let Υ :=

⋃
Σi. Note that Γi; Σi ` τi good implies Γi; Υ ` τi

good. Also, Γi; Σi ` Ni : τi derivable implies Γi; Υ ` Ni : τi derivable. Then we can build
the derivation ∑

Γi; Υ ` cN̄ : c [τ1] . . . [τk]

Let ∆ :=
∑

Γi. We can use TAbs to deduce

∆ \ x̄; Υ ` λx̄.cN̄ : ∆(x1)→ . . .→ ∆(xk)→ c [τ1] . . . [τk]

[] 6∈ P(∆ \ x̄; Υ ` ∆(x1) → . . . → ∆(xk) → c [τ1] . . . [τk]) follows from [] 6∈ P(Γi; Σi ` τi)
above. Likewise, c 6∈ N (∆ \ x̄; Υ ` ∆(x1) → . . . → ∆(xk) → c [τ1] . . . [τk]) follows from
c 6∈ N (Γi; Σi ` τi) above.

• t = λx̄.(case M0 of (cix̄i ⇒ Mi)i∈I)N̄ , M0 does not match with (cix̄i ⇒ Mi)i∈I , N̄ =
N1, . . . , Nk and we assume I = 1..m. By the i.h. there exist contexts (Γi)i∈1..k, error
contexts (Σi)i∈1..k, types (τi)i∈1..k and derivations πi s.t. πi(Γi; Σi ` Ni : τi)i∈1..k and the
typing judgements

Γi; Σi ` Ni : τi are good (5)

The i.h. also allows us to deduce the existence of contexts (∆i)i∈0..m, error contexts (Υi)i∈0..m,
types (σi)i∈0..m and typing derivations ξi

ξi(∆i; Υi `Mi : σi)i∈0..m (6)

s.t. the typing judgements

∆i; Υi `Mi : σi are good (7)

We consider multiple cases following Rem. 5:

– M0 is of the form M0 = x P̄ . Then by item (1), σ0 is a type variable α and hence
(cix̄i ⇒Mi)i∈I follows from tCMismatch using (6):
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α 〈(cix̄i ⇒ si)i∈I〉 (
∑
i∈I ∆i \ x̄i) ∪ {ρ}; Υi, ρ

where ρ := 〈eα (M̄i ⇒ σi)i∈I〉τ1 . . . τk. We then use tCase to deduce:

∆0 + (
∑
i∈I ∆i \ x̄i);

⋃
Υi ∪ {ρ} ` case M0 of (cix̄i ⇒Mi)i∈I :

〈eα (M̄i ⇒ σi)i∈I〉τ1 . . . τk
Multiple applications of tApp result in:

∆0 + (
∑
i∈I ∆i \ x̄i) +

∑
j∈1..k Γj ;

⋃
Υi

⋃
Σi ∪ {ρ} ` (case M0 of (cix̄i ⇒Mi)i∈I) N̄ :

〈eα (M̄i ⇒ σi)i∈I τ1 . . . τk〉

Let Θ := ∆0 + (
∑
i∈I ∆i \ x̄i) +

∑
j∈1..k Γj and Φ :=

⋃
Υi ∪

⋃
Σi ∪ {ρ}. Finally, we

apply tAbs multiple times to deduce:

Θ \ x̄; Φ ` λx̄.(case M0 of (cix̄i ⇒Mi)i∈I) N̄ : Θ(x1)→ . . .→ Θ(xl)→
〈eα (M̄i ⇒ σi)i∈I τ1 . . . τk〉

Note that Θ \ x̄; Φ ` Θ(x1) → . . . → Θ(xl) → 〈eα (M̄i ⇒ σi)i∈I τ1 . . . τk〉 good follows
from (5) and (7). In other words,

∗ [] /∈ P(Θ \ x̄; Φ ` Θ(x1)→ . . .→ Θ(xl)→ 〈eα (M̄i ⇒ σi)i∈I τ1 . . . τk〉); and

∗ c /∈ N (Θ \ x̄; Φ ` Θ(x1)→ . . .→ Θ(xl)→ 〈eα (M̄i ⇒ σi)i∈I τ1 . . . τk〉)
follows from (5) and (7). In particular, c /∈ N (〈eα (M̄i ⇒ σi)i∈I〉τ1 . . . τk) and [] /∈
P(〈eα (M̄i ⇒ σi)i∈I〉τ1 . . . τk).

– M0 is of the form λx.N . Then following Lem. 18, σ0 must be a functional type and
hence we can proceed as in the previous case.

– M0 is of the form cP̄ . Since M0 does not match with (cix̄i ⇒Mi)i∈I , either c /∈ (ci)i∈I
or c = cj for some j ∈ I and |P̄ | 6= |x̄j |. Since M0 = cP̄ , then following Lem. 18
σ0 = cM̄ with |M̄| = |P̄ |. Thus σ0 does not match (cix̄i ⇒Mi)i∈I and we can proceed
as in the previous case.

– M0 is of the form (case N0 of (cix̄i ⇒ Ni)i∈I)P̄ , where N0 does not match with
(cix̄i ⇒ Ni)i∈I . Then by the i.h. and item (2), σ0 = e ρ (M̄i ⇒ σi)i∈I . Thus σ0 does
not match (cix̄i ⇒Mi)i∈I and we can proceed as in the previous case.

The second step consists of showing subject expansion for →e (i.e. t →e s and Γ; Σ ` s : τ
imply Γ; Σ ` t : τ).

Lemma 24 (→e-expansion). Let t→e s. If Γ; Σ ` s : τ then Γ; Σ ` t : τ .

Proof. By induction on the derivation of Γ; Σ ` s : τ . We first present the cases in which reduction
is at the root since these do not involve the i.h..

• β-step. t = (λx.t3) t2 and t = (λx.t3)t2 →e t3{x := t2} = s. From Lem. 21 there exist Γ1,
Γ2, and M such that Γ1 ⊕ x ::M; Σ ` t3 : τ , Γ2; Σ ` t2 :M, Γ = Γ1 + Γ2. We can conclude
by using tAbs and then tApp.

• fix-step. t = fix(x.u) →e u{x := fix(x.u)} = s. From Lem. 21 there exist Γ1, Γ2, and
M such that Γ1 ⊕ x :: M; Σ ` u : τ , Γ2; Σ ` fix(x.u) : M, and Γ = Γ1 + Γ2. We can thus
conclude immediately by using tFix.
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• case-step. t = case cj ū of (cix̄i ⇒ si)i∈I →e sj{x̄j := ū} = s and j ∈ I and |ū| = |x̄j |.
Let y = xj so that sj{x̄j := ū} may be written sj{ȳ := ū}. Also, assume |ȳ| = n. From
Lem. 21 there exists Γn1, Γn2, Σn1, Σn2 and Mn such that Γn1 ⊕ yn ::Mn; Σn1 ` sj{y1 :=
u1} . . . {yk := un−1} : τ , Γn2; Σn2 ` t2 : M, Γ = Γn1 + Γn2 and Σ = Σn1 + Σn2. Iterating
further applications of Lem. 21 produces Γ11 and Γ12, . . . ,Γ(n−1)2, Σ11 and Σ12, . . . ,Σ(n−1)2

and M1, . . . ,Mn−1 such that

1. Γ11 ⊕ y1 ::M1 ⊕ . . .⊕ yn ::Mn; Σ11 ` sj : τ ,

2. Γi2; Σi2 ` ui :Mi (for i ∈ 1..n);

3. Γ = Γ11 +
∑n
i=1 Γi2; and

4. Σ = Σ11 ∪
⋃n
i=1 Σi2.

From the second item we deduce
∑n
i=1 Γi2;

⋃n
i=1 Σi2 ` cj ū : cjM1 . . .Mn. We are left

to verify that cjM1 . . .Mn 〈c1x̄1 ⇒ s1 . . . cnx̄n ⇒ sn〉 Γ11; Σ11, τ in order to conclude that
Γ; Σ ` t : τ using tCase. Since cjM1 . . .Mn matches c1x̄1 ⇒ s1 . . . cnx̄n ⇒ sn, we simply
note that tCMatch applies since Γ11 ⊕ y1 ::M1 ⊕ . . .⊕ yn ::Mn; Σ11 ` sj : τ is derivable.

Having concluded the cases in which reduction is at the root, we resume our proof of the rest
of the cases by induction on the derivation of Γ; Σ ` s : τ .

• tAbs. Then t = λx.u, u→e u
′ and s = λx.u′ and the derivation of Γ; Σ ` λx.u′ : τ ends as

follows where τ =M→ σ:

Γ⊕ x ::M; Σ ` u′ : σ
tAbs

Γ; Σ ` λx.u′ :M→ σ

From the i.h. we have Γ⊕ x ::M; Σ ` u : σ, thus we may conclude using tAbs.

• tApp. Suppose s = t′1 t2 with t1 →e t
′
1 (the case in which s = t1 t

′
2 with t2 →e t

′
2 is similar

an omitted). The derivation of Γ; Σ ` t′1 t2 : τ must end as follows:

Γ1; Σ ` t′1 : σ σ @M⇒ τ Γ2; Σ ` t2 :M
tApp

Γ1 + Γ2; Σ ` t′1 t2 : τ

where Γ = Γ1 + Γ2. We simply use the i.h. and then tApp.

• tFix. Then s = fix(x.u′) and u →e u
′. Moreover, the derivation of Γ; Σ ` fix(x.u′) : τ

must end as follows:

Γ1 ⊕ x ::M; Σ ` u′ : τ Γ2; Σ ` fix(x.u′) :M
tFix

Γ1 + Γ2; Σ ` fix(x.u′) : τ

We use the i.h. on the derivation of Γ1 ⊕ x :: M; Σ ` u′ : τ and conclude that Γ1 ⊕ x ::
M; Σ ` u : τ is derivable. Note that since s = fix(x.u) →e fix(x.u′) and each derivation
of Γ2; Σ ` fix(x.u′) : ρ, for ρ ∈ M, is smaller than the given one, we can apply the i.h. to
the derivation of Γ2; Σ ` fix(x.u′) :M and deduce Γ2; Σ ` fix(x.u) :M. We then conclude
using tFix.
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• tCase. t = case u of b̄ where b̄ = (c1x̄1 ⇒ s1) . . . (cnx̄n ⇒ sn). The derivation ends in:

Γ1; Σ ` u : σ σ 〈b̄〉 Γ2; Σ, τ
tCase

Γ1 + Γ2; Σ ` case u of b̄ : τ

where Γ = Γ1+Γ2. If u→e u
′, then we simply apply the i.h. to the derivation of Γ1; Σ ` u : σ

and then conclude using tCase. If sj →e s
′
j , then if sj occurs in a subderivation of the

derivation of σ 〈b̄〉 Γ2; Σ, τ we apply the i.h. and build a derivation of σ 〈b̄′〉 Γ2; Σ, τ and
conclude using tCase. Otherwise, we conclude immediately.

Theorem 25 (Step 1). Suppose t is definable in λe. Then there exists a context Γ, an error
context Σ, a type τ and a derivation π s.t. π(Γ; Σ ` t : τ) with Γ; Σ ` t : τ good.

Proof. Suppose t is definable as s in λe. Then t ∈WN(→e). The result is an immediate consequence
of Lem. 23 and Lem. 24.

4.2 Typable Terms are Definable in λsh (Step 2)

The idea behind Step 2 is to show that: 1) redexes in a term t that are accounted for by a
typing derivation for t, lets call them typed-redexes, are finite in number and that that number
can only decrease by reducing them; and 2) terms that are in such typed redex -normal form and
that are typed with good typing judgements are also in normal form with respect to λsh (i.e. are
in NF(→sh)). That a redex is accounted for in a typing derivation π is expressed as the redex
occurring at a typed occurrence in π. For example, in a term such as x (id id) with x : [[]→ α], the
redex id id is not typed-redex since there is no subderivation of π that types/accounts for it.

Positions in terms are defined as usual; we write ε for the empty position. Let p be a position
in a term t and let π(Γ; Σ ` t : τ).

Definition 26. We say p is a typed occurrence in π and define it inductively on π:

• π ends in tVar or tCons: p = ε

• π ends in tAbs: Then π has the following form and p = ε or p = 0.p′ and p′ is a typed
occurrence in π0.

π0

Γ⊕ x ::M; Σ ` t : τ
tAbs

Γ; Σ ` λx.t :M→ τ

• π ends in tApp: Then π has the following form and p = ε or p = 0.p′ and p′ is a typed
occurrence in π0 or p = 1.p′ and M 6= [] and p′ is a typed occurrence in π1.

Γ; Σ ` t : τ τ @M⇒ σ ∆; Σ ` s :M
tApp

Γ∆; Σ ` ts : σ
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• π ends in tFix: Then π has the following form and p = ε or p = 0.p′ and p′ is a typed
occurrence in π0.

π0

Γ⊕ x ::M; Σ ` t : τ

π1

∆; Σ ` fix(x.t) :M
tFix

Γ∆; Σ ` fix(x.t) : τ

• π ends in tCase with a matching case. Then π has the following form and p = ε or p = 0.p′

and p′ is a typed occurrence in π0 or p = j.p′ and p′ is a typed occurrence in π1.:

π0

Γ; Σ ` t : cjM̄

π1

∆⊕ x̄j :: M̄; Σ ` sj : σj
tCMatch

cjM̄ 〈(cix̄i ⇒ si)i∈I〉 ∆; Σ, σj
tCase

Γ∆; Σ ` case t of b̄ : σj

and cjM̄ matches (cix̄i ⇒ si)i∈I .

• π ends in tCase with a mismatching case: Then π has the following form and p = ε or
p = 0.p′ and p′ is a typed occurrence in π0 or p = j.p′, with j ∈ I, and p′ is a typed
occurrence in πj.:

π0

Γ; Σ ` t : τ

πj(
Γi ⊕ x̄i :: M̄i; Σ ` si : σi

)
i∈I

ρ := 〈e τ (M̄i ⇒ σi)i∈I〉 ρ1 . . . ρk

tCMismatch
τ 〈(cix̄i ⇒ si)i∈I〉 ∆; Σ ∪ {ρ}, ρ

tCase
Γ∆; Σ ∪ {ρ} ` case t of b̄ : σ

and τ does not match (cix̄i ⇒ si)i∈I and ∆ = (
∑
i∈I Γi).

• π ends in tES: Then π has the following form and p = ε or p = 0.p′ and p′ is a typed
occurrence in π0 or p = 1.p′ and p′ is a typed occurrence in π1.

π0

Γ1 ⊕ x ::M; Σ ` t : τ

π1

Γ2; Σ ` s :M
tES

Γ1Γ2; Σ ` t[x\s] : τ

• π ends in tMulti: Then π has the following form and p = ε or p = i.p′ and p′ is a typed
occurrence in πi.

πi

(Γi; Σ ` t : τi)1≤i≤n
(n ≥ 0)

tMulti
n∑
i=1

Γi; Σ ` t :

n∑
i=1

[τi]

We say t is in π-normal form iff t has no typed redex occurrences in π. We write size(π) to
denote the size of a derivation in terms of the number of nodes of the derivation seen as a tree.
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Similarly, size(Π) is the sum of the sizes of all the derivations in the set of derivations Π. Also,
fix(π) denotes the number of nodes in π that are instances of tFix.

The measure of a derivation π, M(π), is the pair 〈size(π), fix(π)〉. The following results all aim
at showing that this measure decreases when typed redex occurrences are reduced (cf. Lem. 31).
We begin our analysis by adding two typing rules to T that allow us to type substitution contexts.
This will be a convenient technical device to analyse the typing of terms of the form tL (cf. Lem. 27
below).

tCHole
∅; Σ 
 ε : ∅

Γ1 ⊕ x ::M; Σ 
 L : ∆ x /∈ dom ∆ Γ2; Σ ` s :M⊕N
tCCons

Γ1Γ2; Σ 
 L[x\s] : ∆⊕ x : N

Lemma 27. πtL(Γ; Σ ` tL : τ) iff ∃Γ1,Γ2,Γ3 s.t. Γ = Γ1Γ2, and πL(Γ1; Σ 
 L : Γ3) and
πt(Γ2Γ3; Σ ` t : τ) and size(πtL) = size(πL) + size(πt)− 1 .

Proof. By induction on L. If L = ε, then we set Γ1 := ∅, Γ3 := ∅, and Γ2 := Γ. Suppose
L = L′[x\s]. Then πtL has the form:

πtL′

∆1 ⊕ x ::M; Σ ` tL′ : τ

Πs

∆2; Σ ` s :M
tES

∆1∆2; Σ ` tL′[x\s] : τ

where Γ = ∆1∆2. By the i.h. on πtL′ , ∃Γ11,Γ12,Γ13 s.t. ∆1 ⊕ x ::M = Γ11Γ12, and πL′(Γ11; Σ 

L′ : Γ13) and πt(Γ12Γ13; Σ ` t : τ) and size(πtL′) = size(πL′) + size(πt)− 1. From ∆1⊕x ::M =
Γ11Γ12 we deduce:

∆1 ⊕ x ::M = Γ11 + Γ12 = Γ′11 ⊕ x ::M1 + Γ′12 ⊕ x ::M2 (8)

where M =M1 +M2. We next construct the derivation πL′[x\s]:

Γ′11 ⊕ x ::M1; Σ 
 L′ : Γ13 x /∈ dom Γ13 ∆2; Σ ` s :M
tCCons

Γ′11∆2; Σ 
 L′[x\s] : Γ13 ⊕ x ::M2

We set

Γ1 := Γ′11∆2 Γ2 := Γ′12 Γ3 := Γ13 ⊕ x ::M2 (9)

Note that Γ = ∆1∆2 = Γ1Γ2. Moreover,
size(πtL)

= size(πtL′) + size(Πs) + 1
= size(πL′) + size(πt)− 1 + size(Πs) + 1
= (size(πL′) + size(Πs) + 1) + size(πt)− 1
= size(πL′[x\s]) + size(πt)− 1

Lemma 28. If π(Γ; Σ ` (λx.t1)L t2 : τ), then there exists π′ s.t. π′(Γ; Σ ` t1[x\t2]L : τ) and
size(π) > size(π′).

Proof. By induction on L.
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• Suppose L = ε. Then π has the form:

π1

Γ1; Σ ` λx.t1 : σ
σ @M⇒ τ

Π2
tMulti

Γ2; Σ ` t2 :M
tApp

Γ1Γ2; Σ ` (λx.t1)t2 : τ

By Lem. 20(2) on π1, σ =M→ τ . Moreover, by Lem. 18(2), π1 must end with tAbs:

π11

Γ1 ⊕ x ::M; Σ ` t1 : τ
tAbs

Γ1; Σ ` λx.t :M→ τ

M→ τ @M⇒ τ
Π2

tMulti
Γ2; Σ ` t2 :M

tApp
Γ1Γ2; Σ ` (λx.t1)t2 : τ

We construct the following derivation π′

π11

Γ1 ⊕ x ::M; Σ ` t1 : τ

Π2
tMulti

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[x\t2] : τ

Note that size(π) = size(π11) + 1 + size(Π2) + 2 > size(π11) + size(Π2) + 2 = size(π′).

• For the inductive case, suppose L = L′[y\s]. Then π has the form:

π1

Γ1; Σ ` (λx.t1)L′[y\s] : σ
σ @M⇒ τ

Π2

Γ2; Σ ` t2 :M
tApp

Γ1Γ2; Σ ` (λx.t1)L′[y\s]t2 : τ

By Lem. 18(2), there exist Γ11,Γ12 s.t. Γ1 = Γ11Γ12, and π1 must end with tES:

π11

Γ11 ⊕ y :: N ; Σ ` (λx.t1)L′ : σ

Π3

Γ12; Σ ` s : N
Γ1; Σ ` (λx.t1)L′[y\s] : σ

σ @M⇒ τ
Π2

Γ2; Σ ` t2 :M
tApp

Γ1Γ2; Σ ` (λx.t1)L′[y\s]t2 : τ

We can then build the following derivation π2:

π11

Γ11 ⊕ y :: N ; Σ ` (λx.t1)L′ : σ
σ @M⇒ τ

Π2

Γ2; Σ ` t2 :M
tApp

Γ1Γ2; Σ ` (λx.t1)L′t2 : σ

and apply the i.h. to it to deduce that there exists π′2 s.t. π′2(Γ; Σ ` t1[x\t2]L′ : σ) and
size(π2) > size(π′2). Finally, we construct the derivation π′:
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π′2

Γ⊕ y :: N ; Σ ` t1[x\t2]L′ : σ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1L′[y\s]t2 : τ

Note that:

size(π)
= size(π1) + size(Π2) + 2
= size(π11) + size(Π3) + 2 + size(Π2) + 2
= size(π11) + size(Π2) + 2 + size(Π3) + 2
= size(π2) + size(Π3) + 2
> size(π′2) + size(Π3) + 2
= size(π′)

.

Lemma 29. If π1(Γ1; Σ ` A[cj ] : cM1 . . .Mn), and M̄ =M1, . . . ,Mn and π2(Γ2 ⊕ x̄ :: M̄; Σ `
t : σ) and |A| = |x̄|, then π3(Γ1+Γ2; Σ ` t[x̄\A] : σ). Moreover, size(π3) = size(π2)+size(π1)−1.

Proof. By induction on A using Lem. 27.

Lemma 30. If πC[x](Γ⊕ x :: [σi]i∈I ; Σ ` C[x] : τ) and πis(∆i; Υi ` s : σi)i∈I , then

1. for some K ⊆ I:

πC[s](Γ⊕ x :: [σi]i∈I\K +
∑
k∈K

∆k; Σ ∪
⋃
k∈K

Υk ` C[s] : τ)

where size(πC[s]) = size(πC[x]) +
∑
k∈K size(πks )− |K|.

2. Moreover, if p ∈ pos(C) is the occurrence of the hole in C and p is a typed-occurrence in πC[x],
then K 6= ∅.

Proof. By induction on C.

Lemma 31 (Weighted Subject Reduction for sh). Let π(Γ; Σ ` t : τ). If t →sh t
′, then there

exists π′ such that π′(Γ; Σ ` t′ : τ). Moreover, if this step reduces a typed →sh-redex occurrence of
t in π, then either

1. size(π) > size(π′); or

2. size(π) = size(π′) and fix(π) > fix(π′)

Proof. By induction on t→sh t
′. We first consider the case in which the reduction step takes place

at the root of the term.

• t = (λx.t1)L t2 7→dB t1[x\t2]L = t′. Immediate from Lem. 28.
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• t = C[[x]][x\vL] 7→lsv C[v][x\v]L = t′. The derivation π ends in:

πC[[x]]

Γ1 ⊕ x ::M; Σ ` C[[x]] : τ

ΠvL

Γ2; Σ ` vL :M
tES

Γ1Γ2; Σ ` C[[x]][x\vL] : τ

Let M = [σi]i∈I and Π2 = {ξi}i∈I . Then Γ2 =
∑
i∈I Γ2i. Thus for each ξi ∈ ΠvL, by

Lem. 27, there exist Γ2i1,Γ2i2,Γ2i3 s.t. Γ2i = Γ2i1Γ2i2, and πiL(Γ2i1; Σ 
 L : Γ2i3) and
πiv(Γ2i2Γ2i3; Σ ` v : σi).

From the derivation πC[[x]] and Lem. 30, we deduce

πC[v](Γ1 ⊕ x :: N +
∑
k∈K

Γ2k; Σ ` C[v] : τ)

where N = [σi]i∈I\K for some K ⊆ I and where

size(πC[v]) = size(πC[x]) +
∑
k∈K

size(ξk)− |K| (10)

We thus construct the following derivation π′:

πC[v]

Π3∑
k∈I\K

Γ2k; Σ ` vL : N

tES
Γ1Γ2; Σ ` C[[v]][x\vL] : τ

where Π3 = {ξi}i∈I\K . This concludes the first item of the lemma. We now address the
second one.

size(π′)
= size(πC[v]) + size(Π3) + 2
= size(πC[v]) +

∑
i∈I\K size(ξi) + 2

=(10) size(πC[x]) +
∑
j∈K size(ξj)− |K|+

∑
i∈I\K size(ξi) + 2

= size(πC[x]) + size(Π2) + 2− |K|
= size(π)− |K|
<Lem. 30(2) size(π)

• t = t1[x\t2] 7→gc t1 = t′, with x 6∈ fv(t1). The derivation of t has the following form:

π1

Γ⊕ x ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[x\t2] : τ

By Lem. 19,M = []. Then we set π′ to be π1 and conclude that the first item of this lemma
holds: size(π′) = size(π1) < size(π1) + 1 = size(π).
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• t = fix(x.t1) 7→fix t1[x\fix(x.t1)]. Then π must have the form:

π1

Γ1 ⊕ x ::M; Σ ` t1 : τ

Π1

Γ2; Σ ` fix(x.t1) :M
tFix

Γ1Γ2; Σ ` fix(x.t1) : τ

Then we construct the following derivation π′:

π1

Γ1 ⊕ x ::M; Σ ` t1 : τ

Π1

Γ2; Σ ` fix(x.t1) :M
tES

Γ1Γ2; Σ ` t1[x\fix(x.t1)] : τ

The second item of the lemma holds, namely size(π′) = size(π) and fix(π′) < fix(π).

• t = case A[cj ]L of (cix̄i ⇒ si)i∈I 7→case sj [x̄j\A]L = t′, where |A[cj ]L| = |x̄j | and j ∈ I. Then
π must have the following form, where b̄ abbreviates (cix̄i ⇒ si)i∈I and τ = σj :

π1

Γ1; Σ1 ` A[cj ]L : cjM̄
cjM̄ matches b̄

π2

Γ2 ⊕ x̄j :: M̄; Σ2 ` sj : σj
tCMatch

cjM̄ 〈b̄〉 Γ2; Σ2, σj
tCase

Γ1Γ2; Σ1Σ2 ` case A[cj ]L of b̄ : σj

By Lem. 29 on π1 we can construct a derivation π′(Γ1Γ2; Σ1Σ2 ` sj [x̄\A]L : σj) s.t. size(π′) =
size(π2) + size(π1)− 1 < size(π2) + size(π1) + 2 = size(π).

For the inductive cases (i.e. when t = λx.t1, t = t1 t2, t = fix(x.t1), t = case t1 of b̄, or
t = t1[x\t2]), we conclude from the i.h..

The following result is not an immediate consequence of Lem. 20 since our type system does
not have unique types.

Lemma 32 (Constant Answers and their Type). If π(Γ; Σ ` A[c]L : dM1 . . .Mn), then c = d
and n = |A|.

Proof. By induction on π.

Lemma 33. If π(Γ; Σ ` t : τ) and t is a weak structure (i.e. t = E[x]), then Γ(x) 6= [].

Proof. By induction on π.

• TVar. The result is immediate.

• tAbs, tCons, tFix and tCase. The result is immediate since abstractions, constants, fixed
point and case expressions are not weak structures.
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• tApp. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ @M⇒ τ Γ2; Σ ` t2 :M

tApp
Γ1Γ2; Σ ` t1t2 : τ

Then E = E1 t2 and E1[x] = t1 and we conclude from the i.h. on π1.

• tES. The derivation ends in:

π1

Γ1 ⊕ y ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[y\t2] : τ

We consider two cases:

– E = E1[y\t2] with x 6= y. We conclude from the i.h. on π1.

– E = E1[[y]][y\E2]. From the i.h. on π1 we deduce M 6= []. Thus we can conclude from
the i.h. on any π2 ∈ Π2.

Lemma 34 (Derivation Normal Forms). If π(Γ; Σ ` t : τ) and t is π-normal, then one of the
following holds:

• t is an answer

• t is a weak structure (i.e. t = E[x])

• t is a weak error term (i.e. t = F[case s of b̄], s is an answer or a weak structure, and
s � b̄).

Proof. By induction on π.

• tVar. Then E = � and t is a weak structure.

• tAbs and tCons. Then t is an answer.

• tApp. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ @M⇒ τ Γ2; Σ ` t2 :M

tApp
Γ1Γ2; Σ ` t1 t2 : τ

Note that t1 is π1-normal. By the i.h., t1 is either a:

– weak structure with weak context E′ and we set E = E′ t2 and conclude; or

– weak error term with weak context F′ and we set F = F′ t2 and conclude; or

– constant answer (it cannot be an abstraction answer since otherwise t would not be
π-normal) and we conclude directly since then t is a constant answer.

34



• tFix. The result holds vacuously since t is assumed π-normal.

• tCase. The derivation ends in:

π1

Γ1; Σ ` s : σ
σ 〈b̄〉 Γ2; Σ, τ

tCase
Γ1Γ2; Σ ` case s of b̄ : τ

Note that s is π1-normal. By the i.h. one of the following cases holds:

– s is an answer. By Lem. 20, s can take one of two forms:

∗ s = A[c]L. Then σ = cM1 . . .Mn where n = |A[c]L|. Since s does not enable b̄,
then it must be the case that σ does not match b̄.

∗ s = (λx.s′)L. Then σ =M→ ρ, for some M and ρ.

Thus t is a weak error term with F = �.

– s is a weak structure with weak context E′. We set F = � and conclude.

– s is a weak error term with weak error context F′. We set F = case F′ of b̄ and conclude.

• tES. The derivation ends in:

π1

Γ1 ⊕ y ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[y\t2] : τ

Note that t1 is π1-normal. By the i.h. one of the following cases holds:

– t1 is an answer. Then so is t.

– t1 is a weak structure. We have two further cases to consider:

∗ t1 = E1[x], with x 6= y. Then we set E := E1[y\t2] and conclude that t is a weak
structure.

∗ t1 = E1[y]. From Lem. 33 applied to π1, M 6= []. From the i.h. on any derivation
in Π2, the fact that weak contexts are full contexts, and the fact that t is π-normal,
t2 must be a weak structure or weak error term. This concludes the case.

– t1 is a weak error term. Then t1 = F1[case...]. Then we set F := F1[y\t2] and conclude
that t is a weak error term.

Remark 35. c /∈ P(τ) implies τ is not a datatype. In other words, τ is of the form α, M→ σ
or E.

Recall that τ is good if c /∈ P(τ) and [] /∈ N (τ). We say M is good if each τ ∈ M. Also, we
say M is an error type when each τ ∈M is an error type.

Lemma 36 (Good/Error head variables in weak structures). Suppose π(Γ; Σ ` t : τ), t is a weak
structure E[x] and t is π-normal.
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1. If Γ(x) is good, then τ is good.

2. If Γ(x) is an error type, then τ is an error type

Proof. We proceed by induction on π.

• TVar. Then result is immediate.

• tAbs, tCons, tFix, tCase. The result is immediate since abstractions, constants, fixed
point expressions and case expressions are not weak structures.

• tApp. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ @M⇒ τ Γ2; Σ ` t2 :M

tApp
Γ1Γ2; Σ ` t1t2 : τ

Then E = E′ t2 and E′[x] = t1. From the i.h. on π1 we have two cases:

– Suppose Γ(x) is good. Then σ is good. From c /∈ P(σ) and Rem. 35, σ is either of the
form (a) α; or (b) M→ ρ; or (c) E. Case (a) is not possible since σ @M⇒ τ would
not be defined. From case (b) we deduce that τ = ρ and hence c /∈ P(τ). For case
(c), we deduce c /∈ P(τ) from c /∈ P(σ) since τ ' σ. The predicate [] /∈ N (τ) may be
deduced similarly. Hence τ is good.

– Suppose Γ(x) is an error type. Then σ is an error type and hence so is τ .

• tES. The derivation ends in:

π1

Γ1 ⊕ y ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[y\t2] : τ

We know that either:

– E = E1[y\t2] with x 6= y; or

– E = E1[[y]][y\E2];

In the first case we apply the i.h. to π1 and conclude. In the second item, first note that from
Lem. 33 on π1, M 6= []. From the i.h. on each derivation in Π2 (t2 is also a weak structure),
either M is good or an error type. We can then apply the i.h. on π1 and conclude.

Γ is good if Γ = ΓgΓe and ∀x ∈ dom Γg, Γg(x) is good and ∀x ∈ dom Γe, Γe(x) is an error type.

Lemma 37 (Weak error terms have error types). Suppose π(Γ; Σ ` t : τ), t is a weak error term,
t is π-normal and Γ is good, then τ is an error type.

Proof. We proceed by induction on π.
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• TVar, tAbs, tCons, and tFix. The result is immediate since variables, abstractions,
constants and fixed point expressions are not weak error terms.

• tApp. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ @M⇒ τ Γ2; Σ ` t2 :M

tApp
Γ1Γ2; Σ ` t1t2 : τ

Then F = F′ t2 and F′[case] = t1. From the i.h. on π1 we know σ is an error type. Hence, so
is τ .

• tCase. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ 〈b̄〉 Γ2; Σ, τ

tCMatch
Γ1Γ2; Σ ` case t1 of b̄ : τ

We have two cases:

– F = case F′ of b̄ and F′[case] = t1. From the i.h. on π1 we deduce that σ is an error
type. Hence so is τ .

– F = �. We have two cases:

∗ t1 is an answer. By Lem. 20,

· If t1 = A[c]L, then σ = cM1 . . .Mn where n = |A|. Since t1 does not enable b̄,
then it must be the case that σ does not match b̄. Then τ is an error type.

· If t1 = (λx.s)L, then σ =M→ ρ. Same as above.

∗ t1 is a weak structure. By Lem. 36 σ is either good or an error type. In either case,
τ is an error type.

• tES. The derivation ends in:

π1

Γ1 ⊕ y ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[y\t2] : τ

We have two cases

– F = F1[y\t2]. If M = [], we conclude from the i.h. on π1. Suppose that M 6= []. By
Lem. 34 and the fact that t is in π-normal form, t2 must be a weak structure or weak
error term and y ∈ fv(t1). Indeed, if y /∈ fv(t1), then t would be a gc redex; if y ∈ fv(t1)
and t2 were an answer, we would have a lsv redex. If t2 is a weak structure, then by
Lem. 36 M is either good or a multiset of error types. If t2 is a weak error term, then
by the i.h. M is an error type. In any case, we can apply the i.h. on π1 and conclude.

– F = E1[[y]][y\F2]. From Lem. 33 on π1 we know M 6= []. We apply the i.h. on all
derivations in Π2 and deduce that M are error types. From Lem. 36 we conclude, that
is, τ is an error type.
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Lemma 38 (Coverage for weak structures). Suppose π(Γ; Σ ` t : τ), t is a weak structure E[x], t
is π-normal and Γ(x) is good or an error type and coveredΣ(Γ(x)). Then coveredΣ(τ).

Proof. We proceed by induction on π.

• TVar. Then result is immediate.

• tAbs, tCons, tFix, tCase. The result is immediate since abstractions, constants, fixed
point expressions and case expressions are not weak structures.

• tApp. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ @M⇒ τ Γ2; Σ ` t2 :M

tApp
Γ1Γ2; Σ ` t1t2 : τ

Then E = E′ t2 and E′[x] = t1. From the i.h. on π1 we know that coveredΣ(σ). From Lem. 36
on π1 we have two cases:

– σ is good. From Rem. 35, σ is either of the form (a) α; or (b) M→ ρ; or (c) E. Case
(a) is not possible since σ @ M ⇒ τ would not be defined. From case (b) we deduce
that τ = ρ and hence coveredΣ(τ) follows from coveredΣ(σ). For case (c), since τ ' σ,
then again coveredΣ(τ) follows from coveredΣ(σ).

– σ is an error type. Then τ ' σ and hence coveredΣ(τ) follows from coveredΣ(σ).

• tES. The derivation ends in:

π1

Γ1 ⊕ y ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[y\t2] : τ

We know that either:

– E = E1[y\t2] with x 6= y; or

– E = E1[[y]][y\E2];

In the first case we apply the i.h. to π1 and conclude. In the second item, first note that
from Lem. 33 on π1, M 6= []. From Lem. 36 on any derivation in Π2, (t2 is also a weak
structure), M is either good or an error type. Also, from the i.h. on each derivation in Π2,
coveredΣ(M). We can then apply the i.h. on π1 and conclude.

Lemma 39 (Coverage for weak error terms). Suppose π(Γ; Σ ` t : τ), t is a weak error term, t is
π-normal and Γ is good and coveredΣ(Γ). Then coveredΣ(τ).

Proof. We proceed by induction on π.
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• TVar, tAbs, tCons, tFix. The result is immediate since variables, abstractions, constants
and fixed point expressions are not weak error terms.

• tApp. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ @M⇒ τ Γ2; Σ ` t2 :M

tApp
Γ1Γ2; Σ ` t1t2 : τ

Then F = F′ t2 and F′[case..] = t1. From the i.h. on π1 we know that coveredΣ(σ). From
Lem. 37 σ is an error type. Then τ ' σ and hence coveredΣ(τ).

• tCase. The derivation ends in:

π1

Γ1; Σ ` t1 : σ
σ 〈b̄〉 Γ2; Σ, τ

tCMatch
Γ1Γ2; Σ ` case t1 of b̄ : τ

We have two cases:

– F = case F′ of b̄ and F′[case] = t1. From Lem. 37 σ is an error type. Then τ ∈ Σ and
hence coveredΣ(τ).

– F = �. There are two cases:

∗ t1 is an answer. By Lem. 20,

· If t1 = A[c]L, then σ = cM1 . . .Mn where n = |A|. Since t1 does not enable b̄,
then it must be the case that σ does not match b̄. Same as above.

· If t1 = (λx.s)L, then σ =M→ ρ. Same as above.

∗ t1 is a weak structure. From Lem. 36 σ is either good or an error type. In any case,
σ does not match b̄. Then τ ∈ Σ and hence coveredΣ(τ).

• tES. The derivation ends in:

π1

Γ1 ⊕ y ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1Γ2; Σ ` t1[y\t2] : τ

We have two cases:

– F = F1[y\t2]. Then y ∈ fv(t1) and t2 is a weak structure or a weak error term. Indeed,
if y /∈ fv(t1), then t would be a gc redex; if y ∈ fv(t1), and t2 were an answer, we
would have a lsv redex. If t2 is a weak structure, then by Lem. 36 M is either good
or a multiset of error types. Moreover, by Lem. 38, coveredΣ(M). If t2 is a weak error
term, then by Lem. 37 M is an error type. From the i.h. on any derivation in Π2,
coveredΣ(M). Hence coveredΣ(Γ1 ⊕ y ::M). In any case, we can apply the i.h. on π1

and conclude.

– F = E1[[y]][y\F2]. From Lem. 33 applied to π1,M 6= []. By the i.h. on Π2, coveredΣ(M).
By Lem. 37 M is an error type. We then conclude from Lem. 38 on π1.
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We make use of the following weakened notion of good. A judgement Γ; Σ ` t : τ is said to be
good-minus if:

• Γ is good (i.e. Γ = ΓgΓe and ∀x ∈ dom Γg, Γg(x) is good and ∀x ∈ dom Γe, Γe(x) is an error
type).

• [] /∈ P(Σ).

• c /∈ N (Σ).

• coveredΣ(Γ).

In order to compare it with the previous notion of a good judgement, we recall its definition
below: A judgement Γ; Σ ` t : τ is said to be good if

• Γ is good (i.e. Γ = ΓgΓe and ∀x ∈ dom Γg, Γg(x) is good and ∀x ∈ dom Γe, Γe(x) is an error
type).

• [] /∈ P(Σ, τ).

• c /∈ N (Σ, τ) and

• coveredΣ(Γ) and coveredΣ(τ).

Lemma 40. Suppose π(Γ; Σ ` t : τ), t is π-normal.

1. If t is an abstraction answer and Γ; Σ ` τ is good, then t ∈ L.

2. If t is a constant answer and Γ; Σ ` τ is good, then t ∈ K.

3. If t is a weak structure and Γ; Σ ` τ is good-minus, then t ∈ S.

4. If t is a weak error term and Γ; Σ ` τ is good-minus, then t ∈ E.

5. Moreover, if x ∈ fv(t), then x has some typed occurrence in π.

Proof. By induction on π.

• tVar. Then t = y and t is a weak structure. Clearly y ∈ S. Moreover, y has a typed
occurrence in π.

• tAbs. Then t = λx.s and the derivation π ends as follows:

π1

Γ⊕ x ::M; Σ ` s : σ
tAbs

Γ; Σ ` λx.s :M→ σ

Clearly, s must be π1-normal.

Claim: Γ1 ⊕ x :: M; Σ ` σ is good. Γ ⊕ x :: M good follows from Γ good and M good;
the latter follows from [] 6∈ P(M → σ) and c /∈ N (M → σ). [] 6∈ P(Σ, σ) follows from
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[] /∈ P(Σ,M → σ). Likewise, c /∈ N (Σ, σ) follows from c /∈ N (Σ,M → σ). Finally,
coveredΣ(Γ⊕ x :M, σ) follows from coveredΣ(Γ,M→ σ).

Thus by the i.h. and nfCons,nfLam,nfStruct,nfError, depending on whether s is an
answer, a weak structure or weak error term s ∈ N and we conclude using lNfLam.

If y ∈ fv(t), then y ∈ fv(s \ {x}) and we may conclude that y has some typed occurrence in
π from the i.h..

• tCons. Then Γ = ∅ and t = c and clearly c ∈ K. Note that c /∈ N (c).

• tApp. Then t = t1 t2 and the derivation π ends in

π1

Γ1; Σ ` t1 : σ

π2

σ @M⇒ τ

Π3

Γ2; Σ ` t2 :M
tApp

Γ1 + Γ2; Σ ` t1 t2 : τ

where Γ = Γ1 + Γ2. Since, t is not an abstraction answer, by Lem. 34, we consider two cases:

– t is a constant answer. Note that t1 must be a constant answer too and t1 is π1-
normal since t is π-normal. From Lem. 20(1) on π1, σ = cM1 . . .Mn. Therefore,
τ = cM1 . . .MnM.

Claim: Γ1; Σ ` σ is good. [] 6∈ P(Σ, τ) implies [] 6∈ P(Σ, σ); likewise c /∈ N (Σ, τ)
implies c /∈ N (Σ, σ). Γ1 good follows from Γ good. Finally, from coveredΣ(Γ, τ) we
know coveredΣ(Γ1, σ).

We may thus apply the i.h. on π1 to obtain t1 ∈ K.

Claim: Γ2; Σ ` M is good. [] 6∈ P(Σ, τ) also implies M 6= []. That Γ2; Σ ` ρ good, for
all ρ ∈M, may be proved as above.

This allows us to apply the i.h. to any derivation in Π3 and deduce t2 ∈ N. We conclude
t ∈ S from rule sNfApp.

Note that x ∈ fv(t) implies x ∈ fv(t1) or x ∈ fv(t2). For item (5) we conclude from the
i.h. on π1 or π2 in Π3.

– t is a weak structure. Then t1 is also a weak structure and Γ1 is good. From Lem. 36
on π1, we have two cases:

∗ σ is good:

c /∈ P(σ) (11)

[] /∈ N (σ) (12)

Claim: Γ2; Σ ` M is good. From (11) and Rem. 35, σ is of one of the following
forms: α, M → τ , or E. The first case is not possible since then σ @ M ⇒ τ
would not be defined. Suppose σ = M → τ . From (12) we deduce [] 6∈ P(M).
From (11) we deduce c /∈ N (M). Hence [] /∈ P(Σ,M) and c /∈ N (Σ,M), since by
hypothesis we already know that [] /∈ P(Σ) and c /∈ N (Σ). By Lem. 38 on π1 we
also know that coveredΣ(M→ τ); hence also coveredΣ(M). Γ2 good follows from
Γ good. This proves the claim that Γ2; Σ ` M is good.
This allows us to apply the i.h. to any derivation in Π3 and deduce t2 ∈ N.
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∗ σ is an error type 〈e τ (M̄i ⇒ σi)i∈I ρ1 . . . ρj〉 ρj+1 . . . ρk and M = [ρj+1]. Then
σ ' τ .
Claim: Γ2; Σ ` M is good. By Lem. 38, coveredΣ(σ) and hence also coveredΣ(ρj+1).
From [] 6∈ P(Σ) and c /∈ N (Σ) we deduce [] 6∈ P(ρj+1) and c /∈ N (ρj+1). Thus
[] 6∈ P(Σ, ρj+1) and c /∈ N (Σ, ρj+1). Γ2 good follows from Γ good.
This allows us to apply the i.h. to the only derivation in Π3 and deduce t2 ∈ N.

Since t1 is a weak structure we now prove that Γ1; Σ ` t1 : σ is good-minus.

Claim: Γ1; Σ ` t1 : σ is good-minus. Γ1 good follows from Γ good. coveredΣ(Γ1) follows
from coveredΣ(Γ). [] /∈ P(Σ) and c /∈ N (Σ) follows from the same assumptions.

From the i.h. on π1, t1 ∈ S. Using sNfApp or eNfApp concludes the case.

Suppose now that x ∈ fv(t). Then either x ∈ fv(t1) or x ∈ fv(t2). We conclude that x
occurs typed in π from either the i.h. on π1 or any derivation in Π3.

– t is a weak error term. Claim: Γ2; Σ ` M is good. Since t1 is also a weak error term and
Γ1 is good, from Lem. 37 on π1, σ is an error type 〈e τ (M̄i ⇒ σi)i∈I ρ1 . . . ρj〉 ρj+1 . . . ρk
and M = [ρj+1]. From Lem. 39, coveredΣ(σ). c /∈ N (Σ) and [] /∈ P(Σ) follow from the
same assumptions. c /∈ N (τ) and [] /∈ P(τ) follow from coveredΣ(σ) and c /∈ N (Σ) and
[] /∈ P(Σ).

This allows us to apply the i.h. to the only derivation in Π3 and deduce t2 ∈ N.

Finally, since t1 is also a weak error term and Γ1; Σ ` t1 : σ is good-minus, from the i.h.
on π1, t1 ∈ E. Using eNfApp concludes the case.

Suppose now that x ∈ fv(t). Then either x ∈ fv(t1) or x ∈ fv(t2). We conclude that x
occurs typed in π from either the i.h. on π1 or any derivation in Π3.

• tFix. This case is not possible since otherwise t would not be π-normal.

• tCase. The derivation ends as follows, where b̄ abbreviates (cix̄i ⇒ si)i∈I .

π1

Γ1; Σ ` s : σ

π2

σ 〈b̄〉 Γ2; Σ, τ
tCMatch

Γ1 + Γ2; Σ ` case s of b̄ : τ

Since t is not an answer and is a case expression, by Lem. 34, t is a weak error term. We
consider three cases.

– s is an answer. From Lem. 20 on π1, either σ =M→ ρ or σ = cM1 . . .Mn. Neither
of these types match b̄ and, therefore, from σ 〈b̄〉 Γ2; Σ2, τ we deduce

∗ τ = 〈eσ (M̄i ⇒ σi)i∈I〉 ρ1 . . . ρk and

∗ π2i(Γ2i ⊕ x̄i :: M̄i; Σ ` si : σi)i∈I , with Γ2 =
∑
i∈I Γ2i and τ ∈ Σ.

Claim: Γ1; Σ ` s : σ is good. Since coveredΣ(τ), also coveredΣ(σ). Since [] 6∈ P(Σ),
then [] 6∈ P(σ). Similarly, since c 6∈ N (Σ), then c 6∈ N (σ). Hence [] 6∈ P(Σ, σ) and
c 6∈ N (Σ, σ). Finally, Γ1 good follows from Γ good. Therefore Γ1; Σ ` σ is good.

Moreover, since t is π-normal, s is π1-normal and we can apply the i.h. obtaining
s ∈ L ∪ K.

Claim: Γ2i ⊕ x̄i :: M̄i; Σ ` si : σi, is good for each i ∈ I. Indeed, [] /∈ N (M̄i) and
c /∈ P(M̄i) and c /∈ N (σi) and [] /∈ P(σi) follow from coveredΣ(σ) and [] /∈ P(Σ) and
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c /∈ N (Σ). Hence M̄i is good for each i ∈ I. Also, coveredΣ(τ) implies coveredΣ(M̄i, σi).
Finally, Γ2i good follows from Γ good.

Also, t is π-normal implies si are π2i-normal. We can apply the i.h. obtaining si ∈ N.

We conclude from eNfStrt.

– s is a weak structure. Since Γ1 is good, then from Lem. 36 on π1, we have two cases:

∗ σ is good:

c /∈ P(σ) (13)

[] /∈ N (σ) (14)

Claim: Γ2i ⊕ x̄i :: M̄i; Σ ` si : σi, is good for each i ∈ I. From (11) and Rem. 35,
σ is of one of the following forms: α, M → τ or E. The first case is not possible
since then σ @ M ⇒ τ would not be defined. Suppose σ = M → τ . From (14)
we deduce [] 6∈ P(M). From (13) we deduce c /∈ N (M). Hence [] /∈ P(Σ,M) and
c /∈ N (Σ,M), since by hypothesis we already know that [] /∈ P(Σ) and c /∈ N (Σ).
By Lem. 38 on π1 we also know that coveredΣ(M→ τ); hence also coveredΣ(M).
The remaining items in order to prove that Γ2; Σ ` t2 :M is good is addressed as
in the case where t1 is a constant answer. This allows us to apply the i.h. to any
derivation in Π3 and deduce t2 ∈ N.

∗ σ is an error type 〈e τ (M̄i ⇒ σi)i∈I ρ1 . . . ρj〉 ρj+1 . . . ρk and M = [ρj+1]. Then
σ ' τ .
Claim: Γ2i ⊕ x̄i :: M̄i; Σ ` si : σi, is good for each i ∈ I. By Lem. 38, coveredΣ(σ).
From [] 6∈ P(Σ) and c /∈ N (Σ) we deduce [] 6∈ P(ρj+1) and c /∈ N (ρj+1). Thus
[] 6∈ P(Σ, ρj+1) and c /∈ N (Σ, ρj+1). Γ2 good follows from Γ good. Finally, from
coveredΣ(σ) we know that also coveredΣ(ρj+1).
This allows us to apply the i.h. to the only derivation in Π3 and deduce t2 ∈ N.

Moreover, Γ1; Σ ` t1 : σ can be shown to be good. From the i.h. on π1, t1 ∈ S. Using
sNfApp or eNfApp concludes the case.

Suppose now that x ∈ fv(t). Then either x ∈ fv(s) or x ∈ fv(b̄). We conclude that x
occurs typed in π from either the i.h. on π1 or any derivation in Π3.

– s is a weak error term.

Claim: Γ2i⊕ x̄i :: M̄i; Σ ` si : σi, is good for each i ∈ I. Since Γ1 is good, from Lem. 37
on π1, σ is an error type 〈e τ (M̄i ⇒ σi)i∈I ρ1 . . . ρj〉 ρj+1 . . . ρk ∈ Σ. From Lem. 39,
coveredΣ(σ). From the c /∈ N (Σ) we deduce c /∈ N (ρj+1). From the [] /∈ P(Σ) we
deduce [] /∈ P(ρj+1). This allows us to apply the i.h. to the only derivation in Π3 and
deduce t2 ∈ N.

Finally, since t1 is also a weak error term and Γ1; Σ ` t1 : σ is good, from the i.h. on
π1, t1 ∈ E. Using eNfApp concludes the case.

• tES.

π1

Γ1 ⊕ y ::M; Σ ` t1 : τ

Π2

Γ2; Σ ` t2 :M
tES

Γ1 + Γ2; Σ ` t1[y\t2] : τ
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Since t is in π-normal form, y ∈ fv(t1) and t2 cannot be an answer. Note that M 6= []: if
M = [], then Γ1; Σ ` τ good-minus follows from Γ; Σ ` τ good [-minus] and we could apply
the i.h. w.r.t item (5) and deduce that y has a typed occurrence in π1, in which caseM 6= [].
By Lem. 34 on any derivation in Π2 and the fact that t2 is not an answer, t2 must be a weak
structure or a weak error term.

We prove Γ2; Σ ` t2 :M is good-minus. Γ2 good follows from Γ good. coveredΣ(Γ2) follows
from coveredΣ(Γ). Finally, [] /∈ P(Σ) and c /∈ N (Σ) are immediate from the same hypothesis.
From the i.h. on any derivation in Π2 we have

t2 ∈ N (15)

We next verify that Γ1 ⊕ y ::M is good.

– t2 is a weak structure. Since Γ2 is good, by Lem. 36, M is good or is an error type.
Then Γ1 ⊕ y ::M is good.

– t2 is a weak error term. By Lem. 37 M is an error type. Γ1 good follows from Γ good.
Thus we know that Γ1 ⊕ x ::M is good.

We next consider various cases:

– t is an abstraction answer. Claim: Γ1 ⊕ x :: M; Σ ` τ is good. [] /∈ P(Σ, τ) and
c /∈ N (Σ, τ) are immediate from the same hypothesis. Lem. 38 and Lem. 39 on Π2

allow us to deduce that coveredΣ(M). coveredΣ(Γ1) follows from coveredΣ(Γ). Thus
coveredΣ(Γ1 ⊕ y ::M).

The i.h. on π1 gives us t1 ∈ L. We conclude from this, (15) and nfSub.

– t is a constant answer. Claim: Γ1 ⊕ x :: M; Σ ` τ is good. As above. The i.h. on π1

gives us t1 ∈ K. We conclude from this, (15) and nfSub.

– t is a weak structure. Claim: Γ1 ⊕ x ::M; Σ ` τ is good-minus. As above. The i.h. on
π1 gives us t1 ∈ S. We conclude from this, (15) and nfSub.

– t is a weak error term. Claim: Γ1 ⊕ x :: M; Σ ` τ is good-minus. As above. The i.h.
on π1 gives us t1 ∈ E. We conclude from this, (15) and nfSub.

Suppose x ∈ fv(t). Then either x ∈ fv(t1) or x ∈ fv(t2). In either case we use the i.h..

Lemma 41. If π(Γ; Σ ` t : τ), t is in π-normal form and Γ; Σ ` t : τ is good, then t ∈ NF(→sh).

Proof. Consequence of Lem. 40 and Lem. 13.

Theorem 42 (Step 2). If π(Γ; Σ ` t : τ) and Γ; Σ ` t : τ is good, then t is definable in λsh.

Proof. By induction on the size of π. First, from Lem. 41, if t /∈ NF(→sh), then t must have a
typed redex occurrence in π. Let t→sh s. From Lem. 31 there exists ξ such that ξ(Γ; Σ ` s) and
M(ξ) < M(π). We conclude from the i.h. on s.

Assembling Step 1 and Step 2 we obtain:
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Figure 5 Evaluation Contexts

eBox
� ∈ C·ϑ

C ∈ Chϑ h 6= λ
eAppL

C t ∈ Chϑ

t ∈ Sϑ ∪ Eϑ C ∈ Chϑ
eAppRStruct

t C ∈ C·ϑ

t ∈ Kϑ C ∈ Chϑ
eAppRCons

t C ∈ Chc(t)ϑ

C ∈ Chϑ t /∈ Sϑ ∪ Eϑ x /∈ ϑ
eSubsLNonStruct

C[x\t] ∈ Chϑ

C ∈ Chϑ∪{x} t ∈ Sϑ ∪ Eϑ
eSubsLStruct

C[x\t] ∈ Chϑ

C1 ∈ Chϑ C2 ∈ C·ϑ
eSubsR

C1[[x]][x\C2] ∈ Chϑ

C ∈ Chϑ∪{x}
eLam

λx.C ∈ Cλϑ

C ∈ Chϑ h /∈ {ci}i∈I or h = cj ∈ {ci}i∈I and |C[y]| 6= |x̄j |
eCase1

case C of (cix̄i ⇒ si)i∈I ∈ C·ϑ

t ∈ Nϑ t � (cix̄i ⇒ si)i∈I tk ∈ Nϑ∪x̄k
for all k < j C ∈ Chϑ∪x̄i

eCase2
case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C, . . . , cnx̄n ⇒ tn ∈ C·ϑ

Theorem 43 (Soundness of λsh w.r.t. λe). Let t be a term in Λe. If t ∈ WN(→e), then t ∈ WN(→sh).
More precisely, if t �e ne, where ne ∈ Λsh is a →e-normal form, then t �sh nsh, where nsh is a
→sh-normal form. Moreover, n�sh = ne.

Proof. Let t �e ne, where ne is in →e-nf. Then π(Γ; Σ ` t : τ) and Γ; Σ ` τ is good by Thm. 25.
But then t is weakly →sh-normalising by Thm. 42, so that t �sh nsh, where nsh is in →sh-nf. By
Lem. 14(1) t� �β n�sh and by Lem. 14(2) n�sh ∈ NF(→e). Since t� = t �β ne and t� �e n

�
sh, then

we conclude n�sh = ne because →e is Church-Rosser.

5 The Strong Call-by-Need Strategy

The strong call-by-need strategy �ϑ
sh is a binary relation over terms in Λsh and is parameterized

over a set ϑ of variables called frozen variables. It is defined by means of reduction rules similar
to those given for the theory of sharing (Def. 10) only that the garbage collection rule is absent
and reduction is restricted to a subset of the set of full contexts called evaluation contexts. We
next describe evaluation contexts. Note that although they rely on a given set of normal forms,
for expository purposes, we first describe the evaluation contexts and then characterize its normal
forms.

Definition 44. Evaluation context judgments are expressions of the form C ∈ Chϑ where C is
a full context, ϑ is a set of variables and h is a symbol called discriminator of the context. This
symbol may be one of ‘·’, ‘λ’ or any constant c,d, . . . and will prove convenient to discriminate the
head symbol in the context; evaluation context formation rules will place requirements on them. An
evaluation context is a context C such that the evaluation context judgement C ∈ Chϑ is derivable
using the rules in Fig. 5.
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eBox states that any redex at the root is needed (we may disregard ϑ and ‘·’ for now). Rule
eApp-L allows reduction to take place to the left of an application. We must make sure that C is
not an abstraction. This is achieved by requiring that h 6= λ (cf. eLam and how all rules persist
h). Rule eAppRStruct allows reduction to take place to the right of an application when it is an
argument of a term t that is a structure normal form or an error normal form. The ‘·’ in t C ∈ C·ϑ
reflects that t is not headed by a constant and that t C is not an abstraction. Rule eAppRCons is
similar only that the discriminator is set to the head variable of t via hc(t) and will be consulted
when deciding if reduction can take place in the condition of a case (cf. eCase1). This function
is defined as: hc(c) := c, hc(t s) := hc(t) and hc(t[x\s]) := hc(t). Note that hc(A[c]L) = c.

The role of frozen variables is best explained in the setting of eSubsLNonStruct and eSubsLStruct.
In a term t such as x[x\y s], clearly y s is not to be substituted for x since it is not an answer.
Thus, computation has to proceed in s. However, if t is placed under an explicit substitution,
then whether we should reduce s depends on its context. For example, we do want to reduce it in
x[x\y s][y\z] but not in x[x\y s][y\λz.c] since λz.c does not use s. These two examples motivate
eSubsLStruct (z is a structure normal form) and eSubsLNonStruct (λz.c is not a structure
normal form nor an error term). Also note that in order for the focus of computation to be placed
to the right of y in y s, we must know that y will never be substituted for, or else, that it is frozen.
Rule eSubs-R allows computation to take place in the body of an explicit substitution.

There is no rule for fix(x.t) since reduction must take place at the root in a term such as that.
Regarding case expressions, in order for reduction to take place in the condition we must ensure
that reduction at the root is not possible (cf. eCase1). This is achieved by requiring that the
discriminator either is not a constant listed in the branches (h /∈ {ci}i∈I) or that, if it is, then
the number of expected arguments by the branch are not met (|C[y]| 6= |x̄j |). The notation |C[y]|
counts the number of arguments in the spine of the term C[y]. It is defined as follows:

|x| := 0
|c| := 0

|λx.t| := 0
|t s| := 1 + |t|

|fix(x.t)| := 0
|t[x\s]| := |t|

|case t of b̄| := 0

We know that in fact C[y] is a constant answer:

Lemma 45 (Answer contexts are answers). Suppose C ∈ Chϑ .

• If h = c, then, for any term t, there exist A and L s.t. C[t] = A[c]L.

• If h = λ, then, for any term t, there exists a variable x, term s and substitution context L

s.t. C[t] = (λx.s)L. Moreover, C is either of the form (λx.C′)L or (λx.t)L1[y\C′]L2.

Proof. By induction on the derivation of C ∈ Chϑ . Note that since h ∈ {c, λ}, this derivation cannot
end in any of the rules eBox, eAppRStruct, eCase1, or eCase2. The remaining cases are
addressed below.

• eAppL. The derivation is as follows:

C ∈ Chϑ h 6= λ
eAppL

C s ∈ Chϑ

Then the first item holds and by the i.h. there exist A′ and L′ s.t. C[t] = A′[c]L′. We set
A := A′L′ s and L := ε.
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• eAppRCons. The derivation is as follows:

t ∈ Kϑ C ∈ Chϑ
eAppRCons

t C ∈ Chc(t)ϑ

The first item holds. The result follows from Lem. 60.

• eSubsLNonStruct. The derivation is as follows:

C ∈ Chϑ s /∈ Sϑ ∪ Eϑ x /∈ ϑ
eSubsLNonStruct

C[x\s] ∈ Chϑ

– If h = c, by the i.h., for any t, there exist A′ and L′ s.t. C[t] = A′[c]L′. We set A := A′

and L := L′[x\s].
– If h = λ, by the i.h. there exists a variable y, term u′ and substitution context L′ s.t.

C[t] = (λy.u′)L′. Moreover, C is either of the form (λy.C′)L′ or (λy.u′)L1[y\C′]L2. We set
u = u′ and L = L′[x\s] and conclude.

• eSubsLStruct. The derivation is as follows:

C ∈ Chϑ∪{x} t ∈ Sϑ ∪ Eϑ
eSubsLStruct

C[x\s] ∈ Chϑ

– If h = c, then by the i.h., for any t, there exist A′ and L′ s.t. C[t] = A′[c]L′. We set
A := A′ and L := L′[x\s].

– If h = λ, by the i.h. there exists a variable y, term u′ and substitution context L′ s.t.
C[t] = (λy.u′)L′. Moreover, C is either of the form (λy.C′)L′ or (λy.u′)L1[y\C′]L2. We set
u = u′ and L = L′[x\s] and conclude.

• eSubsR. The derivation is as follows:

C1 ∈ Chϑ C2 ∈ C·ϑ
eSubsR

C1[[x]][x\C2] ∈ Chϑ

– If h = c, then by the i.h. on the derivation of C1 ∈ Chϑ with t = x, we deduce that there
exist A′ and L′ s.t. C1[[x]] = A′[c]L′. Given any t, we set A := A′ and L := L′[x\C2[t]].

– If h = λ, by the i.h., we pick t = x and hence there exists a variable y, term u′ and
substitution context L′ s.t. C[[x]] = (λy.u′)L′. Moreover, C is either of the form (λy.C′)L′

or (λy.u′)L1[y\C′]L2. Given any t, we set u = u′ and L = L′[x\C2[t]] and conclude.

• eLam. The derivation is as follows:

C ∈ Chϑ∪{y}
eLam

λy.C ∈ Cλϑ

The second item holds. We conclude immediately (with L := ε).
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For reduction to proceed in a branch j (cf. eCase2), the condition must be in normal form,
each branch i with i ∈ 1..j must be in normal form and the condition must not enable any branch
(t � (cix̄i ⇒ si)i∈I). Note that the bound variables in branch j, are added to the set of frozen
variables. We now define the strategy itself.

Definition 46. The �ϑ
sh strategy is defined by the following rules.

C[(λx.t)L s] �ϑ
sh C[t[x\s]L] (dB)

if C ∈ Chϑ
C1[C2[[x]][x\vL]] �ϑ

sh C1[C2[v][x\v]L] (lsv)
if C1[C2[�][x\vL]] ∈ Chϑ

C[fix(x.t)] �ϑ
sh C[t[x\fix(x.t)]] (fix)

C[case A[cj ]L of (cix̄i ⇒ si)i∈I ] �ϑ
sh C[sj [x̄j\A]L] (case)

if C ∈ Chϑ and j ∈ I and |A[�]| = |x̄j |

The discriminator h in the conditions of all rules is existentially quantified. The condition
C1[C2[�][x\vL]] ∈ Chϑ in the definition of the lsv-redex carries over from [BBBK17]. It avoids lsv-
reducing (λx.y)[y\id] in (λx.y)[y\id]t so that the outermost dB-reduction step takes precedence
instead. The condition also avoids to lsv-reduce x[x\(λy.yz)[z\id]] on the variable z, so that the
lsv-reduction step on the variable x takes precedence over it. The following result states that the
strategy is deterministic:

Lemma 47 (Determinism). If C1[r1] = C2[r2], where C1, C2 ∈ Chϑ and r1, r2 are redexes, then
C1 = C2 and r1 = r2.

Determinism is a consequence of a slightly more general result, namely Lem. 58. The proof of
the more general result requires introducing some preliminary notions and proofs.

Definition 48 (Variables frozen by an evaluation context). Given an evaluation context C ∈ Chϑ ,

we write fzϑ(C) for the set ϑ extended with all variables bound by abstractions, or bound to weak
structures or weak error terms, in the path from the root to the hole of C. This is defined by
induction in the judgement C ∈ Chϑ (cf. Fig. 5):

fzϑ(�) := ϑ (eBox)

fzϑ(C t) := fzϑ(C) (eAppL)

fzϑ(t C) := fzϑ(C) (eAppRStruct)

fzϑ(t C) := fzϑ(C) (eAppRCons)

fzϑ(C[x\t]) := fzϑ(C) (eSubsLNonStruct)

fzϑ(C[x\t]) := fzϑ∪{x}(C) (eSubsLStruct)

fzϑ(C1[[x]][x\C2]) := fzϑ(C2) (eSubsR)

fzϑ(λx.C) := fzϑ∪{x}(C) (eLam)

fzϑ(case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C, . . . , cnx̄n ⇒ tn) := fzϑ∪{x̄j}(C) (eCase1)

fzϑ(case C of (cix̄i ⇒ si)i∈I) := fzϑ(C) (eCase2)

Lemma 49. fzϑ(C1[C2]) = fzfz
ϑ(C1)(C2)

Proof. By induction on C1.
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Lemma 50 (Decomposition of evaluation contexts). If C1[C2] ∈ Chϑ then C1 ∈ Chϑ and C2 ∈ Ch
′

ϑ′ , for

some h′ and where ϑ′ = fzϑ(C1).

Proof. If C1 is empty, it is immediate that C1 ∈ Chϑ and C2 ∈ Ch
′

ϑ′ with h′ = h and ϑ′ = ϑ = fzϑ(C1),
so we may assume that C1 6= �. We proceed by induction on C1[C2] ∈ Chϑ .

1. Empty, C1[C2] = �. Then C1 is empty, so it is immediate.

2. Left of an application, C1[C2] = C′1[C2] t with C′1[C2] ∈ Chϑ and h 6= λ. By i.h. C′1 ∈ Chϑ , so

C1 = C′1 t ∈ Chϑ . Also by i.h., C2 ∈ Ch
′

ϑ′ with ϑ′ = fzϑ(C′1) = fzϑ(C1).

3. Non-structural substitution, C1[C2] = C′1[C2][x\t] with C′1 ∈ Chϑ, t 6∈ Sϑ ∪ Eϑ, x 6∈ ϑ. By

i.h. C′1 ∈ Chϑ , so C1 = C′1[x\t] ∈ Chϑ . Also by i.h., C2 ∈ Ch
′

ϑ′ with ϑ′ = fzϑ(C′1) = fzϑ(C1).

4. Structural substitution, C1[C2] = C′1[C2][x\t] with C′1[C2] ∈ Chϑ∪{x} and t ∈ Sϑ ∪ Eϑ.

By i.h. C′1 ∈ Chϑ∪{x}, so C1 = C′1[x\t] ∈ Chϑ . Also by i.h., C2 ∈ Ch
′

ϑ′ for some h′ with

ϑ′ = fzϑ∪{x}(C′1) = fzϑ(C1).

5. Inside a substitution, C1[C2] = C[[x]][x\C′1[C2]] with C′1[C2] ∈ Chϑ. By i.h. C′1 ∈ Chϑ so

C1 = C[[x]][x\C′1] ∈ Chϑ . Also by i.h., C2 ∈ Ch
′

ϑ′ for some h′ with ϑ′ = fzϑ(C′1) = fzϑ(C1).

6. Right of a structure, C1[C2] = t C′1[C2] with C′1[C2] ∈ Chϑ and t ∈ Sϑ ∪ Eϑ and h = ·. By

i.h. C′1 ∈ Chϑ so C1 = t C′1 ∈ C·ϑ. Also by i.h., C2 ∈ Ch
′

ϑ′ for some h′ with ϑ′ = fzϑ(C′1) = fzϑ(C1).

7. Right of a constructor answer, C1[C2] = t C′1[C2] with C′1[C2] ∈ Chϑ and t ∈ Kϑ. By i.h.

C′1 ∈ Chϑ so C1 = t C′1 ∈ Chϑ . Also by i.h., C2 ∈ Ch
′

ϑ′ for some h′ and ϑ′ = fzϑ(C′1) = fzϑ(C1).

8. Under an abstraction, C1[C2] = λx.C′1[C2] with C′1[C2] ∈ Ch′′

ϑ∪{x}, for some h′′, and

h = λ. By i.h. C′1 ∈ Ch
′′

ϑ∪{x} so C1 = λx.C′1 ∈ Cλϑ . Also by i.h., C2 ∈ Ch
′

ϑ′ for some h′ with

ϑ′ = fzϑ∪{x}(C′1) = fzϑ(C1).

9. In the branch of a case, C1[C2] = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C′1[C2], . . . , cnx̄n ⇒ tn
and t ∈ Nϑ and t � (cix̄i ⇒ si)i∈I and tk ∈ Nϑ∪x̄k

for all k < j and C′1[C2] ∈ Ch′′

ϑ∪x̄i
and

h = · . By i.h. C′1 ∈ Ch
′′

ϑ∪{x} so C1 = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C′1, . . . , cnx̄n ⇒ tn ∈ C·ϑ.

Also by i.h., C2 ∈ Ch
′

ϑ′ for some h′ with ϑ′ = fzϑ∪{x̄j}(C′1) = fzϑ(C1).

10. In the condition of a case, C1[C2] = case C′1[C2] of (cix̄i ⇒ si)i∈I ∈ C·ϑ and C1[C2] ∈ Ch′′

ϑ

and h′′ /∈ {ci}i∈I or h′′ = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j | and h = · . By i.h. C′1 ∈ Ch
′′

ϑ so

C1 = case C′1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ. Also by i.h., C2 ∈ Ch
′

ϑ′ for some h′ with ϑ′ = fzϑ(C′1) =

fzϑ(C1).

Definition 51 (Reduction place). In a term C[t], with C ∈ Chϑ for some h, the subterm t is said
to be a C-reduction place if any of the following hold:

1. t is the redex pattern of a beta-step, i.e. t = (λx.s)Lu;
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2. t is the variable contracted by an ls-step, i.e. t = x and C = C1[C2[x\vL]], where C2 ∈ Ch
′

ϑ′ for

some h′, and ϑ′ = fzϑ(C1);

3. t is a free variable (not bound by C) such that x 6∈ fzϑ(C);

4. t is the redex pattern of a fix-step, i.e. t = fix(x.s);

5. t is the redex pattern of a case-step, i.e. t = case A[cj ]L of (cix̄i ⇒ si)i∈I and |A[cj ]L| = |x̄j |
and j ∈ I.

Lemma 52 (Reduction places are stable by trimming a context down). Let C1[C2] ∈ Chϑ , and let t
be a C1[C2]-reduction place. Then t is a C2-reduction place.

Proof. Let us consider the five cases in Def. 51 for the fact that t is a C1[C2]-reduction place:

1. If t is the redex pattern of a beta-step. Then t is trivially a C2-reduction place, as being
the redex pattern of a beta-step does not depend on the context.

2. If t is the variable contracted by an ls-step. That is, t = x and x is bound to an answer
vL. There are two cases, depending on whether x is bound by the external context C1 or by
the internal context C2:

(a) If x is bound by C1.
Then x is not bound by C2. To show that t = x is indeed a C2-reduction place, it suffices

to show that x 6∈ fzϑ
′
(C2). By Lem. 49 we know that fzϑ

′
(C2) = fzϑ(C1[C2]). Since x is

bound by C1, let us write C1 = C11[C12[x\vL]]. We know that x 6∈ ϑ by Barendregt’s

convention. By applying Lem. 49 again we obtain that fzϑ(C1[C2]) = fzϑ
′′′

(C12[C2][x\vL]),
where ϑ′′′ = fzϑ(C11). Note that x is not bound by C11, so x 6∈ ϑ′′′.
Now note that vL is an answer but not a structure, so ϑ′′′ = ϑ′′ and fzϑ

′′′
(C12[C2][x\vL]) =

fzϑ
′′
(C12[C2]). Note also that since x 6∈ ϑ′′′ and x is not bound by C12[C2] we know

that x 6∈ fzϑ
′′
(C12[C2]). Finally, we may apply Lem. 49 once more to conclude that

x 6∈ fzϑ
′′
(C12[C2]) = fzϑ

′
(C2), by which we conclude that x is a C2-reduction place, as

required.

(b) If x is bound by C2.
Then t = x is trivially a C2-reduction place, as it is the variable contracted by an ls-step.

3. If t is a free variable x such that x 6∈ fzϑ(C1[C2]). As x is not bound by C1[C2], we have

that x is also not bound by C2. Moreover, by Lem. 49 we have that fzϑ(C1[C2]) = fzfz
ϑ(C1)(C2).

Since the composition C1[C2] is a context in Chϑ , by the decomposition of evaluation contexts

(Lem. 50) we know that fzϑ(C1) = ϑ′, so we conclude that x 6∈ fzϑ(C1[C2]) = fzϑ
′
(C2), so t is

a C2-reduction place, as required.

4. If t is the redex pattern of a fix-step, i.e. t = fix(x.s). Then t is trivially a C2-reduction
place, as being the redex pattern of a fix-step does not depend on the context.

5. If t is the redex pattern of a case-step, i.e. t = case A[cj ]L of (cix̄i ⇒ si)i∈I and
|A[cj ]L| = |x̄j | and j ∈ I. Then t is trivially a C2-reduction place, as being the redex pattern
of a case-step does not depend on the context.
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Lemma 53 (Non-abstraction answer evaluation contexts do not go below abstraction answers).
Let t = vL be an answer. Suppose that t = C[t′] for some context C ∈ C·ϑ, some set of variables
ϑ, and some term t′. Then C is a substitution context, i.e. L can be split as L = L1L2 such that
C = L2.

Proof. By induction on the length of the substitution context L.

1. Empty, L = �. Immediate, by noting that no formation rule for C allows going below an
abstraction except ELam (which concludes with h = λ), so C must be empty.

2. Non-empty, L = L′[y\u]. We consider three cases, depending on the formation rule applied
to build the context C:

(a) Non-structural substitution, i.e. u 6∈ Sϑ∪Eϑ, y 6∈ ϑ and C = C1[y\u] with C1 ∈ Chϑ.
Note that vL′ = C1[t′], so by i.h. C1 must be a substitution context. Then C = C1[y\u]
is also a substitution context.

(b) Structural substitution, i.e. u ∈ Sϑ ∪ Eϑ and C = C1[y\u] with C1 ∈ Chϑ∪{y}.
Similar to the previous case.

(c) Inside the substitution, i.e. C = C1[[y]][y\C2] and C1 ∈ C·ϑ and C2 ∈ C·ϑ. Note that
vL′ = C1[[y]], so by i.h. C1 must be a substitution context L′′. This implies vL′ = C1[[y]] =
yL′′, which is a contradiction.

Corollary 54 (Evaluation contexts do not go below beta-steps). Let t = (λx.s)Lu be the redex
pattern of a beta-step. Suppose that t = C[t′] for some non-empty context C ∈ Chϑ , some set of
variables ϑ, and some term t′. Then L can be split as L = L1L2 such that C = L2 u.

Proof. We consider the three possible formation rules for C as a context in Chϑ :

1. Left of an application (eAppL), i.e. C = C1 r. Then r = u. By the previous Lem. 53 we
have that C1 is a substitution context, and we conclude.

2. Right of a weak structure or error term (eAppRStruct), i.e. C = r C1 and r ∈
Sϑ ∪ Eϑ. Impossible, as (λx.s)L 6∈ Sϑ ∪ Eϑ.

3. Right of a constructor answer (eAppRCons), i.e. C = r C1 and r ∈ Kϑ. Impossible,
as (λx.s)L 6∈ Kϑ.

Lemma 55. If A[c]L = C[t] ∈ Chϑ and t is a variable, beta-redex, fix-redex or case-redex, then h = c.

Proof. By induction on C[t] ∈ Chϑ .

• eBox. Not possible since A[c]L is not a variable, beta-redex, fix or case expression.

• eCase1, eCase2 and eLam. Not possible since A[c]L is not a case expression nor a lambda
expression.
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• eAppL. Follows from the i.h.

C ∈ Chϑ h 6= λ
eAppL

C t ∈ Chϑ

• eAppRStruct.. Not possible since t /∈ Sϑ ∪ Eϑ.

t ∈ Sϑ ∪ Eϑ C ∈ Chϑ
eAppRStruct

t C ∈ C·ϑ

• eAppRCons. Then L = ε and A = A1 u and s = A1[c]. We conclude from the fact that
hc(A1[c]) = c.

s ∈ Kϑ C ∈ Chϑ
eAppRCons

s C ∈ Chc(t)ϑ

• eSubsLNonStruct. From the i.h.

C ∈ Chϑ t /∈ Sϑ ∪ Eϑ x /∈ ϑ
eSubsLNonStruct

C[x\t] ∈ Chϑ

• eSubsLStruct. From the i.h.

C ∈ Chϑ∪{x} t ∈ Sϑ ∪ Eϑ
eSubsLStruct

C[x\t] ∈ Chϑ

• eSubsR. Then A[c]L = C1[[x]][x\C2[t]] implies L = L′[x\C2[t]] and C1[[x]] = A1[c]L′.

C1 ∈ Chϑ C2 ∈ C·ϑ
eSubsR

C1[[x]][x\C2] ∈ Chϑ

We thus conclude from the i.h. on C1 ∈ Chϑ and taking t = x.

Lemma 56 (Evaluation contexts do not go below matching cases). Let t = case A[cj ]L of (cix̄i ⇒
si)i∈I be the redex pattern of a case-step. Suppose that t = C[t′] for some non-empty context C ∈ Chϑ ,
some h, set of variables ϑ, and some term t′ that is a C-reduction place. Then either j /∈ I or
|A[cj ]L| 6= |x̄j |.

Proof. There are only two cases:

1. eCase1 (the branch of a case). Then the condition A[cj ]L � (cix̄i ⇒ si)i∈I of eCase1 of
implies either j /∈ I or |A[cj ]L| 6= |x̄j |.

2. eCase2 (the condition of a case). Then the following conditions hold: A[cj ]L = C1[t′] ∈ Chϑ
and h /∈ {ci}i∈I or h = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j |. The result follows from Lem. 55,
which establishes that h must be a constant.
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Lemma 57 (Strong normal forms have no reduction places under an evaluation context). Let
r ∈ Nϑ be a strong normal form. Then r cannot be written as C[t] such that C ∈ Chϑ and t is a
C-reduction place.

Proof. Suppose that r = C[t], where t is a C-reduction place. Let us check that this is impossible
by induction on C ∈ Chϑ :

1. Empty, i.e. C = �. Then r must be a �-reduction place, for � as a context in Chϑ . Let us
consider the five cases of the definition of �-reduction place:

(a) If r is the redex pattern of a beta-step. The only way to derive r ∈ Nϑ would be
by having r = s r1 with s an answer. But strong structures are not answers, so this case
is impossible.

(b) If r is the variable x contracted by an ls-step. Impossible, as there are no
substitutions to bind x.

(c) If r is a free variable x such that x 6∈ fzϑ(�). Impossible, as this means that x 6∈ ϑ,
but a variable x is a strong normal form in Nϑ if and only if x ∈ ϑ.

(d) r is the redex pattern of a fix-step, i.e. t = fix(x.s). It is not possible to derive
r ∈ Nϑ.

(e) r is the redex pattern of a case-step, i.e. t = case A[cj ]L of (cix̄i ⇒ si)i∈I and
|A[cj ]L| = |x̄j | and j ∈ I. r ∈ Nϑ can only be derived using eNfCase or eNfStrt.
The former is not possible since A[cj ]L /∈ Eϑ and the latter is not possible since the
condition A[cj ]L � (cix̄i ⇒ si)i∈I fails.

2. Left of an application, i.e. C = C1 s and C1 ∈ Chϑ and h 6= λ. The only way to derive
r = C1[t] s is by having C1[t] ∈ Sϑ∪Eϑ∪Kϑ. Moreover, t is a C-reduction place, which implies
that t is also a C1-reduction place (by Lem. 52). So we may apply the i.h. to conclude that
this is impossible.

3. Non-structural substitution, i.e. C = C1[x\s] with s 6∈ Sϑ ∪ Eϑ and x 6∈ ϑ. The only
way to derive r = C1[t][x\s] is by having C1[t] ∈ Nϑ.
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). By i.h. this is not possible.

4. Structural substitution, i.e. C = C1[x\s] and s ∈ Sϑ ∪ Eϑ. The only way to derive
r = C1[t][x\s] is by having C1[t] ∈ Nϑ∪{x}.
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). Thus we may apply the i.h. to conclude that this is impossible.

5. Inside a substitution, i.e. C = C1[[x]][x\C1] and C1 ∈ C·ϑ. The only way to derive

r = C1[[x]][x\C1[t]] is by having C1[[x]] ∈ Nϑ. Note that x 6∈ fzϑ(C1), since x 6∈ ϑ and x cannot
be bound by C1 (by Barendregt’s convention).
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). So we may apply the i.h. to conclude that this is impossible.
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6. Right of a weak structure or weak error term, i.e. C = s C1 and s ∈ Sϑ ∪ Eϑ. The
only way to derive r = s C1[t] is by having C1[t] ∈ Nϑ.
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). So we may apply the i.h. to conclude that this is impossible.

7. Right of a constructor answer, i.e. C = s C1 and s ∈ Kϑ. The only way to derive
r = s C1[t] is by having C1[t] ∈ Nϑ.
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). So we may apply the i.h. to conclude that this is impossible.

8. Under an abstraction, i.e. C = λx.C1. The only way to derive r = λx.C1[t] is by having
C1[t] ∈ Nϑ∪{x}.
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). So we may apply the i.h. to conclude that this is impossible.

9. In the branch of a case, C = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn and

t ∈ Nϑ and t � (cix̄i ⇒ si)i∈I and tk ∈ Nϑ∪x̄k
for all k < j and C′1[C2] ∈ Ch′′

ϑ∪x̄i
and h = ·

. The only way to derive r = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1[t], . . . , cnx̄n ⇒ tn is by
having C1[t] ∈ Nϑ∪{x̄j}.
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). So we may apply the i.h. to conclude that this is impossible.

10. In the condition of a case, C = case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ and C1[C2] ∈ Ch′′

ϑ and
h′′ /∈ {ci}i∈I or h′′ = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j | and h = · . The only way to derive

r = case C1[t] of (cix̄i ⇒ si)i∈I ∈ C·ϑ and C1[C2] ∈ Ch′′

ϑ is by having C1[t] ∈ Nϑ∪{x̄j}.
Moreover, t is a C-reduction place, which implies that t is also a C1-reduction place (by
Lem. 52). So we may apply the i.h. to conclude that this is impossible.

Lemma 58 (Unique decomposition). If C1[t1] = C2[t2] with C ∈ Chϑ for some h, such that ti is a
Ci-reduction place for i ∈ {1, 2}, then (C1, t1) = (C2, t2).

Proof. By induction on the derivation of C1 ∈ Chϑ :

1. eBox (root), C1 = �. By cases on the definition that t1 is a C1-reduction place:

(a) If t1 is the redex pattern of a beta-step. Suppose that C2 were not empty. Let
t1 = (λx.s)Lu. Then C2[t2] = (λx.s)Lu. By Cor. 54 we have that L can be split as
L = L1L2 such that C2 = L2 u. This means that t2 = (λx.s)L1, so t2 cannot be a C2-
reduction place, as it is neither an application nor a variable nor a fix-expression nor a
case expression. Hence this case is impossible.

(b) If t1 is a variable x contracted by an ls-step. This case is not possible, as there is
no substitution binding x.

(c) If t1 is a free variable x such that x 6∈ fzϑ(C1) = ϑ. Immediate, as C2 = � so
t2 = x 6∈ ϑ = fzϑ(C2).

(d) If t1 is the redex pattern of a fix-step. The result is immediate since C2 must be
empty.

54



(e) If t1 is the redex pattern of a case-step. Suppose that C2 were not empty. Let
t1 = case A[cj ]L of (cix̄i ⇒ si)i∈I and |A[cj ]L| = |x̄j | and j ∈ I. Then C2[t2] =
case A[cj ]L of (cix̄i ⇒ si)i∈I . However, by Lem. 56, C2 must be empty.

2. eAppL (left of an application), i.e. C1 = C11 s1 with C11 ∈ Chϑ and h 6= λ. Then
C11 s1 = C2[t2]. By case analysis on the formation rules for C2:

(a) eBox, C2 = �. Impossible (the symmetric situation was already considered in the base
case).

(b) eAppL, i.e. C2 = C21 s with C21 ∈ Chϑ. Then C11[t1] = C21[t2]. The contexts C11 and
C21 are both in Chϑ , and each ti is a Ci1-reduction place (by Lem. 52), so by i.h. we have
(C11, t1) = (C21, t2).

(c) eAppRStruct, i.e. h = ·, C2 = s2 C21 and s2 ∈ Sϑ ∪ Eϑ and C21 ∈ Ch
′

ϑ . This implies
that s2 = C11[t1] where t1 is a C11-reduction place. Terms in Nϑ such as s2 are in normal
form and hence cannot have a reduction place such as t1 under an evaluation context
such as C11. This last fact is a direct application of Lem. 57.

(d) eAppRCons, i.e. C2 = s2 C21 and s2 ∈ Kϑ and h = hc(s2) and C21 ∈ Ch
′

ϑ . The same
argument as in the previous subcase (i.e. eAppRStruct) applies.

3. eSubsLNonStruct (non-structural substitution), i.e. C1 = C11[x\s1] with s1 6∈ Sϑ∪Eϑ
and x 6∈ ϑ and C11 ∈ Chϑ. By case analysis on the formation rules for C2:

(a) Empty, C2 = �. Impossible (the symmetric situation was already considered in the
base case).

(b) Non-structural substitution, i.e. C2 = C21[x\s2] and s2 /∈ Sϑ ∪ Eϑ. Note that each
ti is a Ci1-reduction place by Lem. 52. By the i.h. on C1 we have that (C1, t1) = (C2, t2),
so we conclude.

(c) Structural substitution, i.e. C2 = C21[x\s2] and s2 ∈ Sϑ ∪ Eϑ. This case is
impossible, as the formation rule for C1 implies that s2 6∈ Sϑ ∪ Eϑ.

(d) Inside a substitution, i.e. C2 = C21[[x]][x\C22] and C21 ∈ Chϑ and C22 ∈ C·ϑ. We
claim that this case is impossible. Note that we have that C11[t1] = C21[[x]], where t1
is a C11-reduction place by virtue of Lem. 52. Moreover x 6∈ ϑ, and x is not bound by
C21 (by Barendregt’s convention), so x 6∈ fzϑ(C21); these conditions imply that x is a
C21-reduction place.
This allows us to apply the i.h., obtaining (C11, x) = (C21, t1). Since t1 = x is a C1-
reduction place by hypothesis, and x is bound by C1, we conclude that it must be
involved in an ls-step. This implies that the substitution [x\s1] contains an answer,
that is, s1 = vL. But from the formation rule of C2, we also know that s = C22[t2].
So the situation is such that C22[t2] = vL. By the fact that non-abstraction answer
evaluation contexts such asC22 do not go below answers (Lem. 53) we conclude that t2
must be of the form vL1. This is a contradiction, as t2 is a C2-reduction place, which
means that it must be either an application or a variable or a fix or a case expression.

4. eSubsLStruct (structural substitution), i.e. C1 = C11[x\s1] and C11 ∈ Chϑ∪{x} and
s1 ∈ Sϑ ∪ Eϑ. By case analysis on the formation rules for C2:
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(a) Empty, C2 = �. Impossible (the symmetric situation was already considered in the
base case).

(b) Non-structural substitution, i.e. C2 = C21[x\s2] and s2 /∈ Sϑ ∪ Eϑ. Impossible
since s1 = s2 and s1 ∈ Sϑ ∪ Eϑ.

(c) Structural substitution, i.e. C2 = C21[x\s2] and s2 ∈ Sϑ ∪ Eϑ. Then s1 = s2 and
each ti is a Ci1-reduction place as a consequence of Lem. 52, so we may apply the i.h.
to conclude (C11, t1) = (C21, t2), as required.

(d) Inside a substitution, i.e. C2 = C21[[x]][x\C22]. Then we have that s1 = C22[t2]. Note
that t2 is a C21-reduction place by Lem. 52. This is impossible since s1 is a strong normal
form, and it may not have a reduction place under an evaluation context (Lem. 57).

5. eSubsR (inside a substitution), i.e. C1 = C11[[x]][x\C12] and C11 ∈ Chϑ and C12 ∈ C·ϑ.
By case analysis on the formation rules for C2:

(a) Empty, C2 = �. Impossible (the symmetric situation was already considered in the
base case).

(b) Non-structural substitution, i.e. C2 = C21[x\s]. Impossible (the symmetric situ-
ation was already considered in the case in which C1 is built up with a non-structural
substitution).

(c) Structural substitution, i.e. C2 = C21[x\s2] and s2 ∈ Sϑ ∪ Eϑ. Impossible (the
symmetric situation was already considered in the case in which C1 is built up with a
structural substitution).

(d) Inside a substitution, i.e. C2 = C21[[x]][x\C22]. Then each ti is a Ci1-reduction place,
as a consequence of Lem. 52. By applying the i.h. we obtain that (C12, t1) = (C22, t2),
as required.

6. eAppRStruct (right of a weak structure or error term), i.e. h = ·, C1 = s1 C11 and
s1 ∈ Sϑ ∪ Eϑ and C11 ∈ Ch

′

ϑ . By case analysis on the formation rules for C2:

(a) Empty, C2 = �. Impossible (the symmetric situation was already considered in the
case in which C1 is empty).

(b) Left of an application, i.e. C2 = C21 s2. Impossible (the symmetric situation was
already considered in the case in which C1 goes to the left of an application).

(c) Right of a structure, i.e. C2 = s2 C21 and s2 ∈ Sϑ ∪ Eϑ. Then each ti is a Ci1-
reduction place, as a consequence of Lem. 52. By applying the i.h. we conclude that
(C11, t1) = (C21, t2), as required.

(d) Right of a constructor answer, i.e. C2 = s2 C21 and s2 ∈ Kϑ. Not possible since
s1 = s2 and Kϑ ∩ (Sϑ ∪ Eϑ) = ∅.

7. eAppRCons (right of a constructor answer), i.e. C1 = s1 C11, s1 ∈ Kϑ, h = hc(s1)
and C11 ∈ Ch

′

ϑ . By case analysis on the formation rules for C2:

(a) Empty, C2 = �. Impossible (the symmetric situation was already considered in the
case in which C1 is empty).

(b) Left of an application, i.e. C2 = C21 s. Impossible (the symmetric situation was
already considered in the case in which C1 goes to the left of an application).
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(c) Right of a structure, i.e. C2 = s2 C21 and s2 ∈ Sϑ ∪ Eϑ. Not possible since s1 = s2

and Kϑ ∩ (Sϑ ∪ Eϑ) = ∅.

(d) Right of a constructor answer, i.e. C2 = s2 C21 and s2 ∈ Kϑ. Then each ti is a
Ci1-reduction place, as a consequence of Lem. 52. By applying the i.h. we conclude that
(C11, t1) = (C21, t2), as required.

8. eLam (under an abstraction), i.e. C1 = λx.C11, h = λ and C11 ∈ Ch
′

ϑ∪{x}. Then C2

cannot be empty (the symmetric situation was already considered in the case in which C1

is empty), so C2 must be of the form λx.C21. By Lem. 52 we know that each ti must be
a Ci1-reduction place, so we may apply the i.h. to conclude that (C11, t1) = (C21, t2), as
required.

9. eCase1 (branch of a case), i.e. h = ·, C1 = case u1 of c1x̄1 ⇒ s1, . . . , cj x̄j ⇒
C11, . . . , cnx̄n ⇒ sn and u1 ∈ Nϑ and u1 � (cix̄i ⇒ ui)i∈I and sk ∈ Nϑ∪x̄k

for all k < j
and C11 ∈ Ch

′

ϑ∪x̄i
. By case analysis on the formation rules for C2:

(a) eBox (empty), C2 = �. Impossible (the symmetric situation was already considered
in the case in which C1 is empty).

(b) eCase2 (condition of a case), i.e. C2 = case C21 of (cj x̄j ⇒ s′j)i∈I ∈ C·ϑ and

C21 ∈ Chϑ and either h /∈ {cj}j∈J or h = ck ∈ {cj}j∈J and |A(C, y)| 6= |x̄k| . Then by
Lem. 52 we know that t2 must be a C21-reduction place. Thus u1 = C21[t2]. This is not
possible by Lem. 57.

(c) eCase1 (branch of a case), i.e. C2 = case u2 of c1x̄1 ⇒ s′1, . . . , cj′ x̄j′ ⇒
C11, . . . , cnx̄n ⇒ s′n and u2 ∈ Nϑ and u2 � (cix̄i ⇒ s′i)i∈I and s′k ∈ Nϑ∪x̄ for all k <

j′ and C21 ∈ Ch
′

ϑ∪x̄i
. Then j = j′ and by Lem. 52 we know that each ti must be a

Ci1-reduction place, so we may apply the i.h. to conclude that (C11, t1) = (C21, t2), as
required.

10. eCase2 (body of a case), i.e. C1 = case C11 of (cix̄i ⇒ si)i∈I , h = ·, C11 ∈ Ch
′

ϑ and
either h′ /∈ {ci}i∈I or h′ = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j | . By case analysis on the
formation rules for C2:

(a) eBox (empty), C2 = �. Impossible (the symmetric situation was already considered
in the case in which C1 is empty).

(b) eCase2 (condition of a case), i.e. C2 = case C21 of (cj x̄j ⇒ s′j)i∈I ∈ C·ϑ and

C21 ∈ Chϑ and either h /∈ {cj}j∈J or h = ck ∈ {cj}j∈J and |A(C, y)| 6= |x̄k| .
Impossible (the symmetric situation was already considered in the case eCase1).

(c) eCase1 (branch of a case), i.e. C2 = case u2 of c1x̄1 ⇒ s′1, . . . , cj x̄j ⇒ C11, . . . , cnx̄n ⇒
s′n and u2 ∈ Nϑ and u2 � (cix̄i ⇒ s′i)i∈I and s′k ∈ Nϑ∪x̄k

for all k < j and

C11 ∈ Ch
′

ϑ∪x̄i
. Impossible (the symmetric situation was already considered in the case

eCase1).
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Figure 6 ϑ-normal forms of the strategy (X ∈ {Sϑ,Lϑ, Eϑ,Kϑ})

cNfCons
c ∈ Kϑ

t ∈ Kϑ s ∈ Nϑ
cNfApp

t s ∈ Kϑ

x ∈ ϑ
sNfVar

x ∈ Sϑ

t ∈ Sϑ s ∈ Nϑ
sNfApp

t s ∈ Sϑ

t ∈ Kϑ ∪ Lϑ ∪ Sϑ t � (cix̄i ⇒ si)i∈I (si ∈ Nϑ∪x̄i)i∈I
eNfStrt

case t of (cix̄i ⇒ si)i∈I ∈ Eϑ

t ∈ Eϑ s ∈ Nϑ
eNfApp

t s ∈ Eϑ

t ∈ Eϑ (si ∈ Nϑ∪x̄i
)i∈I

eNfCase
case t of (cix̄i ⇒ si)i∈I ∈ Eϑ

t ∈ Nϑ∪{x}
lNfLam

λx.t ∈ Lϑ

t ∈ Xϑ∪{x} s ∈ Sϑ ∪ Eϑ x ∈ ngv(t)
nfSubNG

t[x\s] ∈ Xϑ

t ∈ Xϑ x 6∈ ngv(t)
nfSubG

t[x\s] ∈ Xϑ

t ∈ Kϑ
nfCons

t ∈ Nϑ

t ∈ Sϑ
nfStruct

t ∈ Nϑ

t ∈ Lϑ
nfLam

t ∈ Nϑ

t ∈ Eϑ
nfError

t ∈ Nϑ

5.1 Normal Forms of the Strategy

We present an inductive characterization of the normal forms of �ϑ
sh. Since reduction in �ϑ

sh

is parameterized over a set of frozen variables ϑ, the normal forms too will be parameterized by
this set. The set of normal forms over ϑ (Nϑ) is comprised of the constant normal forms
over ϑ (Kϑ), the structure normal forms over ϑ (Sϑ), the error normal forms over ϑ (Eϑ)
and the lambda normal forms over ϑ (Lϑ). They are defined in Fig. 6 and are similar to the
characterization of the →sh-normal forms (Fig. 1) except that: 1) the set of frozen variables is
tracked, 2) rule nfSub is refined into rules nfSubNG, and 3) a new rule nfSubG is added due
to the absence of gc in�ϑ

sh. In rules nfSubNG and nfSubG, the symbol X represents either Sϑ,
Eϑ, Lϑ or Kϑ. Rule nfSubG helps capture terms such as z[y\x][x\s]. Note that x ∈ fv(z[y\x])
but this term is in normal form for any s. However, x is not really “reachable” from z, it is would
in fact be erased if we had gc. The notion of a variable being “reachable” in this sense is defined
as follows:

Definition 59. The set of reachable or, better still, non-garbage variables of a term t, denoted
ngv(t), are defined below1, where b̄ stands for (cix̄i ⇒ si)i∈I .

ngv(x) := {x}
ngv(λx.t) := ngv(t) \ {x}
ngv(ts) := ngv(t) ∪ ngv(s)

ngv(fix(x.t)) := ngv(t) \ {x}
ngv(c) := ∅

ngv(case t of b̄) := ngv(t) ∪
⋃
i∈1..n ngv(si) \ x̄i

ngv(t[x\s]) := (ngv(t) \ {x}) ∪

{
ngv(s) if x ∈ ngv(t)

∅ otherwise

1They may alternatively be characterized as ngv(t) = fv(↓gc (t)), where ↓gc (t) simply removes all garbage substi-
tutions [BBBK17].
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The next result below states that Fig. 6 indeed characterizes the normal forms of the strategy.

Lemma 60 (Normal Form Decomposition). • t ∈ Kϑ ⇒ t = A[c]L

• t ∈ Sϑ ⇒ t = E[x] for some weak context E and variable x.

• t ∈ Lϑ ⇒ t = (λx.s)L for some x, s and L.

• t ∈ Eϑ ⇒ t = F[case s of b̄] for some error context F and s an answer or a weak structure
and s � b̄.

Proof. By simultaneous induction on the derivation of t ∈ Kϑ, t ∈ Sϑ, t ∈ Eϑ, and t ∈ Lϑ.

• cNfCons. We set A := � and L := ε.

• cNfApp. The derivation ends in:

t1 ∈ Kϑ t2 ∈ Nϑ
cNfApp

t1 t2 ∈ Kϑ

By the i.h. on t1 ∈ Kϑ, there exists A′, c′ and L′ s.t. t1 = A′[c′]L′. We set A := A′L′ t2, c := c′

and L := ε and conclude.

• sNfVar. We set E = �.

• sNfApp. The derivation ends in:

t1 ∈ Sϑ t2 ∈ Nϑ
sNfApp

t1 t2 ∈ Sϑ

By the i.h. on t1 ∈ Sϑ we have t1 = E′[x]. Therefore, we set E := E′ t2 and conclude.

• eNfStrt. The derivation ends in:

u ∈ Kϑ ∪ Lϑ ∪ Sϑ u � (cix̄i ⇒ si)i∈I (si ∈ Nϑ∪x̄i)i∈I
eNfStrt

case u of (cix̄i ⇒ si)i∈I ∈ Eϑ

By the i.h. on u ∈ Kϑ ∪ Lϑ ∪ Sϑ, u is either an answer or a weak structure. Also, we have
u � (cix̄i ⇒ si)i∈I . Therefore we set F := � and conclude.

• eNfApp. The derivation ends in:

t1 ∈ Eϑ t2 ∈ Nϑ
eNfApp

t1 t2 ∈ Eϑ

By the i.h. on t1 ∈ Eϑ we have t1 = F′[case s of b̄]. Therefore, we set F := F′ t2 and conclude.

• eNfCase. The derivation ends in:

u ∈ Eϑ (si ∈ Nϑ∪x̄i
)i∈I

eNfCase
case u of (cix̄i ⇒ si)i∈I ∈ Eϑ

We apply the i.h. on u ∈ Eϑ to obtain F′, then set F := case F′ of (cix̄i ⇒ si)i∈I .
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• lNfLam. The derivation ends in:

t ∈ Nϑ∪{x}
lNfLam

λx.t ∈ Lϑ

We set L := ε and conclude.

• nfSub. The derivation ends in:

t1 ∈ Xϑ∪{y} t2 ∈ Sϑ ∪ Eϑ y ∈ ngv(t1)
nfSub

t1[y\t2] ∈ Xϑ

We must consider each case: X ∈ {S,L,K, E}.

– If X is S, by the i.h. on t1 ∈ Sϑ∪{y}, we have t1 = E′[x]. We set E := E′[y\t2] and
conclude.

– If X is L, by the i.h. on t1 ∈ Lϑ∪{y}, there exists x, s and L′ s.t. t1 = (λx.s)L′. We set
L := L′[y\t2] and conclude.

– If X is K, By the i.h. on t1 ∈ Kϑ∪{y}, there exists A′, c′ and L′ s.t. t1 = A′[c′]L′. We set
A := A′, c := c′ and L := L′[y\t2] and conclude.

– If X is E, by the i.h. on t1 ∈ Eϑ∪{y}, we have t1 = F′[case s of (cix̄i ⇒ si)i∈I ], s an
answer or a weak structure and s � b̄. We set F := F′[y\t2] and conclude.

• nfSubG. The derivation ends in:

t1 ∈ Xϑ x 6∈ ngv(t1)
nfSubG

t1[x\t2] ∈ Xϑ

We must consider each case: X ∈ {S,L,K, E}.

– If X is S, by the i.h. on t1 ∈ Sϑ, we have t1 = E′[x]. We set E := E′[x\t2] and conclude.

– If X is L, by the i.h. on t1 ∈ Lϑ, there exists x, s and L′ s.t. t1 = (λx.s)L′. We set
L := L′[x\t2] and conclude.

– If X is K, By the i.h. on t1 ∈ Kϑ, there exists A′, c′ and L′ s.t. t1 = A′[c′]L′. We set
A := A′, c := c′ and L := L′[x\t2] and conclude.

– If X is E, by the i.h. on t1 ∈ Eϑ, we have t1 = F′[case s of (cix̄i ⇒ si)i∈I ], s an answer
or a weak structure and s � b̄. We set F := F′[x\t2] and conclude.

Lemma 61. If C ∈ Chϑ , then x ∈ ngv(C[[x]]).

Proof. By induction on the derivation of Chϑ

• eBox. The derivation ends in:
eBox

� ∈ C·ϑ
Immediate.
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• eLam. The derivation ends in:
C1 ∈ Chϑ∪{y}

eLam
λy.C1 ∈ Cλϑ

Then C = λy.C1 and by i.h. x ∈ ngv(C1[[x]]). Also, ngv(λy.C1[[x]]) = ngv(C1[[x]]) \ {y}.
Therefore, we conclude that x ∈ ngv(λy.C1[[x]]) because x and y are distinct.

• eAppL. The derivation ends in:

C1 ∈ Chϑ h 6= λ
eApp-L

C1 t ∈ Chϑ
Then C = C1 t and by i.h. x ∈ ngv(C1[[x]]). Also, ngv(C1[[x]] t) = ngv(C1[[x]])∪ngv(t). Therefore,
we conclude that x ∈ ngv(C1[[x]] t).

• eAppRStruct. The derivation ends in:

t ∈ Sϑ ∪ Eϑ C1 ∈ Chϑ
eAppRStruct

t C1 ∈ C·ϑ
Then C = t C1 and by i.h. x ∈ ngv(C1[[x]]). Also, ngv(t C1[[x]]) = ngv(t)∪ngv(C1[[x]]). Therefore,
we conclude that x ∈ ngv(t C1[[x]]).

• eAppRCons. The derivation ends in:

t ∈ Kϑ C1 ∈ Chϑ
eAppRCons

t C1 ∈ Chc(t)ϑ

Then C := t C1 and by i.h. x ∈ ngv(C1[[x]]). Also, ngv(t C1[[x]]) = ngv(t) ∪ ngv(C1[[x]]).
Therefore, we conclude that x ∈ ngv(t C1[[x]]).

• eSubsLNonStruct. The derivation ends in:

C1 ∈ Chϑ t /∈ Sϑ ∪ Eϑ y /∈ ϑ
eSubsLNonStruct

C1[y\t] ∈ Chϑ
Then C := C1[y\t] and by i.h. x ∈ ngv(C1[[x]]).

Also, ngv(C1[[x]][y\t]) = ngv(C1[[x]]) ∪

{
ngv(t) if y ∈ ngv(C1[[x]])

∅ otherwise

In either case, we conclude that x ∈ ngv(C1[[x]][y\t]).

• eSubsLStruct. The derivation ends in:

C1 ∈ Chϑ∪{y} t ∈ Sϑ ∪ Eϑ
eSubsLStruct

C1[y\t] ∈ Chϑ
Then C = C1[y\t] and , by i.h. x ∈ ngv(C1[[x]]).

Also, ngv(C1[[x]][y\t]) = ngv(C1[[x]]) ∪

{
ngv(t) if y ∈ ngv(C1[[x]])

∅ otherwise

In either case, we conclude that x ∈ ngv(C1[[x]][y\t]).
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• eSubsR. The derivation ends in:

C1 ∈ Chϑ C2 ∈ C·ϑ
eSubs-R

C1[[y]][y\C2] ∈ Chϑ

Then C = C1[[y]][y\C2] and by i.h. y ∈ ngv(C1[[y]]) and x ∈ ngv(C2[[x]]).
Also, ngv(C1[[y]][y\C2[[x]]]) = ngv(C1[[y]]) \ {y} ∪ ngv(C2[[x]]).
Therefore, we conclude that x ∈ ngv(C1[[y]][y\C2[[x]]]).

• eCase-1. The derivation ends in:

t ∈ Nϑ t � (cix̄i ⇒ si)i∈I tj ∈ Nϑ∪x̄j for all j < i C1 ∈ Chϑ∪x̄i
eCase-3

case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn ∈ C·ϑ

Then C = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn and by i.h. x ∈ ngv(C1[[x]]).
Also, x /∈ x̄j . Also, ngv(case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1[[x]], . . . , cnx̄n ⇒ tn) = ngv(t) ∪
ngv(C1[[x]]) \ x̄j ∪

⋃
i∈2..n ngv(cix̄i) \ x̄i.

Therefore, we conclude that x ∈ ngv(case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1[[x]], . . . , cnx̄n ⇒ tn).

• eCase-2. The derivation ends in:

C ∈ Chϑ h /∈ {ci}i∈I or h = cj ∈ {ci}i∈I and |A(C1, y)| 6= |x̄j |
eCase1

case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ

Then C = case C1 of (cix̄i ⇒ si)i∈I and by i.h. x ∈ ngv(C1[[x]]). Also, ngv(case C1[[x]] of (cix̄i ⇒
si)i∈I) = ngv(C1[[x]]) ∪

⋃
i∈1..n ngv(si) \ x̄i.

Therefore, we conclude that x ∈ ngv(case C1[[x]] of (cix̄i ⇒ si)i∈I).

Lemma 62 (Strengthening for normal-form judgements). t ∈ Nϑ∪{x} and x 6∈ ngv(t) ⇒ t ∈ Nϑ.
Similarly for t ∈ Kϑ, t ∈ Sϑ, t ∈ Eϑ, and t ∈ Lϑ.

Proof. By simultaneous induction on the derivation of t ∈ Kϑ, t ∈ Sϑ, t ∈ Eϑ, and t ∈ Lϑ.

• sNfVar. The derivation ends in:

y ∈ ϑ ∪ {x}
sNfVar

y ∈ Sϑ∪{x}

Since x /∈ ngv(y), x 6= y. Thus, y ∈ ϑ and we conclude from sNfVar:

y ∈ ϑ
sNfVar

y ∈ Sϑ

• cNfCons. The derivation ends in:

t ∈ Kϑ∪{x}
nfCons

t ∈ Nϑ∪{x}

We conclude from the i.h..
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• cNfApp. The derivation ends in:

t1 ∈ Kϑ∪{x} t2 ∈ Nϑ∪{x}
cNfApp

t1 t2 ∈ Kϑ∪{x}

We conclude from the i.h. on t1 ∈ Kϑ∪{x} and t2 ∈ Nϑ∪{x}.

• sNfApp. The derivation ends in:

t1 ∈ Sϑ∪{x} t2 ∈ Nϑ∪{x}
sNfApp

t1 t2 ∈ Sϑ∪{x}

Similar to previous case.

• eNfApp. The derivation ends in:

t1 ∈ Eϑ∪{x} t2 ∈ Nϑ∪{x}
eNfApp

t1 t2 ∈ Eϑ∪{x}

Similar to previous case.

• eNfStrt. The derivation ends in:

u ∈ Kϑ∪{x} ∪ Lϑ∪{x} ∪ Sϑ∪{x} u � (cix̄i ⇒ si)i∈I (si ∈ Nϑ∪{x}∪x̄i
)i∈I

eNfStrt
case u of (cix̄i ⇒ si)i∈I ∈ Eϑ∪{x}

We apply the i.h. on u ∈ Kϑ∪{x} ∪ Lϑ∪{x} ∪ Sϑ∪{x} and (si ∈ Nϑ∪{x}∪x̄i
)i∈I and conclude

immediately from eNfStrt.

• eNfCase. The derivation ends in:

u ∈ Eϑ∪{x} (si ∈ Nϑ∪{x}∪x̄i
)i∈I

eNfCase
case u of (cix̄i ⇒ si)i∈I ∈ Eϑ∪{x}

We conclude by applying the i.h. on u ∈ Eϑ∪{x} and (si ∈ Nϑ∪{x}∪x̄i
)i∈I .

• lNfLam. The derivation ends in:

t ∈ Nϑ∪{x}∪{y}
lNfLam

λy.t ∈ Lϑ∪{x}

We may assume w.l.o.g that y 6= x. Therefore, x /∈ ngv(λy.t), implies x /∈ ngv(t). Therefore
we conclude from the i.h. and an application of lNfLam.

• nfSub. The derivation ends in:

t1 ∈ Xϑ∪{x}∪{y} t2 ∈ Sϑ∪{x} ∪ Eϑ∪{x} y ∈ ngv(t1)
nfSub

t1[y\t2] ∈ Xϑ∪{x}

We may assume w.l.o.g that y 6= x. Since y ∈ ngv(t1), we have ngv(t1[y\t2]) = ngv(t1) \
{y} ∪ ngv(t2). Therefore, x /∈ ngv(t1[y\t2]), implies x /∈ ngv(t1) and x /∈ ngv(t2). Therefore
we conclude from the i.h. on t1 ∈ Xϑ∪{x}∪{y} and t2 ∈ Sϑ∪{x} ∪ Eϑ∪{x} and an application
of nfSub.
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• nfSubG. The derivation ends in:

t1 ∈ Xϑ∪{x} y 6∈ ngv(t1)
nfSubG

t1[y\t2] ∈ Xϑ∪{x}

Since y 6∈ ngv(t1), then ngv(t1[y\t2]) = ngv(t1). Therefore, x /∈ ngv(t) implies x /∈ ngv(t1).
Thus we may apply the i.h. to t1 ∈ Xϑ∪{x}, obtaining t1 ∈ Xϑ. We then conclude by applying
nfSubG.

Lemma 63 (Weakening for normal-form judgements). t ∈ Nϑ and x /∈ ϑ and x not bound in t,
then t ∈ Nϑ∪{x}. The same holds for Sϑ, Lϑ, Kϑ and Eϑ.

Proof. By simultaneous induction on t ∈ Nϑ, Sϑ, Lϑ, Kϑ and Eϑ.

Lemma 64 (Weakening for contexts). C ∈ Chϑ and x /∈ ϑ and x not bound in C, then C ∈ Chϑ∪{x}.

Proof. By induction on C ∈ Chϑ .

Lemma 65 (Normal-forms). Nϑ ⊆ NF(�ϑ
sh).

Proof. By simultaneous induction on the derivation of t ∈ Kϑ, t ∈ Sϑ, t ∈ Eϑ, and t ∈ Lϑ.

• cNfCons. Immediate.

• cNfApp. The derivation ends in:

t1 ∈ Kϑ t2 ∈ Nϑ
cNfApp

t1 t2 ∈ Kϑ

By i.h. on t1 ∈ Kϑ and t2 ∈ Nϑ, we have t1 ∈ NF(�ϑ
sh) and t2 ∈ NF(�ϑ

sh). From Lem. 60 we
know t1 ∈ Kϑ ⇒ t1 = A[c]L, therefore t1 is a constant answer and not an abstraction answer
and we can conclude that t1t2 ∈ NF(�ϑ

sh).

• sNfVar. Immediate.

• sNfApp. The derivation ends in:

t1 ∈ Sϑ t2 ∈ Nϑ
sNfApp

t1 t2 ∈ Sϑ

By i.h. on t1 ∈ Sϑ and t2 ∈ Nϑ, we have t1 ∈ NF(�ϑ
sh) and t2 ∈ NF(�ϑ

sh). From Lem. 60
we know t1 ∈ Sϑ ⇒ t1 = E[x], therefore we know t1 is not an abstraction answer and we can
conclude that t1t2 ∈ NF(�ϑ

sh).

• eNfApp. The derivation ends in:

t1 ∈ Eϑ t2 ∈ Nϑ
eNfApp

t1 t2 ∈ Eϑ
By i.h. on t1 ∈ Eϑ and t2 ∈ Nϑ, we have t1 ∈ NF(�ϑ

sh) and t2 ∈ NF(�ϑ
sh). From Lem. 60

we know t1 ∈ Eϑ ⇒ t1 = F[case s of b̄], therefore we know t1 is not an abstraction answer
and we can conclude that t1t2 ∈ NF(�ϑ

sh).
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• eNfStrt. The derivation ends in:

u ∈ Kϑ ∪ Lϑ ∪ Sϑ u � (cix̄i ⇒ si)i∈I (si ∈ Nϑ∪x̄i)i∈I
eNfStrt

case u of (cix̄i ⇒ si)i∈I ∈ Eϑ

By i.h. on u ∈ Kϑ ∪ Lϑ ∪ Sϑ we have u ∈ NF(�ϑ
sh). We can apply the i.h. for each

(si ∈ Nϑ∪x̄i
)i∈I , giving us (si ∈ NF(�ϑ

sh))i∈I . Therefore, we can conclude case u of (cix̄i ⇒
si)i∈I ∈ NF(�ϑ

sh) because we cannot apply →case since u � (cix̄i ⇒ si)i∈I .

• eNfCase. The derivation ends in:

u ∈ Eϑ (si ∈ Nϑ∪x̄i)i∈I
eNfCase

case u of (cix̄i ⇒ si)i∈I ∈ Eϑ

By i.h. on u ∈ Eϑ we have u ∈ NF(�ϑ
sh). From Lem. 60 we know u ∈ Eϑ ⇒ u = F[case s of b̄]

and hence is not a constant answer. We can apply the i.h. for each (si ∈ Nϑ∪x̄i)i∈I , giving
us (si ∈ NF(�ϑ

sh))i∈I . Therefore, we can conclude case u of (cix̄i ⇒ si)i∈I ∈ NF(�ϑ
sh).

• lNfLam. The derivation ends in:

t1 ∈ Nϑ∪{x}
lNfLam

λx.t1 ∈ Lϑ

By i.h. on t1 ∈ Nϑ∪{x}, we have t1 ∈ NF(�ϑ∪{x}
sh ), then λx.t1 ∈ NF(�ϑ

sh) is immediate.

• nfSub. The derivation ends in:

t1 ∈ Xϑ∪{x} t2 ∈ Sϑ ∪ Eϑ x ∈ ngv(t1)
nfSub

t1[x\t2] ∈ Xϑ

By i.h. on t1 ∈ Xϑ∪{x} and t2 ∈ Sϑ∪Eϑ, we have t1 ∈ NF(�ϑ∪{x}
sh ) and t2 ∈ NF(�ϑ

sh). From
Lem. 60 we know t2 is either a weak structure or a weak error term, t2 is not an answer. We
can conclude t1[x\t2] ∈ NF(�ϑ

sh) because we cannot apply lsv.

• nfSubG. The derivation ends in:

t1 ∈ Xϑ x 6∈ ngv(t1)
nfSubG

t1[x\t2] ∈ Xϑ

By i.h. on t1 ∈ Xϑ, we have t1 ∈ NF(�ϑ
sh). From Lem. 61, if we take the contrapositive we

have C 6∈ Chϑ , for x 6∈ ngv(C[[x]]). Therefore, we can conclude that t1[x\t2] ∈ NF(�ϑ
sh).

Lemma 66 (Normal-forms). Suppose t ∈ NF(�ϑ
sh).

1. Then t ∈ Nϑ

2. If x ∈ ngv(t), then ∃C, h s.t. t = C[[x]], where C ∈ Chϑ and x 6∈ ϑ
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Proof. We show both items by simultaneous induction on t. Note that for the first item, due to
nfStruct, nfLam, nfError and nfCons, it suffices to show that t ∈ Lϑ ∪ Kϑ ∪ Sϑ ∪ Eϑ.

• t = x.

– For item 1, let ϑ be any set of variables such that fv(x) ⊆ ϑ. By definition of fv(), x ∈ ϑ,
and from

x ∈ ϑ
sNfVar

x ∈ Sϑ
we have x ∈ Nϑ.

– For item 2, we set C := � from eBox and conclude.

• t = λy.s.

– For item 1, let ϑ be any set of variables such that fv(λy.s) ⊆ ϑ. By the i.h. on s,
s ∈ Nϑ∪{y} since fv(s) ⊆ ϑ ∪ {y}. Then from

s ∈ Nϑ∪{y}
lNfLam

λx.s ∈ Lϑ
we have λy.s ∈ Nϑ.

– For item 2, x 6= y, from the i.h. on s, s = C1[[x]], where C1 ∈ Chϑ , for some h, and x 6∈ ϑ.
If ϑ = ϑ′ ∪ {y}, we apply:

C1 ∈ Chϑ′∪{y}
eLam

λy.C1 ∈ Cλϑ′

and conclude. Otherwise, we first apply Lem. 64 and then use eLam.

• t = t1 t2.

– For item 1, let ϑ be any set of variables such that fv(t1t2) ⊆ ϑ. By the i.h., we have
t1 ∈ Nϑ since fv(t1) ⊆ ϑ and t2 ∈ Nϑ since fv(t2) ⊆ ϑ. Then from t1 ∈ Nϑ, it must be
the case that t1 ∈ Lϑ ∪ Sϑ ∪ Kϑ ∪ Eϑ. If t1 ∈ Sϑ ∪ Kϑ ∪ Eϑ, then we reason as follows:

t1 ∈ Kϑ t2 ∈ Nϑ
cNfApp

t1 t2 ∈ Kϑ

t1 ∈ Sϑ t2 ∈ Nϑ
sNfApp

t1 t2 ∈ Sϑ

t1 ∈ Eϑ t2 ∈ Nϑ
eNfApp

t1 t2 ∈ Eϑ
and conclude by applying nfCons, nfStruct and nfError, resp. Suppose t1 ∈ Lϑ.
By Lem. 60 t1 = (λx.s)L and we could apply lsv, contradicting t1 ∈ NF(�ϑ

sh). This
concludes the case.

– For item 2, we consider two cases.

∗ x ∈ ngv(t1). Since t1 ∈ NF(�ϑ
sh) by the i.h. w.r.t. item 1, and x ∈ ngv(t1), then by

the i.h. w.r.t. item 2, ∃C1, h1 s.t. t1 = C1[[x]], where C1 ∈ Ch1

ϑ and x 6∈ ϑ. Moreover,
we have h 6= λ, since h = λ implies, by Lem. 45, that C[[x]] is an abstraction
answer, contradicting the hypothesis that t1t2 ∈ NF(�ϑ

sh). Therefore we conclude
by applying eApp-L.

C1 ∈ Chϑ h 6= λ
eApp-L

C1 t2 ∈ Chϑ
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∗ x ∈ ngv(t2). Since t2 ∈ NF(�ϑ
sh) by the i.h. w.r.t. item 1 and x ∈ ngv(t2), then

by the i.h. w.r.t. item 2, ∃C1, h1 s.t. t2 = C1[[x]], where C1 ∈ Ch1

ϑ and x 6∈ ϑ.
Additionally, by the i.h. w.r.t. item 1, t1 ∈ NF(�ϑ

sh). Moreover, t1 ∈ Sϑ ∪Kϑ ∪ Eϑ
since if we suppose t1 ∈ Lϑ, by Lem. 60 t1 = (λx.s)L and we could apply lsv,
contradicting t1 ∈ NF(�ϑ

sh). In the case that t1 ∈ Sϑ∪Eϑ, we apply eAppRStruct
and conclude. Otherwise, in the case that t1 ∈ Kϑ, we apply eAppRCons and
conclude.

t1 ∈ Sϑ ∪ Eϑ C1 ∈ Chϑ
eAppRStruct

t1 C1 ∈ C·ϑ

t1 ∈ Kϑ C1 ∈ Chϑ
eAppRCons

t1 C1 ∈ Chc(t)ϑ

• t = case s of b̄.

– Let ϑ be any set of variables such that fv(case s of b̄) ⊆ ϑ. By the i.h., we have s ∈ Nϑ
since fv(s) ⊆ ϑ. Likewise, we have (si ∈ Nϑ∪{x̄i})i∈I since (fv(si) ⊆ ϑ ∪ {x̄i})i∈I . Then
from s ∈ Nϑ, it must be the case that s ∈ Lϑ ∪ Sϑ ∪ Kϑ ∪ Eϑ. If s ∈ Eϑ, then we use:

s ∈ Eϑ (si ∈ Nϑ∪x̄i)i∈I
eNfCase

case s of (cix̄i ⇒ si)i∈I ∈ Eϑ

Otherwise, suppose s ∈ Kϑ ∪Lϑ ∪Sϑ. We claim s � b̄ and hence we can use eNfStrt:

s ∈ Kϑ ∪ Lϑ ∪ Sϑ s � (cix̄i ⇒ si)i∈I (si ∈ Nϑ∪x̄i
)i∈I

eNfStrt
case s of (cix̄i ⇒ si)i∈I ∈ Eϑ

We are left to prove the claim. If s ∈ Sϑ, then it holds trivially since weak structures
are not answers. If s ∈ Lϑ, then trivially s � b̄. If s ∈ Kϑ, then s � b̄ implies t not in
normal form, contradicting our hypothesis.

– For item 2, we consider two cases.

∗ x ∈ ngv(s). Since s ∈ NF(�ϑ
sh) by the i.h. w.r.t. item 1, and x ∈ ngv(s), then

by the i.h. w.r.t. item 2, ∃C1, h1 s.t. s = C1[[x]], where C1 ∈ Ch1

ϑ and x 6∈ ϑ. If
h1 /∈ {ci}i∈1..n then case C1 of b̄ ∈ C·ϑ by eCase1, concluding the case. Suppose
that h1 = cj ∈ {ci}i∈1..n. Then by Lem. 45 for any term t, there exist A and L

s.t. C1[t] = A[cj ]L. In particular, C1[x] = A[cj ]L. But then |A| = |A(C, x)| 6= |x̄j |
for otherwise t would be a case redex, contradicting the hypothesis. Therefore, we
then conclude by eCase1.

C ∈ Chϑ h /∈ {ci}i∈I or h = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j |
eCase1

case C of (cix̄i ⇒ si)i∈I ∈ C·ϑ
∗ x ∈ ngv(si) with i ∈ 1..n. From the i.h. w.r.t. item 1, s ∈ Nϑ and (si ∈ Nϑ∪{x̄i})i∈I .

Therefore, by the i.h. w.r.t. item 2, ∃C1, h1 s.t. sj = C1[[x]], where C1 ∈ Ch1

ϑ and
x 6∈ ϑ. Moreover, s � (cix̄i ⇒ si)i∈I must hold since we would have a case redex
for the branch enabled by s otherwise. Therefore, we conclude by an application of
eCase2.

s ∈ Nϑ s � (cix̄i ⇒ si)i∈I sk ∈ Nϑ∪x̄k
for all k < j C ∈ Chϑ∪x̄i

eCase2
case s of c1x̄1 ⇒ s1, . . . , cj x̄j ⇒ C, . . . , cnx̄n ⇒ sn ∈ C·ϑ
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• t = t1[y\t2].

– For item 1, let ϑ be any set of variables such that fv(t1[y\t2]) ⊆ ϑ. By the i.h., we have
t1 ∈ Nϑ∪{y} since fv(t1) ⊆ ϑ ∪ {y} and t2 ∈ Nϑ since fv(t2) ⊆ ϑ.
If x 6∈ ngv(t1), then from Lem. 62, t1 ∈ Nϑ. We conclude t1[y\t2] ∈ Nϑ using nfSubG.

t1 ∈ Xϑ y 6∈ ngv(t1)
nfSubG

t1[y\t2] ∈ Xϑ

Suppose, on the contrary, that y ∈ ngv(t1). From t2 ∈ Nϑ, it must be the case that
t2 ∈ Lϑ∪Sϑ∪Kϑ∪Eϑ. From item 2 applied to t1, we know t1 = C[[y]], where C ∈ Chϑ and
y 6∈ ϑ. Then t2 ∈ Lϑ ∪Kϑ is not possible since t is in normal form. Hence t2 ∈ Sϑ ∪ Eϑ.
We thus conclude by using:

t1 ∈ Xϑ∪{y} t2 ∈ Sϑ ∪ Eϑ y ∈ ngv(t1)
nfSub

t1[y\t2] ∈ Xϑ

– For item 2 we consider two cases.

∗ x ∈ ngv(t1). Since t1 ∈ NF(�ϑ
sh) by the i.h. w.r.t. item 1 and x ∈ ngv(t1), by the

i.h. w.r.t. item 2, ∃C1, h1 s.t. t1 = C1[[x]], where C1 ∈ Ch1

ϑ and x 6∈ ϑ. Therefore, if
t2 /∈ Sϑ ∪ Eϑ we conclude by applying eSubsLNonStruct.

C1 ∈ Chϑ t2 /∈ Sϑ ∪ Eϑ y /∈ ϑ
eSubsLNonStruct

C1[y\t2] ∈ Chϑ
Otherwise, if t2 ∈ Sϑ ∪ Eϑ, we conclude by first applying Lem. 64 and then use
eSubsLStruct.

C1 ∈ Chϑ∪{y} t2 ∈ Sϑ ∪ Eϑ
eSubsLStruct

C1[y\t2] ∈ Chϑ
∗ x ∈ ngv(t2). From the definition of ngv(), it must be the case that y ∈ ngv(t1).

Since t2 ∈ NF(�ϑ
sh) by the i.h. w.r.t. item 1 and x ∈ ngv(t2), by the i.h. w.r.t.

item 2, ∃C2, h2 s.t. t2 = C2[[x]], where C2 ∈ Ch2

ϑ and x 6∈ ϑ. Additionally, since
t1 ∈ NF(�ϑ

sh) by the i.h. w.r.t. item 1 and y ∈ ngv(t1), by the i.h. w.r.t. item 2,
∃C1, h1 s.t. t1 = C1[[y]], where C1 ∈ Ch1

ϑ and y 6∈ ϑ. Furthermore, by Lem. 45 h2 must
be ’·’. If h = c, then, for any term t, there exist A and L s.t. C[t] = A[c]L. If h = λ,
then, for any term t, there exists a variable x, term s and substitution context L

s.t. C[t] = (λx.s)L. In either of these cases we would have a redex, contradicting
our hypothesis that t ∈ NF(�ϑ

sh). Therefore, we conclude by eSubs-R.

C1 ∈ Chϑ C2 ∈ C·ϑ
eSubs-R

C1[[y]][y\C2] ∈ Chϑ

From Lem. 65 and Lem. 66 we deduce:

Lemma 67. NF(�ϑ
sh) = Nϑ.
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6 A Standardization Theorem for the Theory of Sharing

This section addresses a standardization theorem for λsh. Suppose t is definable in λsh as
nsh ∈ N. Then there is a reduction sequence t �sh nsh (cf. figure below). Notice that reduction
steps in this sequence can take place under any context and substitution can take place even
though the target is not needed for computing the strong normal-form. The standardization
theorem reorganizes the computation steps in the reduction sequence t �sh nsh so that it can be
factored into two parts t ��ϑ

shu�¬ϑsh nsh. The prefix t ��ϑ
shu is reduction via the strong-call-by-need

strategy; the double headed arrow indicates multiple steps of the strategy. The suffix u �¬ϑsh nsh
consists of reduction steps in the theory that are internal, hence not required for obtaining the
strong-normal form. In fact, nsh and u are shown to be identical via unsharing. Moreover, u is
actually a normal form of the strategy. In summary, and following [BBBK17], the standardization
theorem is split into three parts depicted below:

t

nϑ

r nsh

Lem. 68
Lem. 70

Lem. 72

ϑ

sh

¬ϑ

sh \ gc

gc

gc

• Part I (Postponing gc): All gc steps are postponed (Lem. 68).

• Part II (Factorization): The resulting prefix is factorized into an external part that con-
tributes to the strong normal form and an internal part that does not (Lem. 70).

• Part III (Internal steps are negligible). Internal steps all take place inside garbage explicit
substitutions (Lem. 72).

Part I Part I is just Lem. 68 below. A strict →sh-reduction step, denoted →sh\gc, is a
→sh-reduction step without using the 7→gc-rule.

Lemma 68 (Postponement of gc). If t�sh s, then there is a term u s.t. t�sh\gc u�gc s.

Proof. Straightforward by noticing that the non gc reduction rules of λsh (Def. 10) allow the
patterns of the left hand-sides to be polluted with explicit substitutions and do not place conditions
on free variables.

Part II Part II requires that we first define what an internal step is. A ϑ-internal →sh step
(→¬ϑsh ) is a →sh-step that is not a �ϑ

sh, i.e. not a ϑ-step in the strategy). External steps are
steps in the strategy, that is, �ϑ

sh-steps.
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Lemma 69 (Commutation of Internal/External Steps). Let fv(t0) ⊆ ϑ. If t0 →¬ϑsh t1 �ϑ
sh t3, then

there is a term t2 such that t0 ��
ϑ
sh t2 �¬ϑsh t3, where the reduction from t0 to t2 includes at least

one step and the one from t2 to t3 has at most two steps.

Proof. The proof of this result is tedious and extensive. It has been relegated to the appendix.

The final factorization result is obtained from the commutation lemma. More precisely, one
shows that (→¬ϑdB,fix,case,�ϑ

dB,fix,case,→¬ϑlsv,�ϑ
lsv) forms a square factorization system according

to the terminology of [Acc12], taking �ϑ
dB,fix,case (resp.. �ϑ

lsv) to be external dB, fix or case

(resp. lsv) reduction, and →¬ϑdB,fix,case (resp. →¬ϑlsv) to be the internal dB, fix or case (resp. lsv)
reduction. One then concludes from Theorem 5.2 in [Acc12].

Lemma 70 (Factorization of Strict Steps). Let fv(t) ⊆ ϑ. If t �sh\gc u, then there is a term s

such that t ��ϑ
shu�¬ϑsh s.

Part III As mentioned, if the →sh reduction sequence reaches a →sh-normal form, then all the
internal steps factored out by Lem. 70 can be erased by gc steps.

Lemma 71 (Inclusion of Normal Forms). Let ϑ, t be such that fv(t) ⊆ ϑ. If t ∈ NF(→sh), then
t ∈ NF(�ϑ

sh).

Proof. This is immediate since �ϑ
sh ⊆ →sh.

Lemma 72 (Normal Forms Modulo Internal and gc steps). Let ϑ, t be such that fv(t) ⊆ ϑ.

1. If t→gc nϑ with nϑ ∈ NF(�ϑ
sh) then t ∈ NF(�ϑ

sh).

2. If t →¬ϑsh nϑ with nϑ ∈ NF(�ϑ
sh) then t ∈ NF(�ϑ

sh) and there is u such that t�gc u and
nϑ�gc u.

Proof. We show that the following conditions are equivalent for any term t such that fv(t) ⊆ ϑ.
They imply items (1) and (2) of this lemma: (i) t is a �ϑ

sh-normal form, (ii) ↓gc (t), that is t with
all garbage substitutions removed, is a →sh-normal form, (iii) t ≡¬ϑ s for some s ∈ NF(→sh), (iv)
t ≡¬ϑ s for some s ∈ NF(�ϑ

sh). Here ≡¬ϑ stands for the least equivalence relation containing
→gc∪ →¬ϑsh .

Note that this result applies to terms in→sh-normal form too, since NF(→sh) ⊆ NF(�ϑ
sh). Here

is an example [BBBK17]. Consider the sequence x[y\z[z\id]] →¬ϑsh x[y\id[z\id]]→gc x. All three
terms are in NF(�ϑ

sh): this is straightforward for x, and due to the fact that the substitution is
garbage for the two others. Moreover, although we do not have x[y\z[z\id]]→gcx[y\id[z\id]], both
terms reduce in one gc-step to the same term x.

All three parts can now be assembled to complete the argument outlined in the Introduction.

Theorem 73 (Standardization for →sh). Let ϑ, t be such that fv(t) ⊆ ϑ. If t �sh nsh, where

nsh ∈ NF(→sh), then there exists a term nϑ ∈ NF(�ϑ
sh) such that t ��ϑ

shnϑ and nϑ �gc nsh.

Proof. Suppose t �sh nsh with nsh ∈ NF(→sh) (so that in particular nsh ∈ NF(→gc)). By Lem. 68
of Part I there is a term r such that the reduction sequence t �sh nsh can be decomposed as
t �sh\gc r �gc nsh, and by Lem. 70 of Part II there is a term u such that the reduction

sequence t �sh\gc r can in turn be decomposed as t ��ϑ
sh u �¬ϑsh r. Finally, since fv(nsh) ⊆ ϕ and
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NF(→sh) ⊆ NF(�ϑ
sh), we have nsh ∈ NF(�ϑ

sh), and Lem. 72 of Part III allows us to deduce that
both r and u are also in NF(�ϑ

sh). Moreover, using convergence of→gc (which is straightforward),
Lem. 72 further allows us to deduce that u�gc nsh.

Corollary 74 (Completeness of �ϑ
sh). Let ϑ, t be such that fv(t) ⊆ ϑ. If t �e ne, where

ne ∈ NF(→e), then there exists a term nϑ ∈ NF(�ϑ
sh) such that t ��ϑ

shnϑ and n�ϑ = ne.

7 Related Work and Conclusions

Related Work Call-by-need for weak reduction was introduced in the 70s [Wad71, HM76].
Relating call-by-need strategies with call-by-need theories has been pioneered in [AF97, MOW98,
CF12]. Big-step semantics for call-by-need was studied in [Lau93]. Completeness of call-by-need
through intersection types was first studied in [Kes16], although the result itself was proved by
other means before that [AF97]. A recent survey on non-idempotent intersection types and its
applications in the study of the lambda calculus may be found here [BKV17]. The calculi with
explicit substitutions at a distance used here is called the Linear Substitution Calculus and was
inspired from [Mil07] and further developed in [AK10]. The use of this tool to study abstract
machines for weak call-by-need reduction appears here [ABM14]. It is also used in [AB17], to
provide a detailed analysis of the cost of adding pattern matching to β-reduction, although open
terms are not considered.

Regarding strong reduction, as already mentioned in the introduction, [GL02] proposed an
implementation of strong call-by-value, by iterating the standard call-by-value strategy on open
terms (terms with variables). In [BDG11], it is noted that the implementation of [GL02] requires
modifying the OCaml abstract machine so they propose a native OCaml implementation where
the tags that distinguish functions from accumulators are coded directly in OCaml itself. [Cré90,
Cré07] defined abstract machines for reduction to strong normal form. Other abstract machines
for strong reduction have been studied too: [GNM13, dC09, ER06]. [AG16] explore open call-by-
value and [ABM15] study a (call-by-name) machine based on the linear substitution calculus for
reduction to strong normal form. None of these mentioned works address however strong call-
by-need except for [BBBK17]. The latter proves similar results to this work but for β-reduction
only. While developing this work we learned of [Ber14]. In his PhD thesis, Bernadet proposes a
non-idempotent intersection type system for a similar calculus that includes fixed-points and case
expressions. The aim however is to characterize a subset of strongly normalising terms. Thus, for
example, the standard fixed-point combinator used here cannot be typed; a modified combinator
is adopted. Since there is no notion of call-by-need reduction strategy, ideas related to good or
covered types, as presented here, are not developed either.

Conclusions The recent formulation of a strong call-by-need strategy [BBBK17] was argued
to provide a foundation for checking conversion in proof assistants. This work emerged out of
the realization that the restriction to β-reduction of [BBBK17], and hence lack of treatment of
inductive types and fixed point operators, left a gap to be filled. We have introduced a strong
call-by-need strategy that is proved to be complete with respect to the Extended Lambda Calculus
of Grégoire and Leroy [GL02] that includes the aforementioned constructs. A key obstacle has been
devising a non-idempotent intersection type system that could connect reduction in the Extended
Lambda Calculus with reduction in the theory of sharing, the latter is also introduced in this paper.
This system is able to deal with case expressions that can block on open terms or non-exhaustive
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branches and also that can collect arguments. The presence of the fixed-point combinator has not
provided any substantial obstacles.

In order to base an implementation of conversion in a proof assistant on our strategy, one should
be able to iterate a restriction of it, to weak head normal form, as described in [Coq96]. This has
the benefit of failing early when types are not equivalent. Another line of work is to implement a
compiled version of the strategy, as developed in [GL02]. Finally, big-step semantics and abstract
machines that implement our strategy are yet to be developed.
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A Postponement of internal steps

In this section we use the notion of the anchor of a step, which is the underlined variable in each
of the following cases:

1. dB step.
C[(λx.t)L s]

i.e., the anchor is the binding occurrence of the variable bound by the abstraction that takes
part in the pattern of the dB-redex.

2. lsv step.
C1[C2[[x]][x\vL]]

i.e., the anchor is the occurrence of the variable that is substituted by the lsv step.

3. fix step.
C[(fix(x.t))]

i.e., the anchor is the binding occurrence of the variable bound by fix that takes part in the
pattern of the fix-redex.

4. case step.
C[case A[cj ]L of (cix̄i ⇒ si)i∈I ]

i.e., the anchor is target of the case that takes part in the pattern of the case-redex.

Definition 75 (Internal and external steps). We say that t1 reduces in a ϑ-internal step to t2,
written t1 →¬ϑsh t2, if and only if there is a step in call-by-need that is not a gc step and is not in
the strong call-by-need strategy, i.e. t1 (→sh\gc\�ϑ

sh) t2. We sometimes call ϑ-internal steps just

internal steps if ϑ is clear from the context. Steps in the strategy �ϑ
sh are called ϑ-external

steps (or just external steps).

Lemma 76 (Substitution contexts are evaluation contexts). If L is a substitution context s.t.
dom L ∩ ϑ = ∅, then exists h s.t. L ∈ Chϑ .
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Proof. By induction on L. The empty case is immediate from X-Box. If L = L′[x\t] consider two
cases, depending on whether t is a weak structure or weak error term or not:

1. If t ∈ Sϑ ∪ Eϑ. By i.h. we have that L′ ∈ Chϑ∪{x} so L′[x\t] ∈ Chϑ .

2. If t 6∈ Sϑ∪Eϑ. By i.h. we have that L′ ∈ Chϑ . By the hypothesis we can assume x /∈ ϑ. Hence
L′[x\t] ∈ Chϑ follows from ESubsLNonStr.

Lemma 77 (Answers are stable by reduction). 1. Let (λx.t)L→sh\gc s be a dB, lsv, fix, or
case step. Then s is an abstraction answer.

2. Let A[c]L→sh\gc s be a dB, lsv, fix, or case step. Then s is a constructor answer.

Proof. Both items are proved by cases on the kind of step contracted. We present a detailed proof
of first case and then comment on the second one (whose proof is similar).

1. dB step. Let ∆ denote the dB-redex and ∆′ its contractum. Two cases: the step is either
internal to t or internal to one of the substitutions in L:

(a) If the step is internal to t. Then t = C[∆] and the step is of the form:

(λx.C[∆])L→sh\gc (λx.C[∆′])L

(b) If the step is internal to one of the substitutions in L. Then L = L1[y\C[∆]]L2

and the step is of the form:

(λx.t)L1[y\C[∆]]L2→sh\gc (λx.t)L1[y\C[∆′]]L2

2. lsv step. Two cases: the variable contracted by the lsv step is either internal to t or
internal to one of the substitutions in L.

(a) If the variable is internal to t. Then t = C[y]. Two subcases: the substitution that
binds y is either in C or one of the substitutions in L.

i. If the contracted substitution is in C. Then C = C1[C2[y\vL′]] and the step is
of the form:

(λx.C1[C2[[y]][y\vL′]])L→sh\gc (λx.C1[C2[v][y\v]L′])L

ii. If the contracted substitution is one of the substitutions in L. Then L =
L1[y\vL′]L2 and the step is of the form:

(λx.C[[y]])L1[y\vL′]L2→sh\gc (λx.C[v])L1[y\v]L′L2

(b) If the variable is internal to one of the substitutions in L. Then L = L1[z\C[y]]L2.
Two subcases: the substitution that binds y is either in C or one of the substitutions in
L2.

i. If the contracted substitution is in C. Then C = C1[C2[y\vL′]] and the step is
of the form:

(λx.t)L1[z\C1[C2[[y]][y\vL′]]]L2→sh\gc (λx.t)L1[z\C1[C2[v][y\v]L′]]L2
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ii. If the contracted substitution is one of the substitutions in L2. Then
L2 = L21[y\vL′]L22 and the step is of the form:

(λx.t)L1[z\C[[y]]]L21[y\vL′]L22→sh\gc (λx.t)L1[z\C[v]]L21[y\v]L′L22

3. fix step. Let ∆ denote the fix-redex and ∆′ its contractum. Two cases: the step is either
internal to t or internal to one of the substitutions in L:

(a) If the step is internal to t. Then t = C[∆] and the step is of the form:

(λx.C[∆])L→sh\gc (λx.C[∆′])L

(b) If the step is internal to one of the substitutions in L. Then L = L1[y\C[∆]]L2

and the step is of the form:

(λx.t)L1[y\C[∆]]L2→sh\gc (λx.t)L1[y\C[∆′]]L2

4. case step. Let ∆ denote the case-redex and ∆′ its contractum. Two cases: the step is
either internal to t or internal to one of the substitutions in L:

(a) If the step is internal to t. Then t = C[∆] and the step is of the form:

(λx.C[∆])L→sh\gc (λx.C[∆′])L

(b) If the step is internal to one of the substitutions in L. Then L = L1[y\C[∆]]L2

and the step is of the form:

(λx.t)L1[y\C[∆]]L2→sh\gc (λx.t)L1[y\C[∆′]]L2

For the second case note that a term A[c]L is of the form ..((((cL1 t1)L2) t3)L3 . . . tn)Ln. Thus any
step which takes place either in the ti or in the Li preserves this same form. In the case of a
lsv-step that substitutes into a ti or Li, again the same form is preserved.

Lemma 78 (Abstraction answers are backwards stable by internal steps). Let t0 →¬ϑsh (λx.s)L = t
be a ϑ-internal step. Then:

• the source of the step is of the form t0 = (λx.s0)L0;

• the anchor of the step is not below a substitution context, i.e. it is inside s0 or inside one of
the arguments of L0.

Proof. By induction on the context C under which the step takes place:

1. Empty, C = �. Note that the step cannot be a dB, fix, nor case step, as it would then be
a ϑ-external step, since � ∈ Chϑ .

So it must be a lsv step, contracting the outermost substitution, that is, t0 = C1[[y]][y\vL2]→¬ϑsh
C1[v][y\v]L2 = t. Note that C1[v] = (λx.s)L1 where L = L1[y\v]L2.

We claim that C1 is not a substitution context. By contradiction, suppose that C1 is a
substitution context. Then the lsv step t0 = yL′[y\vL2] →¬ϑsh vL′[y\v]L2 = t is ϑ-external
since L′[y\vL2] ∈ Chϑ by Lem. 76. This contradicts the assumption that the step is ϑ-internal.

Now, since C1[v] = (λx.s)L1, there are two cases, depending on the position of the hole of C1:
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(a) The hole of C1 lies inside s. Then C1 = (λx.C2)L1, and the step is of the form
t0 = (λx.C2[[y]])L1[y\vL2] →¬ϑsh (λx.C2[v])L1[y\v]L2 = t. By taking s0 := C2[[y]] and
L0 := L1[y\vL2] we conclude.

(b) The hole of C1 lies inside L1. Then C1 = (λx.s)L11[z\C2]L12 where L1 = L11[z\C2[v]]L12,
and the step is of the form t0 = (λx.s)L11[z\C2[[y]]]L12[y\vL2]→¬ϑsh (λx.s)L11[z\C2[v]]L12[y\v]L2 =
t. By taking s0 := s and L0 := L11[z\C2[[y]]]L12[y\vL2] we conclude.

Note that, as already argued, in both cases, the anchor of the step is not below a substitution
context.

2. Inside an abstraction, C = λx.C′. The step is of the form t0 = λx.C′[r0]→¬ϑsh λx.C′[r] = t,
so L = L0 = �, with s0 = C′[r0] and s = C′[r]. Note that the anchor of the step is inside s0,
hence not below a substitution context.

3. Left of an application, C = C′ u. Impossible, since the step would be of the form t0 =
C′[r0]u→¬ϑsh C′[r]u = t but t is not an application.

4. Right of an application, C = u C′. Impossible, analogous to the previous case.

5. Inside a fix, C = fix(x.C′). Impossible, analogous to the previous case.

6. Inside the body of a case, C = case C′ of b̄. Impossible, analogous to the previous case.

7. Inside the branch of a case, C = case t of (c1x̄1 ⇒ s1) . . . (cix̄i ⇒ C′) . . . (cnx̄n ⇒ sn).
Impossible, analogous to the previous case.

8. Left of a substitution, C = C′[y\u]. Then the step is of the form t0 = C′[r][y\u] →¬ϑsh
C′[r′][y\u] = (λx.s)L′[y\u] = t, where L = L′[y\u]. We consider two cases, depending on
whether u is a strong ϑ-structure:

(a) If u ∈ Sϑ ∪ Eϑ. Note that the isomorphic step C′[r]→sh\gc (λx.s)L′, taking place under

the context C′, cannot be (ϑ∪ {y})-external, since then the fact that C′ ∈ Chϑ∪{y} would

imply that C′[y\u] ∈ Chϑ , and the original step would be ϑ-external, contradicting the
hypothesis.

Hence the step C′[r]→¬ϑ∪{y}sh (λx.s)L′ is (ϑ∪{y})-internal. By i.h. we have that C′[r] =
(λx.s0)L′0, so the source of the original step is of the form C′[r][y\u] = (λx.s0)L′0[y\u].
By i.h., we also have that the anchor of the step is either inside s0, or inside one of the
arguments of L′0 By taking L0 := L′0[y\u] we conclude.

(b) If u 6∈ Sϑ ∪ Eϑ. Similar to the previous case: the isomorphic step C′[r]→sh\gc (λx.s)L′,
taking place under the context C′, cannot be ϑ-external, as this would imply that the
original step is ϑ-external.
So it must be ϑ-internal and we may apply the i.h. to conclude that C′[r] = (λx.s0)L′0
and, moreover, that the anchor of the step is either inside s0, or inside one of the
arguments of L′0. This means that the source of the original step is of the form
C′[r][y\u] = (λx.s0)L′0[y\u], as required.

9. Inside a substitution, C = u[y\C′]. Then it must be the case that u = (λx.s)L′ and the
step is of the form (λx.s)L′[y\C′[r]] →¬ϑsh (λx.s)L′[y\C′[r′]], with L = L′[y\C′[r′]]. By taking
s0 := s and L0 := L′[y\C′[r]] we conclude. Note that the anchor of the step is inside one of
the arguments of L0, as required.
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Lemma 79 (Beta-redexes are backwards stable by internal steps). Let t0 →¬ϑsh (λx.s)Lu = t be a
ϑ-internal step. Then:

• the source of the step is of the form t0 = (λx.s0)L0 u0;

• the anchor of the step is not below a context of the form L′ u0, i.e. it is inside s0, inside one
of the arguments of L0, or inside u0.

Proof. By case analysis on the context C under which the step takes place:

1. Empty, C = �. We claim that this case is impossible.

The step cannot be a dB, fix, nor case step, since � ∈ Chϑ , so it would be a ϑ-external step,
contradicting the hypothesis that it is a ϑ-internal step.

So it must be a lsv step, i.e. of the form t0 = C1[[y]][y\vL′] →¬ϑsh C1[v][y\v]L′ = t. This is
impossible, as we would have C1[v][y\v]L′ = t = (λx.s)Lu but the root of C1[v][y\v]L′ is a
substitution node, while the root of (λx.s)Lu is an application node, which is a contradiction.

2. Left of an application, C = C′ u. The step is of the form C′[r]u →¬ϑsh C′[r′]u. The
isomorphic step C′[r]→sh\gc C

′[r′] takes place under the context C′.

We consider two cases, depending on whether C′ is a evaluation context over ϑ or not:

(a) If C′ ∈ Chϑ. Note that h = λ since otherwise C′ u ∈ Chϑ , and the original step is ϑ-external,
contradicting the hypothesis.

By Lem. 45, since C′ ∈ Cλϑ , we know that C′ has the form of an abstraction answer, that
is, more precisely, there are two cases:

i. The context C′ is of the form (λx.C′′)L. Then the original step is

t0 = (λx.C′′[r])L s→¬ϑsh (λx.C′′[r′])L s = t

By taking s0 := C′′[r], with L0 = L and u0 = u we conclude. Note that the anchor
is internal to s0, as required.

ii. The context C′ is of the form (λx.s)L1[y\C′′]L2. Then the original step is

t0 = (λx.s)L1[y\C′′[r]]L2 s→¬ϑsh (λx.s)L1[y\C′′[r′]]L2 s = t

By taking L0 := L1[y\C′′[r]]L2, with s0 = s and u0 = u we conclude. Note that the
anchor is internal to one of the arguments of L0, as required.

(b) If C′ 6∈ Chϑ. Then the step C′[r]→sh\gc C
′[r′] = (λx.s)L is ϑ-internal, so by the fact that

answers are backwards stable by internal steps (Lem. 78) we have that C′[r] = (λx.s0)L0

and the anchor of the step is not below a substitution context. Hence t = C′[r]u =
(λx.s0)L0 u and the anchor of the original step is not below a context of the form Lu,
as required.

3. Right of an application, C = (λx.s)L C′. The step is of the form t0 = (λx.s)L C′[r0] →¬ϑsh
(λx.s)L C′[r] = t By taking u0 := C′[r0], with s0 = s and L0 = L we conclude. Note that the
anchor is internal to u0, as required.
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4. Constructor other than an application, i.e. C = λx.C′, or C = C′[y\r], or C = r[y\C′],
or C = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C′, . . . , cnx̄n ⇒ tn, or C = case C′ of (cix̄i ⇒ si)i∈I ,
or C = fix(x.C′). Impossible, as this would imply that the root of t is not an application
node, but we know that t = (λx.s)Lu is an application.

Lemma 80 (Adding an arbitrary substitution preserves evaluation contexts). If C ∈ Chϑ and x 6∈ ϑ,
then C[x\t] ∈ Chϑ .

Proof. Two cases, depending on whether t is a weak structure/error term or not:

1. If t ∈ Sϑ ∪ Eϑ. By the weakening lemma for evaluation contexts (Lem. 64), the fact that
C ∈ Chϑ implies that C ∈ Chϑ∪{x}. By applying the context formation rule for structural

substitutions (ESubLStr) we have C[x\t] ∈ Chϑ , as wanted.

2. If t 6∈ Sϑ ∪ Eϑ. Recall that x 6∈ ϑ by hypothesis. By applying the context formation rule for
non-s(ESubLStr)tructural substitutions (ESubLNonStr) C ∈ Chϑ implies C[x\t] ∈ Chϑ , as
wanted.

Lemma 81 (Reachable variables after substitution of a variable). Let x be a variable not bound
by a context C. Then for any term t:

ngv(C[[x]]) ⊆ ngv(C[t]) ∪ {x}

Proof. By induction on C.

Lemma 82 (Reachable variables in normal forms are below evaluation contexts). If t ∈ Nϑ∪{x}
and x ∈ ngv(t) then t can be written as t = C[[x]] with C ∈ Chϑ .

Proof. Corollary of Lem. 65 and Lem. 66(2).

Definition 83 (Chϑ-critical contexts). Let Chϑ be a set of terms depending on a set of variables ϑ.
A context C is said to be Chϑ-critical if the following conditions hold:

1. C[p] ∈ Chϑ for some term p; and

2. C[[x]] 6∈ Chϑ for some variable x 6∈ ϑ that is not bound by C.

Lemma 84 (Normal-form-critical contexts are evaluation contexts). The following inclusions be-
tween sets hold:

1. The set of Nϑ-critical contexts is included in Chϑ .

2. The set of Sϑ ∪ Eϑ-critical contexts is included in C·ϑ.

3. The set of Lϑ-critical contexts is included in Cλϑ .
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Proof. We address the first two items, the third being similar. Let Xϑ denote the set Nϑ (resp.
Sϑ ∪ Eϑ), and let Y ϑ denote the set Chϑ (resp. NACtxtϑ). Suppose that C is a Chϑ-critical context,
and let us show that C ∈ Y ϑ. Since C is Chϑ-critical, there is a term p and a variable x not bound
by C such that C[p] ∈ Chϑ and C[[x]] 6∈ Chϑ . We proceed by induction on the derivation that C[p] ∈ Chϑ :

1. n-var, C[p] = y ∈ Sϑ ∪ Eϑ. Then C = � and in fact C ∈ NACtxtϑ.

2. nfLam, C[p] = λy.Nϑ∪{y} ∈ Nϑ. If C is empty, i.e. C = �, we trivially have C ∈ Chϑ .
Otherwise, C is non-empty, i.e. C = λy.C′ such that C′[p] ∈ Nϑ∪{y} and C′[[x]] 6∈ Nϑ∪{y}. By

i.h. we conclude C′ ∈ Chϑ∪{y}, and hence λy.C′ ∈ Chϑ .

3. n-app, C[p] = MϑNϑ ∈ Sϑ ∪ Eϑ. If C is empty, i.e. C = �, we trivially have C ∈ NACtxtϑ.
Otherwise, C is non-empty and there are two possibilities:

(a) The hole of C is to the left, i.e. C = C′Nϑ. Then C′[p] ∈ Sϑ∪Eϑ and C′[[x]] 6∈ Sϑ∪Eϑ.
By i.h. we obtain that C′ ∈ NACtxtϑ, so by applying the formation rule for generalized
non-answer evaluation contexts over ϑ, using the left-application rule, we have C′Nϑ ∈
C·ϑ.

(b) The hole of C is to the right, i.e. C = Mϑ C′. Then C′[p] ∈ Nϑ and C′[[x]] 6∈ Nϑ.
By i.h. we obtain that C′ ∈ Chϑ , so by applying the formation rule for generalized non-
answer evaluation contexts over ϑ, using the right-application rule, we have Mϑ C′ ∈ C·ϑ.
Note that we must use the fact that Mϑ is a strong ϑ-structure to be able to apply the
formation rule.

4. nfSubG, C[p] = t[y\s] ∈ Xϑ with t ∈ Chϑ and y 6∈ ngv(t). Let us check that C ∈ Y ϑ. If C is
empty, i.e. C = �, we trivially have C ∈ Y ϑ. Otherwise, C is non-empty and there are two
possibilities:

(a) The hole of C is to the left, i.e. C = C′[y\s]. Then C′[p] ∈ Chϑ by formation of
C[p] ∈ Chϑ . Moreover we claim that C′[[x]] 6∈ Chϑ . To see this, note that the fact that
y 6∈ ngv(C′[p]) ∪ {x} implies that y 6∈ ngv(C′[[x]]) by the contrapositive of Lem. 81. So,
by contradiction, if we suppose C′[[x]] 6∈ Chϑ we can apply the same formation rule and
obtain that C′[[x]][y\s] ∈ Chϑ , contradicting the hypothesis that C[[x]] 6∈ Chϑ .

Therefore we are able to apply the i.h. on the facts that C′[p] ∈ Chϑ and C′[[x]] 6∈ Chϑ to
conclude that C′ ∈ Y ϑ. This in turn implies that C′[y\s] ∈ Y ϑ by the fact that adding
an arbitrary substitution preserves evaluation contexts (Lem. 80).

(b) The hole of C is to the right, i.e. C = t[y\C′]. This case is not possible, since t ∈ Chϑ
and y 6∈ ngv(t) by formation, and this implies that t[y\C′[[x]]] ∈ Chϑ , contradicting the
hypothesis that C[[x]] 6∈ Chϑ .

5. nfSub, C[p] = t[y\Mϑ] ∈ Xϑ with t ∈ Xϑ∪{y} and Mϑ ∈ Sϑ∪Eϑ. Let us check that C ∈ Y ϑ.

If C is empty, i.e. C = �, we trivially have C ∈ Y ϑ. Otherwise, C is non-empty and there are
two possibilities:

(a) The hole of C is to the left, i.e. C = C′[y\Mϑ]. Then C′[p] ∈ Xϑ∪{y} by formation.
Moreover, we claim that C′[[x]] 6∈ Xϑ∪{x}. By contradiction, suppose that C′[[x]] ∈ Xϑ∪{x}.
Then C′[[x]][y\Mϑ] ∈ Chϑ , contradicting the hypothesis that C[[x]] 6∈ Chϑ .
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So by i.h. we obtain that C′ ∈ Y ϑ∪{x} and, applying the context forming rule for
structural substitutions (ESubLStr), we get C′[y\Mϑ] ∈ Y ϑ, that is to say C ∈ Y ϑ, as
required.

(b) The hole of C is to the right, i.e. C = t[y\C′]. Then t ∈ Xϑ∪{y} and y ∈ ngv(t) by

formation. This implies that t = C1[[y]] with C1 ∈ Y ϑ by Lem. 82

Note that C′[p] = Mϑ ∈ Sϑ ∪ Eϑ. Moreover, we claim that C′[[x]] 6∈ Sϑ ∪ Eϑ. By
contradiction, suppose that C′[[x]] ∈ Sϑ ∪ Eϑ. Then t[y\C′[[x]]] ∈ Chϑ , contradicting the
hypothesis that C[[x]] 6∈ Chϑ . So by i.h. we have that C′ ∈ C·ϑ.

Combining the facts that C1 ∈ Y ϑ and C′ ∈ C·ϑ, by applying the formation rule for
evaluation contexts going inside substitutions, we conclude that C1[[y]][y\C′] ∈ Y ϑ, as
required.

6. nfStruct. Suppose that C[p] ∈ Nϑ by applying the rule requiring that C[p] ∈ Sϑ ∪ Eϑ. We
also know that C[[x]] 6∈ Nϑ, so C[[x]] 6∈ Sϑ ∪ Eϑ, as the set of strong ϑ-normal forms contains
the set of strong ϑ-structures. By i.h. we have that C ∈ C·ϑ, as desired.

Definition 85 (Structural variables). Let C ∈ Chϑ . The set of structural variables of C, written
sv(C) is defined by induction on the derivation that C ∈ Chϑ as follows:

1. EBox, C = � ∈ Chϑ.
sv(�) := ∅

2. EAppL, C = C1 t ∈ Chϑ with h 6= λ.

sv(C1 t) := sv(C1)

3. ESubLNonStr, C = C1[x\t] ∈ Chϑ with C1 ∈ Chϑ, x 6∈ ϑ, and t 6∈ Sϑ ∪ Eϑ.

sv(C1[x\t]) := sv(C1) \ {x}

4. ESubLStr, C = C1[x\t] ∈ Chϑ with C1 ∈ Chϑ∪{x}, and t ∈ Sϑ ∪ Eϑ.

sv(C1[x\t]) := (sv(C1) \ {x}) ∪

{
ngv(t) if x ∈ sv(C1)

∅ otherwise

5. ESubsR, C = C1[[x]][x\C2] ∈ Chϑ with C1 ∈ Chϑ and C2 ∈ C·ϑ.

sv(C1[[x]][x\C2]) := (sv(C1) \ {x}) ∪ sv(C2)

6. EAppRStr, C = t C1 ∈ Chϑ with t ∈ Sϑ ∪ Eϑ and C1 ∈ Chϑ.

sv(t C1) := ngv(t) ∪ sv(C1)

7. ELam, C = λx.C1 ∈ Cλϑ with C1 ∈ Chϑ∪{x}.

sv(λx.C1) := sv(C1) \ {x}
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8. EAppRCons, t C ∈ Chc(t)ϑ and t ∈ Kϑ and C ∈ Chϑ .

sv(t C1) := ngv(t) ∪ sv(C1)

9. ECase1. case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ and C1 ∈ Chϑ and h /∈ {ci}i∈I or h = cj ∈
{ci}i∈I and |A(C, y)| 6= |x̄j |. .

sv(case C1 of (cix̄i ⇒ si)i∈I) := sv(C1)

10. ECase2. case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn ∈ C·ϑ and t ∈ Nϑ and
t � (cix̄i ⇒ si)i∈I and tk ∈ Nϑ∪x̄k

for all k < j and C1 ∈ Chϑ∪x̄i
.

sv(case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn) := ngv(t)∪
j−1⋃
i=1

ngv(ti)∪ sv(C1) \ {x̄j}

Lemma 86 (Reachable and structural variables are frozen). The following properties hold:

1. Let t ∈ Chϑ , where Chϑ is either Sϑ or Eϑ or Lϑ or Nϑ. Then ngv(t) ⊆ ϑ.

2. Let C ∈ Chϑ . Then sv(C) ⊆ ϑ.

Proof. The proof of the first item is by straightforward induction on the derivation that t ∈ Chϑ .
The proof of the second item is by induction on the derivation that C ∈ Chϑ . There are only
interesting two interesting cases, when C is formed by appending a structural substitution, and
when it is formed by going to the right of an application:

1. ESubLStr, C = C1[x\t] with t ∈ Sϑ ∪ Eϑ and C1 ∈ Chϑ∪{x}. Then sv(C) ⊆ (sv(C1) \ {x}) ∪
ngv(t) ⊆ ϑ since sv(C1) ⊆ ϑ∪ {x} by the i.h., and ngv(t) ⊆ ϑ by the first item of this lemma.

2. EAppRStr, C = t C1 with t ∈ Sϑ∪Eϑ and C1 ∈ Chϑ. Then sv(C) = ngv(t)∪ sv(C1) ⊆ ϑ since
ngv(t) ⊆ ϑ by the first item of this lemma, and sv(C1) ⊆ ϑ by the i.h..

Lemma 87 (Non-structural variables are not required in ϑ). If C ∈ Chϑ∪{x} and x 6∈ sv(C), then

C ∈ Chϑ .

Proof. By induction on the size of the context C, and then by case analysis on the last step of the
derivation that C ∈ Chϑ∪{x}:

1. EBox, C = � ∈ Chϑ∪{x}. Then � ∈ Chϑ .

2. EAppL, C = C1 t ∈ Chϑ∪{x} with h 6= λ and C1 ∈ Chϑ∪{x}. Then sv(C) = sv(C1), so x 6∈ sv(C1).

By i.h. C1 ∈ Chϑ , so C1 t ∈ Chϑ .
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3. ESubLNonStr, C = C1[y\t] ∈ Chϑ∪{x} with t 6∈ Sϑ∪{x} ∪ Eϑ∪{x}, y 6∈ ϑ ∪ {x}, and C1 ∈
Chϑ∪{x}. Then x 6∈ sv(C1[x\t]) ⊇ sv(C1) \ {y}, so x 6∈ sv(C1) \ {y}. Observe that x 6= y by

the variable convention, so actually x 6∈ sv(C1). By i.h. C1 ∈ Chϑ . By the fact that adding an
arbitrary substitution preserves evaluation contexts (Lem. 80) we obtain that C1[x\t] ∈ Chϑ ,
as required.

4. ESubLStr, C = C1[y\t] ∈ Chϑ∪{x} with t ∈ Sϑ∪{x} ∪ Eϑ∪{x} and C1 ∈ Chϑ∪{x,y}. Then

x 6∈ sv(C1[y\t]) ⊇ sv(C1) \ {y}, so x 6∈ sv(C1) \ {y}. Observe that x 6= y by the variable
convention, so actually x 6∈ sv(C1). Hence we can apply the i.h., obtaining that C1 ∈ Chϑ∪{y}.
We consider two cases, depending on whether y is structural in C1:

(a) If y ∈ sv(C1). Then, by definition of the structural variables, we have that sv(C) =
(sv(C1) \ {y})∪ ngv(t). In particular, x 6∈ ngv(t). By the fact that unreachable variables
are not required in “ϑ” (Lem. 62) we have that t ∈ Sϑ ∪ Eϑ. Now we can apply the
formation rule for contexts adding a structural substitution (ESubLStr), and conclude
C1[y\t] ∈ Chϑ , as required.

(b) If y 6∈ sv(C1). Then we may apply the i.h. again on the fact that C1 ∈ Chϑ∪{y} to obtain

that C1 ∈ Chϑ . By the fact that adding an arbitrary substitution preserves evaluation
contexts (Lem. 80) we have that C1[x\t] ∈ Chϑ , as required.

5. ESubsR, C = C1[[y]][y\C2] ∈ Chϑ∪{x} with C1 ∈ Chϑ∪{x} and C2 ∈ C·ϑ∪{x}. Then x 6∈
sv(C) = (sv(C1) \ {y})∪ sv(C2). Moreover, x 6= y by the variable convention, so we know that
x 6∈ sv(C1) and that x 6∈ C2. We may apply the i.h. on both C1 and C2 to get that C1 ∈ Chϑ
and C2 ∈ NACtxtϑ, which imply C1[[y]][y\C2] ∈ Chϑ .

6. EAppRStr, C = t C1 ∈ Chϑ∪{x} with t ∈ Sϑ∪{x} ∪ Eϑ∪{x} and C1 ∈ Chϑ∪{x}. Then x 6∈
sv(C) = ngv(t) ∪ sv(C1), so x 6∈ ngv(t) and x 6∈ sv(C1). By the fact that unreachable variables
are not required in “ϑ” (Lem. 62) we have that t ∈ Sϑ ∪ Eϑ. By i.h. we have that C1 ∈ Chϑ .
So t C1 ∈ Chϑ as required.

7. ELam, C = λy.C1 ∈ Chϑ∪{x} with C1 ∈ Chϑ∪{x,y}. Then x 6∈ sv(C) = sv(C1)\{y}. Observe that

x 6= y by the variable convention, so actually x 6∈ sv(C1). By i.h. we obtain that C1 ∈ Chϑ∪{y},
so λy.C1 ∈ Chϑ and we conclude.

8. EAppRCons, t C ∈ Chc(t)ϑ∪{x} and t ∈ Kϑ and C ∈ Chϑ∪{x} . Same as the case EAppRStr.

9. ECase1. case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ∪{x} and C1 ∈ Chϑ∪{x} and h /∈ {ci}i∈I or

h = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j | . Then sv(case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ) := sv(C1),
so x 6∈ sv(C1). By i.h. C1 ∈ Chϑ , so case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ.

10. ECase2. case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn ∈ C·ϑ∪{x} and t ∈ Nϑ and

t � (cix̄i ⇒ si)i∈I and tk ∈ Nϑ∪x̄k
for all k < j and C1 ∈ Chϑ∪{x}∪x̄i

. Then x /∈
svcase t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn ∈ C·ϑ := sv(C1) \ {x̄j}. We reason as
above, making use of the i.h. and fact that unreachable variables are not required in “ϑ”
(Lem. 62).
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Lemma 88 (Structural variables are below evaluation contexts). Let C1 ∈ Chϑ∪{x} where x ∈ sv(C1)

and x 6∈ ϑ. Then for any term p there is a context C2 ∈ Chϑ such that C1[p] = C2[[x]].

Proof. By induction on the size of the term C1[p], and then by case analysis on the last step of the
derivation that C1 ∈ Chϑ∪{x}.

1. EBox, C1 = � ∈ Chϑ∪{x}. Impossible, since x ∈ sv(C1) = ∅.

2. EAppL, C1 = C11 t ∈ Chϑ∪{x} with C11 ∈ C·ϑ∪{x}. Then sv(C11 t) = sv(C11), so by i.h. there

exists a context C21 ∈ C·ϑ such that C11[p] = C21[[x]]. Then C1[p] = C11[p] t = C21[[x]] t and
C21 t ∈ Chϑ .

3. ESubLNonStr, C1 = C11[y\t] ∈ Chϑ∪{x} with t 6∈ Sϑ∪{x} ∪ Eϑ∪{x}, y 6∈ ϑ ∪ {x}, and

C11 ∈ Chϑ∪{x}. Then sv(C11[y\t]) = sv(C11) \ {y}. In particular, x ∈ sv(C11), so by i.h. there

exists a context C21 ∈ Chϑ such that C11[p] = C21[[x]]. So C1[p] = C11[p][y\t] = C21[[x]][y\t]. By
the fact that adding an arbitrary substitution preserves evaluation contexts (Lem. 80) we
have that C21[y\t] ∈ Chϑ , as required.

4. ESubLStr, C1 = C11[y\t] ∈ Chϑ∪{x} with t ∈ Sϑ∪{x} ∪ Eϑ∪{x} and C11 ∈ Chϑ∪{x,y}. We
consider two cases, depending on whether x is a structural variable in C11:

(a) If x ∈ sv(C11). Then by i.h. there is a context C21 ∈ Chϑ∪{y} such that C11[p] = C21[[x]].
We consider two further subcases, depending on whether y is a structural variable in
C21:

i. If y ∈ sv(C21). We consider two more cases, depending on whether x is reachable
in the structure t:

A. If x ∈ ngv(t). Since y ∈ sv(C21) we may apply the i.h. again, to obtain that
there exists a context C31 ∈ Chϑ such that C21[[x]] = C31[[y]]. Note that we are
able to apply the i.h. since the term C21[[x]] = C11[p] is smaller than the original
term, namely C1[p] = C11[p][y\t].
By the fact that reachable variables are below evaluation contexts (Lem. 82)
and t ∈ Sϑ∪{x} ∪Eϑ∪{x} we know that there exists a context C22 ∈ C·ϑ such that
t = C22[[x]]. So we know that

C1[p] = C11[p][y\t]
= C11[p][y\C22[[x]]]
= C21[[x]][y\C22[[x]]]
= C31[[y]][y\C22[[x]]] with C31 ∈ Chϑ and C22 ∈ NACtxtϑ

where, by applying the rule for building evaluation contexts by going inside
substitutions (ESubsR), we have that C31[[y]][y\C22] ∈ Chϑ .

B. If x 6∈ ngv(t). By the fact that unreachable variables are not needed in “ϑ”
(Lem. 62) we have that t ∈ Sϑ ∪ Eϑ. So:

C1[p] = C11[p][y\t]
= C21[[x]][y\t] with C21 ∈ Chϑ∪{y} and t ∈ Sϑ ∪ Eϑ

where, by applying the rule for building evaluation contexts with structural
substitutions (ESubLStr), we have that C21[y\t] ∈ Chϑ .
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ii. If y 6∈ sv(C21). Then by the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we conclude that C21 ∈ Chϑ . So:

C1[p] = C11[p][y\t]
= C21[[x]][y\t] with C21 ∈ Chϑ

By the fact that adding an arbitrary substitution preserves evaluation contexts
(Lem. 80), we have C21[y\t] ∈ Chϑ , as required.

(b) If x 6∈ sv(C11). Recall that, by hypothesis, x ∈ sv(C1) = sv(C11[y\t]) and that by
definition of structural variables:

sv(C11[y\t]) = sv(C11) ∪

{
ngv(t) if y ∈ sv(C11)

∅ otherwise

so, since x 6∈ sv(C11), we must have that y ∈ sv(C11) and x ∈ ngv(t).

Now, by applying the lemma that non-structural variables are not required in “ϑ”
(Lem. 87) on the fact that C11 ∈ Chϑ∪{x,y} we have C11 ∈ Chϑ∪{y}. Since y ∈ sv(C11),

by the i.h. we have that there exists a context C21 ∈ Chϑ such that C11[p] = C21[[y]].
Moreover, x ∈ ngv(t), so by the fact that reachable variables are below evaluation
contexts (Lem. 82) we know that there exists a context C22 ∈ C·ϑ such that t = C22[[x]].
So we have:

C1[p] = C11[p][y\t]
= C21[[y]][y\t]
= C21[[y]][y\C22[[x]]] with C21 ∈ Chϑ and C22 ∈ C·ϑ

By applying the rule for building evaluation contexts by going inside substitutions
(ESubsR), we obtain that C21[[y]][y\C22] ∈ Chϑ , as required.

5. ESubsR, C1 = C11[[y]][y\C12] ∈ Chϑ∪{x} with C11 ∈ Chϑ∪{x} and C12 ∈ NACtxtϑ∪{x}. Then

sv(C1) = sv(C11[[y]][y\C12]) = (sv(C11) \ {y}) ∪ sv(C12). Observe that x 6= y by the variable
convention. We consider two cases, depending on whether x is a structural variable in C11:

(a) If x ∈ sv(C11). Then by i.h. there is a context C21 ∈ Chϑ such that C11[[y]] = C21[[x]]. By
the fact that adding an arbitrary substitution preserves evaluation contexts (Lem. 80),
we obtain that C21[y\C12[p]] ∈ Chϑ , as required.

(b) If x 6∈ sv(C11). Then by the fact that non-structural variables are not required in “ϑ”
(Lem. 87) we have that C11 ∈ Chϑ . Moreover, it must be the case that x ∈ sv(C12), so
by i.h. we have that there is a context C22 ∈ NACtxtϑ such that C12[p] = C22[[x]]. By
applying the formation rule for evaluation contexts going inside substitutions (ESubsR)
we conclude that C11[[y]][y\C22] ∈ Chϑ , as required.

6. EAppRStr, C1 = t C11 ∈ Chϑ∪{x} with t ∈ Sϑ∪{x} ∪ Eϑ∪{x} and C11 ∈ Chϑ∪{x}. Then

sv(C1) = ngv(t) ∪ sv(C11) We consider two cases, depending on whether x is reachable in t:

(a) If x ∈ ngv(t). Then by the fact that reachable variables are below evaluation contexts
(Lem. 82), the structure t can be written as of the form C21[[x]], with C21 ∈ NACtxtϑ. By
applying the formation rule for evaluation contexts going to the left of an application
(EAppL) we conclude that C21 C11[p] ∈ C·ϑ.
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(b) If x 6∈ ngv(t). Then by the fact that unreachable variables are not required in “ϑ”
(Lem. 62), we have that t ∈ Sϑ ∪ Eϑ. Moreover, x ∈ sv(C11), so by i.h. there must
exist a context C21 ∈ Chϑ such that C11[p] = C21[[x]]. By applying the formation rule for
evaluation contexts going to the right of a structure (EAppRStr) we conclude that
t C21 ∈ Chϑ as required.

7. ELam, C1 = λy.C11 ∈ Chϑ∪{x} with C11 ∈ Chϑ∪{x,y}. Note that x 6= y by the variable

convention. By i.h. there must exist a context C21 ∈ Chϑ∪{y} such that C11[p] = C21[[x]], and

λx.C21 ∈ Chϑ as required.

8. EAppRCons, t C ∈ Chc(t)ϑ∪{x} and t ∈ Kϑ and C ∈ Chϑ∪{x} . Similar to EAppRStr.

9. ECase1. case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ∪{x} and C1 ∈ Chϑ∪{x} and h /∈ {ci}i∈I or

h = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j |. Similar to EAppL.

10. ECase2. case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn ∈ C·ϑ∪{x} and t ∈ Nϑ
and t � (cix̄i ⇒ si)i∈I and tk ∈ Nϑ∪x̄k

for all k < j and C1 ∈ Chϑ∪{x}∪x̄i
. Similar to

EAppRStr.

Lemma 89 (Evaluation contexts are backwards-stable by substitutions). Let Ĉ be a two-hole
context, x 6∈ ϑ a variable, v any value, and p be a term such that x is not bound by Ĉ[p,�]. Then:

Ĉ[�, v] ∈ Chϑ implies
(
Ĉ[�, x] ∈ Chϑ or Ĉ[p,�] ∈ Chϑ

)
Proof. Let us write � and � to distinguish the two holes of Ĉ.

Remark. As an example that the left member of the disjunction does not always hold, consider
the two-hole context Ĉ = (z�)[z\y�] with ϑ = {y} and note that Ĉ[�, I] = (z�)[z\y I] is a
generalized {y}-evaluation context, since z is bound to a strong {y}-structure, but Ĉ[�, x] =
(z�)[z\y x] is not a generalized {y}-evaluation context, since z is bound to y x, which is not a
strong {y}-structure. In such a situation, evaluation should focus on x, that is, the right member
of the disjunction holds, and Ĉ[p,�] = (z p)[z\y�] is a {y}-evaluation context. (End of remark).

The proof goes by induction on the derivation that Ĉ[�, v] is an evaluation context over ϑ.

1. EBox, Ĉ[�, v] = � ∈ Chϑ. Impossible, as Ĉ[�, v] must contain a value v as a subterm.

2. EAppL, Ĉ[�, v] = Iϑ t ∈ Chϑ with Iϑ ∈ C·ϑ. If the value v is inside t, i.e. Ĉ[�,�] = IϑC[�]
then the left branch of the disjunction holds as IϑC[x] ∈ Chϑ .
Otherwise, the value v is inside Iϑ, i.e. there is a two-hole context Ĉ1 such that Ĉ[�,�] =
Ĉ1[�,�] t and Ĉ1[�, v] = Iϑ ∈ C·ϑ. By i.h. there are two possibilities:

• the left branch holds, i.e. Ĉ1[�, x] ∈ C·ϑ and then the left branch holds again as
Ĉ1[�, x] t ∈ Chϑ ; or

• the right branch holds, i.e. Ĉ1[p,�] ∈ C·ϑ holds and then the right branch holds again
as Ĉ1[p,�] t ∈ Chϑ .
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3. ESubLNonStr, Ĉ[�, v] = C[y\t] ∈ Chϑ where C ∈ Chϑ and t 6∈ Sϑ ∪ Eϑ. If the value v is
inside t, i.e. Ĉ[�,�] = C[y\C[�]], we may apply the fact that adding an arbitrary substitution
preserves evaluation contexts (Lem. 80), obtaining that C[y\C[x]] ∈ Chϑ , that is Ĉ[�, x] ∈ Chϑ
and the left branch of the disjunction holds.

Otherwise the value v is inside C, i.e. there is a two-hole context Ĉ1 such that Ĉ[�,�] =
Ĉ1[�,�][y\t] and Ĉ1[�, v] = C ∈ Chϑ . By i.h. there are two possibilities:

• the left branch holds, i.e. Ĉ1[�, x] ∈ Chϑ , and then the left branch holds again, as
Ĉ1[�, x][y\t] ∈ Chϑ ; or

• the right branch holds, i.e. Ĉ1[p,�] ∈ Chϑ , and then the right branch holds again, as
Ĉ1[p,�][y\t] ∈ Chϑ .

4. ESubLStr, Ĉ[�, v] = C[y\Mϑ] ∈ Chϑ where C ∈ Xϑ∪{y} and Mϑ ∈ Sϑ ∪ Eϑ. If the value v

is inside Mϑ, i.e. Mϑ = C[v], we consider two further subcases, depending on whether C[[x]]
is a strong ϑ-structure:

(a) If C[[x]] ∈ Sϑ ∪ Eϑ. Applying the formation rule for generalized ϑ-evaluation contexts,
using a structural substitution (ESubLStr), we conclude that C[y\C[[x]]] ∈ Chϑ , that is
Ĉ[�, x] ∈ Chϑ , and the left branch of the disjunction holds.

(b) If C[[x]] 6∈ Sϑ ∪ Eϑ. Then, since C[v] ∈ Sϑ ∪ Eϑ but C[[x]] 6∈ Sϑ ∪ Eϑ, we have that C is
Sϑ∪Eϑ-critical. By Lem. 84 we know that every Sϑ∪Eϑ-critical context is a C·ϑ context,
so C ∈ C·ϑ.

We consider two further subcases, depending on whether y is a structural variable in C:

i. If y ∈ sv(C). Then by the fact that structural variables are below evaluation
contexts (Lem. 88) there is a context C2 ∈ Chϑ such that C[p] = C2[[y]]. This means
that C[p][y\C] = C2[[y]][y\C] ∈ Chϑ since C ∈ C·ϑ is a non-answer context. So the right
branch holds.

ii. If y 6∈ sv(C). Then by the fact that non-structural variables are not required in “ϑ”
(Lem. 87) we know that C ∈ Chϑ . By the fact that adding an arbitrary substitution
preserves evaluation contexts (Lem. 80), we conclude that C[y\C[[x]]] ∈ Chϑ , and the
left branch holds.

Otherwise, the value v is inside C, i.e. there is a two-hole context Ĉ1 such that Ĉ[�,�] =
Ĉ1[�,�][x\Mϑ] and Ĉ1[�, v] = C ∈ Xϑ∪{y}. By i.h. there are two possibilities:

• the left branch holds, i.e. Ĉ1[�, x] ∈ Xϑ∪{y}, and then the left branch holds again,

as Ĉ1[�, x][y\Mϑ] ∈ Chϑ ; or

• the right branch holds, i.e. Ĉ1[p,�] ∈ Xϑ∪{y}, and then the right branch holds again,

as Ĉ1[p,�][y\Mϑ] ∈ Chϑ .

5. ESubsR, Ĉ[�, v] = C[[y]][y\Iϑ] ∈ Chϑ with C ∈ Chϑ and Iϑ ∈ C·ϑ. If the value v is inside C[[y]],
there are two cases, depending on whether the hole of C lies inside the value v or not:

(a) If the hole of C lies inside v. Then C = C1[λz.C2] where v = λz.C2[[y]] and Ĉ[�,�] =
C1[�][y\Iϑ[�]]. By the decomposition of evaluation contexts lemma (Lem. 50) we know
that C1 ∈ Chϑ . By the fact that adding an arbitrary substitution preserves evaluation
contexts (Lem. 80), C1[x\Iϑ[p]] ∈ Chϑ . This means that Ĉ[p,�] = C1[x\Iϑ[p]] ∈ Chϑ , so
the right branch holds.
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(b) If the hole of C and the position of v are disjoint. Then there is a two-hole context
Ĉ1 such that Ĉ1[�, v] = C. Note, in particular, that Ĉ1[y, v] = C[[y]], and Ĉ[�,�] =
Ĉ1[y,�][y\Iϑ[�]]. By i.h. there are two possibilities:

• the left branch holds, i.e. Ĉ1[�, x] ∈ Chϑ , and then the left branch holds again,
as Ĉ[�, x] = Ĉ1[y, x][y\Iϑ] ∈ Chϑ ; or

• the right branch holds, i.e. Ĉ1[y,�] ∈ Chϑ . Using the fact that adding an
arbitrary substitution preserves evaluation contexts (Lem. 80), this implies that
Ĉ[p,�] = Ĉ1[y,�][y\Iϑ[p]] ∈ Chϑ , and the right branch holds again.

Otherwise, the value v is inside Iϑ. This means that there is a two-hole context Ĉ1 such that
Ĉ = C[[y]][y\Ĉ1] and Ĉ1[�, v] = Iϑ. By i.h. there are two possibilities:

• the left branch holds, i.e. Ĉ1[�, x] ∈ C·ϑ, and then the left branch holds again, as
Ĉ[�, x] = C[[y]][y\Ĉ1[�, x]] ∈ Chϑ ; or

• the right branch holds, i.e. Ĉ1[p,�] ∈ C·ϑ, and then the right branch holds again, as
Ĉ[p,�] = C[[y]][y\Ĉ1[p,�]] ∈ Chϑ .

6. EAppRStr, Ĉ[�, v] = u C ∈ Chϑ, with u ∈ Sϑ ∪Eϑ and C ∈ Chϑ. If the value v is inside u i.e.
u = C[v] and Ĉ[�,�] = C[�] C[�], we consider two further subcases, depending on whether
C[[x]] is a strong ϑ-structure:

(a) If C[[x]] ∈ Sϑ ∪ Eϑ. Applying the formation rule for generalized ϑ-evaluation contexts,
going to the right of a structure (EAppRStr), we conclude that Ĉ[�, x] = C[[x]] C ∈ Chϑ ,
so the left branch holds.

(b) If C[[x]] 6∈ Sϑ ∪ Eϑ. Then, since C[v] ∈ Sϑ ∪ Eϑ but C[[x]] 6∈ Sϑ ∪ Eϑ, we have that C is
Sϑ∪Eϑ-critical. By Lem. 84 we know that every Sϑ∪Eϑ-critical context is a C·ϑ context,
so C ∈ C·ϑh. Applying the formation rule for generalized ϑ-evaluation contexts, going to
the left of an application (EAppL), we conclude that Ĉ[p,�] = C C[p] ∈ Chϑ , so the right
branch holds.

Otherwise, the value v is inside C, that is, there is a two-hole context Ĉ1 such that Ĉ = u Ĉ1

and C = Ĉ1[�, v]. By i.h. there are two possibilities:

• the left branch holds, i.e. Ĉ1[�, x] ∈ Chϑ and the left branch holds again, as u Ĉ1[�, x] ∈
Chϑ by the rule EAppRStr; or

• the right branch holds, i.e. Ĉ1[p,�] ∈ Chϑ and the right branch holds again, as
u Ĉ1[p,�] ∈ Chϑ by the rule EAppRStr.

7. ELam, Ĉ[�, v] = λy.C ∈ Chϑ with C ∈ Chϑ∪{y}. Then there must be a two-hole context Ĉ1

such that Ĉ = λy.Ĉ1 and C = Ĉ1[�, v]. By i.h. there are two possibilities:

• the left branch holds, i.e. Ĉ1[�, x] ∈ Chϑ∪{y} and the left branch holds again, as

λy.Ĉ1[�, x] ∈ Chϑ ; or

• the right branch holds, i.e. Ĉ1[p,�] ∈ Chϑ∪{y} and the right branch holds again, as

λy.Ĉ1[p,�] ∈ Chϑ .

8. EAppRCons, Ĉ[�, v] = t C ∈ Chc(t)ϑ and t ∈ Kϑ and C ∈ Chϑ . Similar to EAppRStr.
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9. ECase1. Ĉ[�, v] = case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ and C1 ∈ Chϑ and h /∈ {ci}i∈I or
h = cj ∈ {ci}i∈I and |A(C, y)| 6= |x̄j |. Similar to EAppL.

10. ECase2. Ĉ[�, v] = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn ∈ C·ϑ and t ∈
Nϑ and t � (cix̄i ⇒ si)i∈I and tk ∈ Nϑ∪x̄k

for all k < j and C1 ∈ Chϑ∪x̄i
. Similar to

EAppRStr.

Lemma 90 (Effect of appending a substitution context on ϑ). CL ∈ Chϑ if and only if C ∈ Chϑ′

where ϑ′ := fzϑ(L).

Proof. Straightforward by induction on L. For each substitution node two cases must be considered,
depending on whether it holds a strong ϑ-structure or not.

Lemma 91 (Effect of permutation rules on ϑ). Let ϑ be a set of variables and ϑ′ := fzϑ([x\v]L).
If C ∈ Chϑ′ and L is a substitution context such that dom L has no variables in common with C, then
C[x\vL] ∈ Chϑ .

Proof. By induction on the length of L let us show that C ∈ Chϑ .

1. Base case, L = �. Then ϑ′ = ϑ since v is not a strong ϑ-structure, so we are done.

2. Induction, L = L′[y\t]. We consider two subcases, depending on whether t is a strong
ϑ-structure or not:

(a) If t is a strong ϑ-structure. Then ϑ′ = fzϑ(L) ∪ {y}. Note that y does not occur in
C, so in particular y 6∈ sv(C). By the fact that non-structural variables are not required
in “ϑ” (Lem. 87) we obtain that C ∈ Ch

fzϑ(L)
. Then by i.h. C ∈ Chϑ .

(b) If t is not a strong ϑ-structure. Then ϑ′ = fzϑ(L) and we conclude by i.h..

Finally, by adding an arbitrary substitution (Lem. 80) we have that C[x\vL] ∈ Chϑ , as required.

Definition 92 (Chain context). The sets of (ϑ, x)-chain contexts, ranged over by L ,L ′, etc., are
defined as follows:

ϑ′ = fzϑ(L2)
C ∈ C·ϑ′

L1, L2 are substitution contexts

〈L1, x, C, L2〉 is a (ϑ, x)-chain context

ϑ′ = fzϑ(L)
C ∈ C·ϑ′

L is a substitution context
L is a (ϑ′ ∪ {y}, x)-chain context

〈L , y, C, L〉 is a (ϑ, x)-chain context

Given a (ϑ, x)-chain context L , its instantiation on two terms t1, t2, written t1L {t2}, is defined
inductively as follows:

t1〈L1, x, C, L2〉{t2} := t1L1[x\C[t2]]L2

t1〈L , y, C, L〉{t2} := (t1L {y})[y\C[t2]]L
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Sometimes we write L ϑ
x to stress that L is a (ϑ, x)-chain context. The number of rules required

to build a chain context L is called the number of jumps of L .

In informal terms, a (ϑ, x1)-chain context interpreted as a two-hole context, i.e. �1L {�2}, is
of the form:

�1 L1[x1\C1[[x2]]]
L2[x2\C2[[x3]]]
. . .
Li[xi\Ci[[xi+1]]]
. . .
Ln−1[xn−1\Cn−1[[xn]]]
Ln[xn\Cn[[�2]]]
Ln+1

where n ≥ 1, each Ci ∈ C·ϑi
, and each ϑi is the set of available frozen variables according to the

definition of generalized evaluation context:

ϑn = fzϑ(Ln+1) ϑi−1 = fzϑi(Li[xi\Ci[[xi+1]]])

Lemma 93 (Weakening for chain contexts). If L is a (ϑ, x)-chain context, and ϑ ⊆ ϑ′ then L
is a (ϑ′, x)-chain context.

Proof. By induction on the formation rules for chain contexts, using the weakening lemma for
evaluation contexts (Lem. 64).

Definition 94 (Adding substitutions to chain contexts). If L is a substitution context, ϑ′ = fzϑ(L)
and L is a (ϑ′, x)-chain context then we write L L for the (ϑ, x)-chain context defined as follows:

1. 〈L1, x, C, L2〉L := 〈L1, x, C, L2L〉

2. 〈L ′, x, C, L′〉L := 〈L ′, x, C, L′L〉

Note that t1(L L){t2} = (t1L {t2})L.

Lemma 95 (Stripping substitutions from a context using chain contexts). Let C ∈ Chϑ be an
evaluation context. Suppose that C[t] = sL where all the substitution nodes in the spine of L belong
to the context C (rather than to the subterm t), that is, one of the following holds:

• A. C = CL and s = C[t].

• B. C = sL1[x\C]L2 and L = L1[x\C[t]]L2.

Then in each case the following more precise conditions hold:

• A. There is an evaluation context C1 ∈ Chϑ′ where ϑ′ = fzϑ(L) such that:

C = C1L s = C1[t]

• B. There is an evaluation context C ∈ Chϑ′ where ϑ′ = fzϑ(L), and a (ϑ, x)-chain context L
such that:

C = C1[[x]]L {�} L = �L {t}
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Proof. We proceed by induction on L.

• Empty, L = �. Then case B is impossible, since the hypothesis B requires that L has at
least one substitution. So case A applies, with ϑ′ = ϑ and C1 = C.

• Non-empty, L = L′[y\u]. In case A, C = CL. It suffices to note that, by the decomposition
of evaluation contexts (Lem. 50), C ∈ Chϑ′ where ϑ′ = fzϑ(L), so by taking C1 := C we conclude.

In case B we consider two subcases, depending on whether the hole of C lies inside u or inside
one of the substitutions in L′.

1. If the hole of C lies inside u. Then C = sL′[y\C]. Then since C is an evaluation
context, it must be built using the ESubsR rule. Hence we have that C = C2[[y]][y\Iϑ3 ]
where ϑ′′ = fzϑ([y\Iϑ3 [t]]) and the contexts are evaluation contexts, that is C2 ∈ Chϑ′′ and
Iϑ3 ∈ C·ϑ.

Note that C2 = sL′, so by i.h., there are two possibilities for C2:

(a) A. Then C2 = C21L
′ with s = C2[[y]]. Let us take ϑ′ := ϑ′′′, with C1 := C21 and

L := 〈L′, y, Iϑ3 ,�〉. Then we have indeed that L is a (y, ϑ)-chain context and:

C = C2[[y]][y\Iϑ3 ]
= C21[[y]]L′[y\Iϑ3 ]
= C1[[y]]L′[y\Iϑ3 ]
= C1[[y]]L {�}

L = L′[y\Iϑ3 [t]]
= �〈L′, y, Iϑ3 ,�〉{t}
= �L {t}

(b) B. Then C2 = C21[[z]]L ′{�} with L′ = �L ′{y}, where L ′ is a (ϑ′′, z)-chain context.
Recall that ϑ′′ = fzϑ([y\Iϑ3 [t]]) so it can be that y ∈ ϑ′′ or that y 6∈ ϑ′′. In any
case, by the weakening lemma for chain contexts (Lem. 93) we have that L ′ is a
(ϑ′′ ∪ {y}, z)-chain context.
Let us take ϑ′ := ϑ′′′, with C1 := C21 and L := 〈L ′, y, Iϑ3 ,�〉. Then we have indeed
that L is a (ϑ, z)-chain context and:

C = C2[[y]][y\Iϑ3 ]
= C21[[z]]L ′{y}[y\Iϑ3 ]
= C1[[z]]L ′{y}[y\Iϑ3 ]
= C1[[z]]L {�}

L = L′[y\Iϑ3 [t]]
= �L ′{y}[y\Iϑ3 [t]]
= �〈L ′, y, Iϑ3 ,�〉{t}
= �L {t}

2. If the hole of C lies inside L′. Then C = C2[y\u] and C2 = sL′ where the hole of C2 is
inside L′. By i.h. case B applies for C2 so we have that there exist an evaluation context
C21 ∈ Chϑ′′′ and a (ϑ′′, z)-chain context L ′ such that:

C2 = C21[[z]]L ′{�} L′ = �L ′{t}

Hence by taking ϑ′ := ϑ′′′ with contexts C1 := C21 and L := L ′[y\u] we have:

C = C2[y\u]
= C21[[z]]L ′{�}[y\u]
= C1[[z]]L ′{�}[y\u]
= C1[[z]](L ′[y\u]){�}
= C1[[z]]L {�}

L = L′[y\u]
= �L ′{t}[y\u]
= �(L ′[y\u]){t}
= �L {t}
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Lemma 96 (Stripping substitutions from a lsv redex using chain contexts). If C1[C2[[x]][x\vL′]] =
tL where C1[C2[x\vL′]] ∈ Chϑ is an evaluation context then at least one of the following four possi-
bilities holds:

1. A. C1 = C11L where ϑ′′ = fzϑ(L) and C11 ∈ Chϑ′′ .

2. B. C1 = C11[[y]]L {�} such that:

L = �L {C2[[x]][x\vL′]}

where ϑ′′ = fzϑ(L), the evaluation context C11 is in Chϑ′′ and L is a (ϑ, y)-chain context.

3. C. C2 = C21L̃ such that:
L = C1[L̃[x\vL′]]

where ϑ′′ = fzϑ(L̃), the context C1 is a substitution context, and the evaluation context C21 is
in Chϑ′′ .

4. D. C2 = C21[[y]]{�} such that:
L = C1[�L {x}[x\vL′]]

where ϑ′′ = fzϑ(L), the context C1 is a substitution context, the evaluation context C21 is in
Chϑ′′ , and L is a (ϑ′′, y)-chain context.

Proof. We know that C1[C2[[x]][x\vL′]] = tL. We consider two cases, depending on whether L is
“contained” in C1, that is, all the substitution nodes in the spine of L belong to the context C1, or
otherwise:

1. If all the substitution nodes in the spine of L belong to the context C1. That is,
the substitution nodes in L do not come from the subterm C2[[x]][x\vL′]. Then we may strip
the substitution L from C1 using Lem. 95, which means that we are either in case A or case
B, and we are done.

2. Otherwise. Then some of the substitution nodes in L come from the subterm C2[[x]][x\vL′].
So we have that C1 is a substitution context and that L = C1[L1] for some substitution context
L1. Note that L1 is non-empty since otherwise L would be subsumed in C1, which has already
been considered in the previous case. Since L1 is non-empty we have that L1 = L̃[x\vL′]. So
C2[[x]][x\vL′] = tL̃[x\vL′]. Then we may strip the substitution L̃ from C2[x\vL′] using Lem. 95.
This gives us two possibilities, which correspond to cases C and D respectively.

Lemma 97 (Answers do not have redexes or variables under non-answer contexts). Let vL be an
answer. Then it cannot be the case that vL = C[∆] where C ∈ C·ϑ and ∆ is a dB, fix, case-redex
or a variable.

Proof. By the fact that non-answer evaluation contexts do not go below answers (Lem. 53) we
have that L = L1L2 and C = L2. This means that vL1 is a dB, fix or case-redex or a variable,
which is a contradiction.
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Lemma 98 (Stripping a substitution from a term). Let Chϑ denote either Nϑ, Sϑ, Eϑ, Kϑ or Lϑ.

If t = t′L and t ∈ Chϑ , then t′ ∈ Ch
ϑ̂

where ϑ̂ ⊆ fzϑ(L).

Proof. By induction on L. If L is empty, it is immediate. If L = L′[x\u] there are two cases,
depending on whether the rule nfSubG or the nfSub is applied to derive t ∈ Xϑ.

1. nfSubG, t = t′L′[x\u] with x 6∈ ngv(t′L′) and t′L′ ∈ Xϑ. Then by i.h. t′L′ ∈ Xϑ̂ where

ϑ̂ ⊆ fzϑ(L′) ⊆ fzϑ(L′[x\u]).

2. nfSub, t = t′L′[x\u] with x ∈ ngv(t′L′), t′L′ ∈ Xϑ∪{x}, and u ∈ Sϑ ∪ Eϑ. Then by i.h.

t′L′ ∈ Xϑ̂ where ϑ̂ ⊆ fzϑ∪{x}(L′) = fzϑ(L′[x\u]).

Definition 99 (Reachable contexts). The set of reachable contexts is given by the following gram-
mar:

R ::= � | R t | tR | λx.R | R[x\t] | R[[x]][x\R]
| fix(x.R) | case R of b̄ | case t of (c1x̄1 ⇒ s1) . . . (cix̄i ⇒ R) . . . (cnx̄n ⇒ sn)

Lemma 100 (Reachable variables are variables below reachable contexts). ngv(t) = {x | ∃R. R is a reachable context and t =
R[[x]]}

Proof. Straightforward by induction on t. The interesting case is when t = s[x\u]. Note that in
that case, by i.h., we have that x ∈ ngv(s) if and only if s is of the form R1[[x]].

Lemma 101 (Evaluation contexts are reachable). Let C ∈ Chϑ be a ϑ-evaluation context. Then C

is reachable.

Proof. Straightforward by induction on the derivation that C ∈ Chϑ .

Lemma 102 (Replacing a variable in a reachable context yields a reachable context). Let Ĉ be a
two-hole context such that Ĉ[�, y] is a reachable context and y is not bound by the context Ĉ[p,�]
(for an arbitrary term p). Then for any term s the context Ĉ[�, s] is reachable.

Proof. By induction on the derivation that Ĉ[�, y] is a reachable context:

1. Empty, Ĉ[�, y] = �. Impossible.

2. Under an abstraction, Ĉ[�, y] = λx.R. Then Ĉ[�1,�2] = λx.Ĉ1[�1,�2], so Ĉ[�, s] =
λx.Ĉ1[�, s] is reachable by i.h..

3. Left of an application, Ĉ[�, y] = R t. Two cases, depending on the position of the second
hole of Ĉ:

- If the second hole of Ĉ is in t, i.e. Ĉ[�1,�2] = R[�1] C[�2] with t = C[[y]], then Ĉ[�, s] =
R C[s] is reachable.

- If the second hole of Ĉ is in R, i.e. Ĉ[�1,�2] = Ĉ1[�1,�2] t, then Ĉ[�, s] = Ĉ1[�, s] t is
reachable by i.h..

4. Right of an application, Ĉ[�, y] = tR. Two cases, depending on the position of the second
hole of Ĉ:
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- If the second hole of Ĉ is in t, i.e. Ĉ[�1,�2] = C[�2]R[�1] with t = C[[y]], then Ĉ[�, s] =
C[s]R is reachable.

- If the second hole of Ĉ is in R, i.e. Ĉ[�1,�2] = t Ĉ1[�1,�2], then Ĉ[�, s] = t Ĉ1[�, s] is
reachable by i.h..

5. Left of a substitution, Ĉ[�, y] = R[x\t]. Two cases, depending on the position of the
second hole of Ĉ:

- If the second hole of Ĉ is in t, i.e. Ĉ[�1,�2] = R[�1][x\C[�2]] with t = C[[y]], then
Ĉ[�, s] = R[x\C[s]] is reachable.

- If the second hole of Ĉ is inR, i.e. Ĉ[�1,�2] = Ĉ1[�1,�2][x\t], then Ĉ[�, s] = Ĉ1[�, s][x\t]
is reachable by i.h..

6. Inside a substitution, Ĉ[�, y] = R1[[x]][x\R2]. Two cases, depending on the position of the
second hole of Ĉ:

- If the second hole of Ĉ is in R1[[x]], i.e. Ĉ[�1,�2] = Ĉ1[x,�2][x\R2[�1]] with R1 =
Ĉ1[�, y], then by i.h. Ĉ1[�, s] is reachable, so Ĉ[�, s] = Ĉ1[x, s][x\R2] is also reachable.

- If the second hole of Ĉ is in R2, i.e. Ĉ[�1,�2] = R1[[x]][x\Ĉ1[�1,�2]], with R2 = Ĉ1[�, y],
then by i.h. Ĉ1[�, s] is reachable, so Ĉ[�, s] = R1[[x]][x\Ĉ1[�, s]] is also reachable.

7. Under a fix, Ĉ[�, y] = fix(x.R). Then Ĉ[�1,�2] = fix(x.Ĉ1[�1,�2]), so Ĉ[�, s] =
fix(x.Ĉ1[�, s]) is reachable by i.h..

8. Under the target of a case, Ĉ[�, y] = case R of b̄. Similar to the case left of an
application.

9. Under a branch of a case, Ĉ[�, y] = case t of (c1x̄1 ⇒ s1) . . . (cix̄i ⇒ R) . . . (cnx̄n ⇒ sn).
Similar to the case right of an application.

Lemma 103 (Preservation of reachable variables by internal steps when going to normal form). Let
t→¬ϑsh s be a ϑ-internal step, such that s ∈ Nϑ is a strong ϑ-normal form. Then ngv(t) ⊆ ngv(s).

Proof. Let r : t→¬ϑsh s be the internal step. The proof goes by induction on t.

1. Variable, t = x. Impossible.

2. Abstraction, t = λx.t′. Let r1 : t′ →sh\gc s
′ be the step isomorphic to r but going under

the lambda. Note that r1 cannot be (ϑ∪{x})-external, for otherwise r would be ϑ-external.
Let y ∈ ngv(λx.t′) = ngv(t′) \ {x}. Then by i.h. y ∈ ngv(s′) \ {x} = ngv(λx.s′).

3. Application, t = t1 t2. Note that r cannot be a step at the root, since it would be a dB

step, and it would be external. Hence there are two cases, depending on whether the step r

is internal to t1 or internal to t2:

(a) If r is internal to t1. Let r1 : t1→sh\gc s1 be the step isomorphic to r but going under
the context � t2. Then s = s1 t2. Note that r1 cannot be ϑ-external, for otherwise r

would be ϑ-external. So:

ngv(t1 t2) = ngv(t1) ∪ ngv(t2) ⊆i.h. ngv(s1) ∪ ngv(t2) = ngv(s1 t2)
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(b) If r is internal to t2. Let r1 : t2→sh\gc s2 be the step isomorphic to r but going under
the context t1�. Then s = t1 s2. Recall that by hypothesis s ∈ Nϑ is a normal form,
so t1 must be a strong ϑ-structure, i.e. t1 ∈ Sϑ ∪Eϑ. The step r1 cannot be ϑ-external,
for otherwise r would be ϑ-external (note that this depends on the fact that t1 is a
structure). So:

ngv(t1 t2) = ngv(t1) ∪ ngv(t2) ⊆i.h. ngv(t1) ∪ ngv(s2) = ngv(t1 s2)

4. Substitution, t = t1[x\t2]. We consider three cases, depending on whether (1) the step r

is at the root of t, (2) r is internal to t1, (3) r is internal to t2.

(a) If r is at the root of t. Then r is a lsv step, which means that t1 = C[[x]] and t2 = vL
in such a way that:

r : t = C[[x]][x\vL]→¬ϑsh C[v][x\v]L = s

Since s = C[v][x\v]L ∈ Nϑ we may strip the substitution context [x\v]L (by Lem. 98)

to obtain that C[v] ∈ Nϑ̂ where ϑ̂ ⊆ fzϑ([x\v]L) = fzϑ(L). We consider two cases,
depending on whether C[[x]] is a normal form in Nϑ̂:

i. If C[[x]] ∈ Nϑ̂. We consider two further subcases, depending on whether x is a
reachable variable in C[[x]]:

A. If x ∈ ngv(C[[x]]). Recall that ϑ̂ ⊆ ϑ ∪ dom L. Moreover, observe that C[[x]]
is outside the scope of L in the original term C[[x]][x\vL], so by Barendregt’s
convention we may suppose that variables in dom L do not occur in C[[x]]. In
particular, variables in dom L are not reachable in C[[x]], so by the fact that
unreachable variables are not required in “ϑ” (Lem. 62) we have C[[x]] ∈ Nϑ.
Since x ∈ ngv(C[[x]]) and C[[x]] is a normal form in Nϑ, by the fact that reachable
variables in normal forms are below evaluation contexts (Lem. 82), we know
that there exists an evaluation context C ∈ Chϑ such that C[[x]] = C[[x]]. There
are two subcases, depending on whether C = C or C 6= C:

• If C = C. Then C[x\vL] is an evaluation context in Chϑ , contradicting the fact
that r is ϑ-internal.

• If C 6= C. Then there is a two-hole context Ĉ such that:

Ĉ[�, x] = C Ĉ[x,�] = C

And the step is of the form:

r : t = Ĉ[x, x][x\vL]→sh\gc Ĉ[x, v][x\v]L = s

Note that the underlined occurrence of x is reachable on the left-hand side,
so it is also reachable on the right-hand side.
More precisely, Ĉ[�, x] = C is an evaluation context so by Lem. 101 it is also
a reachable context. Recall that replacing a variable by an arbitrary term in
a reachable context is still a reachable context (Lem. 102), so Ĉ[�, v] is also
reachable. Moreover, since reachable variables coincide with variables below
reachable contexts (Lem. 100) we have that x ∈ ngv(Ĉ[x, v]).
This contradicts the fact that s is a normal form, since to conclude that
Ĉ[x, v][x\vL] is a normal form, given that x ∈ ngv(Ĉ[x, v]), we would require
that x is bound to a structure, but it is bound to a value v.

95



B. If x 6∈ ngv(C[[x]]). Let us show that ngv(t) ⊆ ngv(s). Consider an arbitrary
variable y ∈ ngv(t) = ngv(C[[x]][x\vL]), and let us show that y ∈ ngv(s). Since
x is not reachable in C[[x]], it must be the case that y ∈ ngv(C[[x]]). Moreover,
since x 6= y and y is reachable in C[[x]], by the fact that reachable variables are
below reachable contexts (Lem. 100) there must exist a two-hole context Ĉ such
that:

Ĉ[�, x] is reachable Ĉ[y,�] = C

By replacing a variable in a reachable context (Lem. 102) we obtain that
Ĉ[�, v] = C is also reachable. So y ∈ ngv(Ĉ[y, v]) = ngv(C[v]). Hence y ∈
ngv(C[v][x\v]L) = ngv(s), as required.

ii. If C[[x]] 6∈ Nϑ̂. Then by definition (Def. 83) C is a Nϑ̂-critical context. By Lem. 84
since C is Xϑ̂-critical, it is an evaluation context, C ∈ Ch

ϑ̂
.

Recall that ϑ̂ ⊆ ϑ∪L. Moreover, the context C is outside the scope of L in the original
term C[[x]][x\vL], so by Barendregt’s convention we may suppose that variables in
dom L do not occur in C. In particular, variables in dom L are not structural variables
in C, so by repeatedly applying the fact that non-structural variables are not required
in “ϑ” (Lem. 87), we may conclude that C ∈ Chϑ .
Then also C[x\vL] ∈ Chϑ , contradicting the fact that the step r is ϑ-internal.

(b) If r is internal to t1. Let r1 : t1 → s1 be the step isomorphic to r but going under
the context [x\t2]. Then s = s1[x\t2]. Note that r1 cannot be ϑ-external, since then r

would be ϑ-external. There are two cases, depending on whether x is reachable in t1 or
not:

i. If x ∈ ngv(t1). Note that by i.h. x ∈ ngv(s1). Then ngv(t) = ngv(t1)∪ngv(t2) ⊆i.h.

ngv(s1) ∪ ngv(t2) = ngv(s1[x\t2]) = ngv(s).

ii. If x 6∈ ngv(t1). Then ngv(t) = ngv(t1) ⊆i.h. ngv(s1) ⊆ ngv(s1[x\t2]) = ngv(s).

(c) If r is internal to t2. Let r1 : t2 → s2 be the step isomorphic to r but going under the
context t1[x\�]. Then s = t1[x\s2]. We consider two subcases, depending on whether
x is reachable in t1 or not:

i. If x ∈ ngv(t1). We consider two subcases, depending on whether r1 is ϑ-external
or ϑ-internal:

A. If r is ϑ-external. Since t1[x\s2] is a normal form, we know that t1 ∈ Nϑ∪{x}.
By the fact that reachable variables in normal forms are below evaluation con-
texts (Lem. 82) there must exist an evaluation context C1 ∈ Chϑ such that
t1 = C1[[x]]. Moreover, since the step r1 is external, we have that t2 = C2[[Σ]]
where C2 ∈ Chϑ and Σ is the anchor of a redex. If we let Σ′ denote its contractum,
we have that the step r is of the form:

r : t = C1[[x]][x\C2[Σ]]→¬ϑsh C1[[x]][x\C2[Σ′]] = s

Note that C2 cannot be a non-answer ϑ-evaluation context, since otherwise the
step r would be ϑ-external.
Hence we have that C2 6∈ C·ϑ. Recall that evaluation contexts which are not non-
answer evaluation contexts have the shape of an answer (Lem. 45). In particular,
the subterm C2[Σ′] is an answer (λy.r)L. This contradicts the hypothesis that

96



s = C1[[x]][x\(λy.r)L] is in normal form, since x is below an evaluation context
and bound to an answer.

B. If r is ϑ-internal. Then ngv(t) = ngv(t1) ∪ ngv(t2) ⊆i.h. ngv(s1) ∪ ngv(t2) =
ngv(s) as required.

ii. If x 6∈ ngv(t1). Then ngv(t) = ngv(t1) = ngv(s) and we are done.

5. Fix, t = fix(x.t1). Impossible since the reduction step would have to be inside t1 and then
s would not be in Nϑ.

6. Case, t = case t0 of c1x̄1 ⇒ t1, . . . , cnx̄n ⇒ tn. The r step cannot be at the root since
it would be external. So it must be inside one of the ti, with i ∈ 0..n. We reason as in the
previous cases using the i.h..

Lemma 104 (Backwards preservation of strong normal forms by internal steps). Let t0 →¬ϑsh t be
an internal step with t ∈ Xϑ where Xϑ stands for either Nϑ, Sϑ, Eϑ, Kϑ or Lϑ. Then t0 ∈ Xϑ.

Proof. By induction on the derivation that t ∈ Chϑ .

1. lNfLam, t = λx.t′ ∈ Nϑ with t′ ∈ Nϑ∪{x}. Note that the step r cannot be a dB, lsv or
fix step at the root of t0, since the right-hand side of these rules is a substitution. Then
t0 must be of the form λx.t′0 and r must be internal to t′0. Let r1 : t′0 →sh\gc N

ϑ∪{x} be
the step isomorphic to r but going under the lambda. Then by i.h. t′0 ∈ Nϑ, so indeed
t0 = λx.t′0 ∈ Nϑ.

If the step r is at the root of t0, then it must be a case step of the form case cj of c1x̄1 ⇒
t1, . . . , cj ⇒ λx.t′, . . . , cnx̄n ⇒ tn → λx.t′. But this is an external step.

2. n-var, t ∈ Sϑ ∪ Eϑ with x ∈ ϑ. This case is impossible since, regardless of whether the step
r is a dB or a lsv step, the right-hand side of r always contains at least one substitution.

3. nfStruct. Recall that the rule nfStruct allows us to conclude that t ∈ Nϑ from the
premise that t ∈ Sϑ ∪ Eϑ. Then by i.h. t0 ∈ Sϑ ∪ Eϑ, and applying the rule nfStruct we
conclude t0 ∈ Nϑ.

4. n-app, t = uNϑ ∈ Sϑ∪Eϑ with u ∈ Sϑ∪Eϑ and Nϑ ∈ Nϑ. Note that the step r cannot be
at the root of t0, since the right-hand side of both dB and lsv steps is a substitution, rather
than an application.

So t0 is an application t1 t2, and we consider two cases depending on whether the step r is
internal to t1 or internal to t2:

(a) If r is to the left of t0 = t1N
ϑ. Let r1 : t1 →sh\gc u be the step isomorphic to r

but going under the context �Nϑ. Note that r1 cannot be ϑ-external, since this would
imply that r is ϑ-external. So r1 is ϑ-internal and by i.h. we have that t1 ∈ Sϑ ∪ Eϑ.
Hence t0 = t1N

ϑ ∈ Sϑ ∪ Eϑ, as required.

(b) If r is to the right of t0 = u t2. Let r1 : t2 →sh\gc N
ϑ be the step isomorphic to r

but going under the context u�. Note that r1 cannot be ϑ-external, since this would
imply that r is ϑ-external. So r1 is ϑ-internal and by i.h. we have that t2 ∈ Nϑ. Hence
t0 = Mϑ t2 ∈ Sϑ ∪ Eϑ, as required.
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5. nfSubG, t = s[x\u] ∈ Xϑ with x 6∈ ngv(s) and s ∈ Xϑ. We consider three cases, depending
on whether (1) r is a step at the root of t0, (2) t0 is a substitution s0[x\u0] and r is internal
to t1, (3) t0 is a substitution s0[x\u0] and r is internal to t2.

(a) If r is at the root. Note that r cannot be a dB step since it would be external, it must
be a lsv step:

r : t0 = C[[y]][y\vL]→¬ϑsh C[v][y\v]L = s[x\u]

So s is of the form s = s′L1 with L1[x\u] = [y\v]L and C[v] = s′. Note that since

s = s′L1 ∈ Xϑ by Lem. 98 we must have s′ ∈ Xϑ̂ where ϑ̂ ⊆ fzϑ(L1[x\u]) = fzϑ([y\v]L) =

fzϑ(L).

We consider two subcases, depending on whether C[[y]] ∈ Xϑ̂.

i. If C[[y]] ∈ Xϑ̂. Note that ϑ̂ ⊆ fzϑ(L) ⊆ ϑ∪dom L. and variables in dom L do not occur
in C[[y]], since C[[y]] is outside the scope of L in the original term t0 = C[[y]][y\vL]. In
particular, variables in dom L are not reachable variables in C[[y]], so by repeatedly
applying the fact that unreachable variables are not required in “ϑ” (Lem. 62), we
have that C[[y]] ∈ Xϑ.
Let us consider two further subcases, depending on whether y is a reachable variable
in C[[y]]:

A. If y ∈ ngv(C[[y]]). Recall that reachable variables in a normal form are below
evaluation contexts (Lem. 82). Then since C[[y]] is a normal form in Chϑ and
y ∈ ngv(C[[y]]), we know that C[[y]] may be written as C[[y]], where C ∈ Chϑ .
We consider two cases, depending on whether C and C are the same context or
distinct contexts:

• If C = C. Then C ∈ Chϑ , hence C[y\vL] ∈ Chϑ . This contradicts the hypothesis
that the step r is ϑ-internal.

• If C 6= C. Then there is a two-hole context Ĉ such that:

Ĉ[�, y] = C Ĉ[y,�] = C

And the step r is of the form:

r : Ĉ[y, y][y\vL]→sh\gc Ĉ[y, v][y\v]L = t

Note that the underlined occurrence of y is reachable on the left-hand side,
so it is also reachable on the right-hand side.
More precisely, Ĉ[�, y] = C is an evaluation context so by Lem. 101 it is also
a reachable context. Recall that replacing a variable by an arbitrary term in
a reachable context is still a reachable context (Lem. 102), so Ĉ[�, v] is also
reachable. Moreover, since reachable variables coincide with variables below
reachable contexts (Lem. 100) we have that y ∈ ngv(Ĉ[y, v]).
This contradicts the fact that t is a normal form, since to conclude that
Ĉ[y, v][y\v] is a normal form, given that y ∈ ngv(Ĉ[y, v]) we would require
that y is bound to a structure, but it is bound to a value v.

B. If y 6∈ ngv(C[[y]]). Then we are done, as C[[y]] ∈ Xϑ, so by applying the nfSubG
rule we obtain that C[[y]][y\vL] ∈ Xϑ, as wanted.
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ii. If C[[y]] 6∈ Xϑ̂. Note that C[v] = s′ ∈ Xϑ̂. So by definition (Def. 83) C is a Xϑ̂-critical
context. By Lem. 84 since C is Xϑ̂-critical, it is an evaluation context, C ∈ Xϑ̂.

Moreover, note that ϑ̂ ⊆ fzϑ(L) ⊆ ϑ ∪ dom L. and variables in dom L do not occur
in C, since C is outside the scope of L in the original term t0 = C[[y]][y\vL]. In
particular, variables in dom L are not structural variables in C, so by repeatedly
applying the fact that non-structural variables are not required in “ϑ” (Lem. 87),
we may conclude that C ∈ Xϑ. Then the context C[y\vL] is an evaluation context
in Xϑ, contradicting the fact that the step r is ϑ-internal.

(b) If r is to the left of t0 = s0[x\u]. Let r1 : s0→sh\gc s be the step isomorphic to r but
going under the context �[x\u]. Note that r1 cannot be ϑ-external, since then r would
be ϑ-external. So r1 is ϑ-internal and by i.h. we have that s0 ∈ Chϑ . Moreover, since
reachable variables are preserved by internal steps (Lem. 103), by the contrapositive we
have that x 6∈ ngv(s0), hence t0 = s0[x\u] ∈ Chϑ as required.

(c) If r is to the right of t0 = s[x\u0]. Then by applying the rule nfSubG it is immediate
that t0 = s[x\u0] ∈ Chϑ

6. nfSub, t = s[x\Mϑ] ∈ Xϑ with x ∈ ngv(s), s ∈ Xϑ∪{x} and Mϑ ∈ Sϑ ∪ Eϑ. We consider
three cases, depending on whether (1) r is a step at the root of t0, (2) t0 is a substitution
s0[x\u0] and r is internal to t1, (3) t0 is a substitution s0[x\u0] and r is internal to t2.

(a) If r is at the root. Note that r cannot be a dB step since it would be external, it must
be a lsv step:

r : t0 = C[[y]][y\vL]→¬ϑsh C[v][y\v]L = s[x\Mϑ]

So let us write s as of the form s = s′L1 in such a way that L1[x\Mϑ] = [y\v]L. By

Lem. 98 we have that s′ ∈ Xϑ̂ where ϑ̂ ⊆ fzϑ(L1[x\Mϑ]) = fzϑ([y\v]L) = fzϑ(L). Then
the remainder of this case is analogous to case 5a of this lemma.

(b) If r is to the left of t0 = s0[x\Mϑ]. Let r1 : s0→sh\gc s be the step isomorphic to r

but going under the context �[x\Mϑ]. Note that r1 cannot be (ϑ∪{x})-external, since
then r would be ϑ-external. So r1 is (ϑ ∪ {x})-internal, and since s ∈ Xϑ∪{x} by i.h.
we have that s0 ∈ Xϑ∪{x}. We consider two further subcases, depending on whether x
is reachable in s0:

i. If x ∈ ngv(s0). Then s0[x\Mϑ] ∈ Xϑ since s0 ∈ Xϑ∪{x}, by the rule nfSub.

ii. If x 6∈ ngv(s0). Then since unreachable variables are not required in “ϑ” (Lem. 62),
we have that s0 ∈ Xϑ. Hence s0[x\Mϑ] ∈ Xϑ, by the rule nfSubG.

(c) If r is to the right of t0 = s[x\u0]. Let r1 : u0→sh\gc M
ϑ be the step isomorphic to

r but going under the context s[x\�]. We consider two cases, depending on whether r1

is ϑ-external or ϑ-internal:

i. If r1 is ϑ-external. First note that, since x ∈ ngv(s) and s ∈ Xϑ∪{x}, by the fact
that reachable variables in normal forms are below evaluation contexts (Lem. 82)
there must exist an evaluation context C1 ∈ Chϑ such that s = C1[[x]].
Moreover, since r1 is a ϑ-external step, the term u0 can be written as C2[Σ], where
C2 is an evaluation context in Chϑ and Σ is the anchor of a redex. If we let Σ′ denote
the contractum of Σ, the step r is:

r : C1[[x]][x\C2[Σ]]→¬ϑsh C1[[x]][x\C2[Σ′]] = s[x\Mϑ] = t
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Since we know that the step r is ϑ-internal, the context C2 cannot be a non-answer
evaluation context, i.e. C2 6∈ C·ϑ. Recall that evaluation contexts which are not
non-answer evaluation contexts have the shape of an answer (Lem. 45). This means
that C2[Σ′] = (λy.r)L is an answer. But we also had that C2[Σ′] = Mϑ, so it is both
an answer and a structure, which is impossible.

ii. If r1 is ϑ-internal. Then by i.h. u0 is a structure, i.e. u0 ∈ Mϑ. Hence
s[x\u0] ∈ Xϑ, as required.

7. eNfCase. t = case s0 of (cix̄i ⇒ si)i∈I and t ∈ Eϑ and (si ∈ Nϑ∪x̄i
)i∈I .

Note that the step r cannot be a dB, lsv or fix step at the root of t0, since the right-hand
side of these rules is a substitution. So the reduction must be in one of the si with i ∈ 0..n.
We reason as in the above cases.

If the step r is at the root of t0, then it must be a case step of the form case cj of c1x̄1 ⇒
t1, . . . , cj ⇒ t, . . . , cnx̄n ⇒ tn → t. But this is an external step.

8. eNfStrt. t = case s0 of (cix̄i ⇒ si)i∈I and t ∈ Kϑ ∪Lϑ ∪Sϑ and t � (cix̄i ⇒ si)i∈I and
(si ∈ Nϑ∪x̄i

)i∈I .

Note that the step r cannot be a dB, lsv or fix step at the root of t0, since the right-hand
side of these rules is a substitution. So the reduction must be in one of the si with i ∈ 0..n.
We reason as in the above cases.

If the step r is at the root of t0, then it must be a case step of the form case cj of c1x̄1 ⇒
t1, . . . , cj ⇒ t, . . . , cnx̄n ⇒ tn → t. But this is an external step.

Lemma 105 (Backwards preservation of needed variables by internal steps). Let t0 →¬ϑsh C[[x]] be
an internal step with C ∈ Chϑ , and such that C does not bind x. Then there exists an evaluation
context C0 ∈ Chϑ such that t0 = C0[[x]].

Proof. Let r be the name of the ϑ-internal step r : t0 →¬ϑsh C[[x]]. The proof goes by induction on
the derivation that C ∈ Chϑ .

1. EBox, C = �. Then r : t0 →¬ϑsh x, which is impossible, as the right-hand side of both dB,
lsv and fix steps always have at least one substitution and a case reduction at the root
would be external.

2. EAppL, C = C2 t with C2 ∈ C·ϑ. Note that r cannot be at the root of t0: it cannot be a dB

or case step at the root, since it would be external, and it cannot be a lsv or fix step at
the root, since then the right-hand side would have a substitution at the root (but it is an
application).

So t0 is an application and there are two cases, depending on whether r is internal to the left
or to the right of t0:

(a) The step r is internal to the left of t0 = t′0 t. Consider the step r1 : t′0→sh\gc C2[[x]]
isomorphic to r but going under the context � t. Note that r1 must be a ϑ-internal
step, for otherwise r would be ϑ-external. By i.h. there exists a non-answer evaluation
context Iϑ0 ∈ C·ϑ such that t′0 = Iϑ0 [[x]]. So we conclude by taking C0 := Iϑ0 t.

100



(b) The step r is internal to the right of t0 = C2[[x]] t′0. Consider the step r1 : t′0→sh\gc t
isomorphic to r but going under the context C2[[x]]�. Then it is immediate to conclude
by taking C0 := C2 t

′
0.

3. ESubLNonStr, C = C1[y\t] with C1 ∈ Chϑ and t 6∈ Sϑ ∪ Eϑ. We consider three cases,
depending on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution
t′0[y\r0] and the step r is internal to t′0, (3) t0 is a substitution t′0[y\r0] and the step r is
internal to r0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB, fix or case

step, since it would be external. So it is an lsv step of the form:

r : t0 = C[[z]][z\vL]→¬ϑsh C[v][z\v]L = C1[[x]][y\t] = t1

Let L1 be the substitution context such that L1[y\t] = [z\v]L, and using Lem. 95 let us
strip the substitution L1 from C1[[x]]. This gives us two possibilities, A and B:

i. Case A. Then:
C1 = C11L1 C[v] = C11[[x]]

where ϑ̂ = fzϑ(L1) and C11 ∈ Xϑ̂.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C11.

A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 Ĉ[x,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities: the left and the right branch of the dis-
junction. Let us analyze each branch:

• Left branch. Then Ĉ[�, z] ∈ Xϑ̂. Note that ϑ̂ = fzϑ([z\v]L) ⊆ ϑ∪dom L, and
that the subterm C[[z]] is outside the scope of L on the left-hand side of the step
r, so variables in dom L do not occur free in C[[z]]. In particular, variables in
dom L are not structural variables in Ĉ[�, z]. By repeatedly applying the fact
that non-structural variables are not required in “ϑ” (Lem. 87), we conclude
that Ĉ[�, z] ∈ Xϑ.
Hence t0 = Ĉ[x, z][z\vL] and by taking C0 := Ĉ[�, z][z\vL] ∈ Xϑ we conclude.

• Right branch. Then Ĉ[x,�] ∈ Xϑ̂. Since ϑ̂ ⊆ ϑ∪dom L, by repeatedly apply-
ing the fact that non-structural variables are not required in “ϑ” (Lem. 87),
we have that Ĉ[x,�] ∈ Xϑ. This means that the step:

r : Ĉ[x, z][z\vL]→sh\gc Ĉ[x, v][z\v]L

is ϑ-external, contradicting the hypothesis that it is internal.

B. The context C is a prefix of the context C11. By the decomposition of eval-
uation contexts lemma (Lem. 50) the context C must be an evaluation context

in Xϑ̂. Since ϑ̂ ⊆ ϑ∪dom L, by repeatedly applying the fact that non-structural
variables are not required in “ϑ” (Lem. 87), we have that C ∈ Xϑ. This contra-
dicts the fact that r is ϑ-internal.
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C. The context C11 is a prefix of the context C. Then C = C11[C1], so C1[v] = x,
which is impossible.

ii. Case B. Then:

C1 = C11[[w]]L {�} C[v] = C11[[w]] L1 = �L {x}

where ϑ̂ = fzϑ(L1), the evaluation context C11 is in Xϑ̂, and L is a (ϑ,w)-chain
context.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C11.

A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 Ĉ[w,�] = C

and the internal step r is of the form:

r : t0 = Ĉ[w, z][z\vL]→¬ϑsh Ĉ[w, v][z\v]L = t1

Note that w is bound by [z\v]L = �L {x}[y\t] on the right-hand side of the
step r since L is a (ϑ,w)-chain context. So w must be bound by [z\vL] on the
left-hand side of the step r, for otherwise it would be free, and free variables
cannot become bound by reduction.
Hence it must be the case that w = z. Note that w is bound to a term of the
form Iϑ1

1 [[w1]] on the right-hand side of the step r, and we have just argued that
w = z, so Iϑ1

1 [[w1]] = v. This is impossible since answers do not have variables
below non-answer evaluation contexts (Lem. 97).

B. The context C is a prefix of the context C11. Then by the decomposition
of evaluation contexts lemma (Lem. 50) the context C must be an evaluation

context in Xϑ̂. Since ϑ̂ ⊆ ϑ ∪ dom L, by repeatedly applying the fact that non-
structural variables are not required in “ϑ” (Lem. 87), we obtain that C ∈ Xϑ.
This contradicts the fact that r is ϑ-internal.

C. The context C11 is a prefix of the context C. Then C = C11[C1], so C1[v] = w,
which is impossible.

(b) The internal step r is to the left of t0 = t′0[y\t]. Let r1 : t′0→sh\gc C1[[x]] be the step
isomorphic to r but going under the context [y\t]. Then by i.h. there is an evaluation
context C10 ∈ Xϑ such that t′0 = C10[[x]]. By taking C0 := C10[y\t] ∈ Xϑ we conclude that
t0 = C10[[x]][y\t], as required.

(c) The internal step r is to the right of t0 = C1[[x]][y\t′0]. By taking C0 := C10[y\t′0] ∈
Xϑ we conclude that t0 = C10[[x]][y\t], as required.

4. ESubLStr, C = C1[y\u] with C ∈ Chϑ∪{y} and u ∈ Sϑ ∪ Eϑ. We consider three cases,

depending on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution
t′0[y\r0] and the step r is internal to t′0, (3) t0 is a substitution t′0[y\r0] and the step r is
internal to r0.
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(a) The internal step r is at the root of t0. Note that r cannot be a dB step, since it
would be external. So r is an lsv step of the form:

r : t0 = C[[z]][z\vL]→¬ϑsh C[[v]][z\v]L = C1[[x]][y\u] = t1

Let L1 be the substitution context such that [z\v]L = L1[y\u], and using Lem. 95 let us
strip the substitution L1 from C1[[x]]. This gives us two possibilities, A and B:

i. Case A. Then:
C1 = C11L1 C[v] = C[[x]]

where ϑ̂∪{y} = fzϑ∪{y}(L1) and C11 ∈ Xϑ̂∪{y}. We consider three further subcases,
depending on the position of the hole of C relative to the position of the hole of C11:

A. The hole of C and C11 are disjoint. Then there is a two-hole context Ĉ such
that:

Ĉ[�, v] = C11 Ĉ[x,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities: the left and the right branch of the dis-
junction. Let us analyze each branch:

• Left branch. Then Ĉ[�, z] ∈ Xϑ̂∪{y}. First note that ϑ̂ ⊆ ϑ ∪ dom L, so by
repeatedly applying the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we have that Ĉ[�, z] ∈ Xϑ∪{y}.
Moreover, note that y is bound by the substitution context L1[y\u] = [z\v]L,
so either y = z or y ∈ dom L. Observe that y cannot be equal to z, since y is
bound to u and z is bound to v, and strong structures cannot be values, so
it must be the case that y ∈ dom L.
Given that y ∈ dom L, the variable y cannot occur free in the subterm C[[z]] =
Ĉ[x, z] on the left-hand side of the step r, since this subterm is outside the
scope of L. In particular, y does not occur as a structural variable in the
context Ĉ[�, z]. So applying the fact that non-structural variables are not
required in “ϑ” (Lem. 87) we obtain that Ĉ[�, z] ∈ Xϑ.
Then it is immediate to conclude, since by taking C0 := Ĉ[�, z][z\vL] ∈ Xϑ,
we have that t0 = Ĉ[x, z][z\vL], as required.

• Right branch. Then Ĉ[x,�] ∈ Xϑ̂∪{y}. By the same argument as in the

previous left branch, we have that Ĉ[x,�] ∈ Xϑ. Then, adding an arbitrary
substitution (Lem. 80) we have that Ĉ[x,�][y\u] ∈ Xϑ, which implies that
the step r is ϑ-external, contradicting the hypothesis.

B. The context C is a prefix of C11. Then by the decomposition of evalua-
tion contexts lemma (Lem. 50) the context C must be an evaluation context in
Xϑ̂∪{y}.

Note that ϑ̂ ⊆ ϑ∪dom L, so by repeatedly applying the fact that non-structural
variables are not required in “ϑ” (Lem. 87) we have that C ∈ Xϑ∪{y}.
Moreover, y is bound by L1[y\u] = [z\v]L, and y 6= z, since y is bound to u and
z is bound to v. Hence y cannot occur free in the subterm C[[z]] on the left-hand
side of the step r. In particular, y does not occur as a structural variable in
C. So applying the fact that non-structural variables are not required in “ϑ”
(Lem. 87) we obtain that C ∈ Xϑ.
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Note that then C[z\vL] ∈ Xϑ, which means that the step r is ϑ-external, con-
tradicting the hypothesis that it is ϑ-internal.

C. The context C11 is a prefix of C. Then C = C11[C1], so C1[v] = x, which is
impossible.

ii. Case B. Then:

C1 = C11[[w]]L {�} C[v] = C11[[w]] L1 = �L {x}

where ϑ̂ ∪ {y} = fzϑ∪{y}(L1), the evaluation context C is in Xϑ̂∪{y}, and L is a

(ϑ,w)-chain context.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C11:

A. The hole of C and C11 are disjoint. Then there is a two hole context Ĉ such
that:

Ĉ[�, v] = C11 Ĉ[w,�] = C

The step r is of the form:

r : Ĉ[w, z][z\vL]→¬ϑsh Ĉ[w, v][z\v]L

Note that w is bound by �L {x}[y\u] = [z\v]L, since L is a (ϑ,w)-chain
context. Hence it must be the case that w = z, for otherwise, if it were the case
that w ∈ dom L, w would occur free on the left-hand side of the step r, since
it occurs outside the scope of L. This is impossible since free variables cannot
become bound after a reduction step.
Note that w must be bound to a term of the form Iϑ1

1 [[w1]] and, since we have
just argued that w = z, we have that Iϑ1

1 [[w1]] = v. This is impossible since
answers do not have variables below non-answer evaluation contexts (Lem. 97).

B. The context C is a prefix of C11. Then by the decomposition of evalua-
tion contexts lemma (Lem. 50) the context C must be an evaluation context in
Xϑ̂∪{y}.

Note that ϑ̂ ⊆ ϑ∪dom L, so by repeatedly applying the fact that non-structural
variables are not required in “ϑ” (Lem. 87) we have that C ∈ Xϑ∪{y}.
Moreover, y is bound by �L {x}[y\u] = [z\v]L, and y 6= z, since y is bound
to u and z is bound to v. Hence y cannot occur free in the subterm C[[z]] on
the left-hand side of the step r. In particular, y does not occur as a structural
variable in C. So applying the fact that non-structural variables are not required
in “ϑ” (Lem. 87) we obtain that C ∈ Xϑ.
Then, adding an arbitrary substitution (Lem. 80) we have that C[z\vL] ∈ Xϑ,
which contradicts the hypothesis that the step r is ϑ-internal.

C. The context C11 is a prefix of C. Then C = C11[C1], so C1[v] = w, which is
impossible.

(b) The internal step r is to the left of t0 = t′0[y\u]. Let r1 : t′0 →sh\gc C1[[x]] be
the step isomorphic to r but going under the context [y\u]. Note that r1 must be
(ϑ∪{y})-internal, otherwise r would be (ϑ∪{y})-external. By i.h. there is an evaluation
context C10 ∈ Xϑ∪{y} such that t′0 = C10[[x]]. It is immediate to conclude by taking
C0 := C10[y\u] ∈ Xϑ, since then t0 = C10[[x]][y\u].
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(c) The internal step r is to the right of t0 = C1[[x]][y\t′0]. Let r1 : t′0 →sh\gc u. We
consider two cases, depending on whether the step r1 is ϑ-internal or ϑ-internal:

i. If r1 is ϑ-external. Two further subcases, depending on whether y is a structural
variable in C1 or not:

A. If y ∈ sv(C1). Since r1 : t′0→sh\gc u is a ϑ-external step, we can write t′0 = C3[Σ]
and u = C3[Σ′] where:

- Σ is the anchor of a redex, and Σ′ its contractum,

- C3 is an evaluation context C3 ∈ Chϑ .

Moreover, by the fact that structural variables are below evaluation contexts
(Lem. 88) there exists an evaluation context C2 ∈ Xϑ such that C1[[x]] = C2[[y]].
Hence the step r is of the form:

r : C2[[y]][y\C3[Σ]]→sh\gc C2[[y]][y\C3[Σ′]]

If C3 happens to be a non-answer evaluation context, i.e. C3 ∈ C·ϑ then the
composition C2[[y]][y\C3] is a ϑ-evaluation context and r is a ϑ-external step,
contradicting the hypothesis that it was internal.
So we may suppose that C3 is not a non-answer evaluation context. By Lem. 45
we know that evaluation contexts which are not non-answer evaluation contexts
have the shape of an answer, that is, C3[∗] is an answer when filling the hole with
an arbitrary term. In particular, C3[Σ′] = u is both an answer and a structure,
which is impossible.

B. If y 6∈ sv(C1). By the fact that non-structural variables are not required in “ϑ”
(Lem. 87), we have that C1 ∈ Xϑ. Then, regardless of whether t′0 is a structure
or not, adding an arbitrary substitution (Lem. 80) we have C1[y\t′0] ∈ Xϑ. It
is then immediate to conclude by taking C0 := C1[y\t′0] ∈ Xϑ, since indeed
t0 = C1[[x]][y\t′0].

ii. If r1 is ϑ-internal. Then by the fact that structures are backwards preserved
by internal steps (Lem. 104) we have that t′0 ∈ Sϑ ∪ Eϑ. We conclude by taking
C0 := C1[y\t′0] ∈ Xϑ, since t0 = C1[[x]][y\t′0], as required.

5. ESubsR, C = C1[[y]][y\C2] where C1 ∈ Xϑ and C2 ∈ C·ϑ. We consider three cases, depending
on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution t′0[y\r0] and
the step r is internal to t′0, (3) t0 is a substitution t′0[y\r0] and the step r is internal to r0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB redex, since it
would be external. So r is a lsv redex of the form:

r : t0 = C[[z]][z\vL]→ C[v][z\v]L = C1[[y]][y\C2[[x]]] = t1

Let L1 be the substitution context such that L1[y\C2[[x]]] = [z\v]L, and using Lem. 95
let us strip the substitution L1 from C1[[y]]. This gives us two possibilities, A and B:

i. Case A. Then:
C1 = C11L1 C[v] = C11[[y]]

where ϑ̂ = fzϑ(L1) and C11 ∈ Xϑ̂.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C11.
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A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 Ĉ[y,�] = C

Note that y is bound by the substitution context L1[y\Iϑ[[x]]] = [z\v]L on the
right-hand side of the step r. So it must be the case that y = z, for if we had
y ∈ dom L, we would have that y is free on the left-hand side of the step r, since
it occurs outside the scope of the substitution L. This is impossible, since a free
variable cannot become bound along reduction.
Also note that y is bound to Iϑ[[x]] and, since y = z, we have Iϑ[[x]] = v. This
is impossible, since answers do not have variables below non-answer evaluation
contexts (Lem. 97).

B. The context C is a prefix of C11. Then by the decomposition of evaluation
contexts lemma (Lem. 50) the context C must be an evaluation context in Xϑ̂.

Since ϑ̂ ⊆ ϑ ∪ dom L, by repeatedly applying the fact that non-structural vari-
ables are not required in “ϑ” (Lem. 87) we have that C ∈ Xϑ. This in turn
implies that C[z\vL] ∈ Xϑ, contradicting the fact that the step r is ϑ-internal.

C. The context C11 is a prefix of C. Then C = C11[C1], so C1[v] = y, which is
impossible.

ii. Case B. Then:

C1 = C11[[w]]L {�} C[v] = C11[[w]] L1 = �L {y}

where ϑ̂ = fzϑ(L1), the evaluation context C11 is in Xϑ̂, and L is a (ϑ,w)-chain
context.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C11.

A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 Ĉ[w,�] = C

Note that w must be bound by the substitution context �L {y}[y\Iϑ[[x]]] =
[z\v]L, since L is a (ϑ,w)-chain context. So it must be the case that w = z,
for if we had that w ∈ dom L, it would be free on the left-hand side of the step
r, since w occurs outside the scope of L. This is impossible, since free variables
cannot become bound by reduction.
Note that w is bound by the substitution context �L {y} to a term of the
form Iϑ1

1 [[w1]]. Moreover, given that w = z, we have that Iϑ1
1 [[w1]] = v. This

is impossible, since answers do not have variables below non-answer evaluation
contexts (Lem. 97).

B. The context C is a prefix of C11. Then by the decomposition of evalua-
tion contexts lemma (Lem. 50) the context C must be an evaluation context in

Xϑ̂. Since ϑ̂ ⊆ ϑ ∪ dom L, by repeatedly applying the fact that non-structural
variables are not required in “ϑ” (Lem. 87) we have that C ∈ Xϑ. Hence by
adding an arbitrary substitution (Lem. 80), we obtain that C[z\vL] ∈ Xϑ. This
contradicts the fact that r is ϑ-internal.

106



C. The context C11 is a prefix of C. Then C = C11[C1], so C1[v] = w, which is
impossible.

(b) The internal step r is to the left of t0 = t′0[y\Iϑ]. Let r1 : t′0 →sh\gc C1[[y]] be

the step isomorphic to r but going under the context [y\Iϑ[[x]]]. Note that r1 must be
ϑ-internal, for if it were ϑ-external, by adding an arbitrary substitution (Lem. 80) it
would contradict the fact that r is ϑ-internal.

So we may apply the i.h. to obtain that there exists an evaluation context C10 ∈ Xϑ
such that t′0 = C10[[y]]. Applying the ESubsR rule and taking C0 := C10[[y]][y\Iϑ] ∈ Xϑ,
we have that t0 = C10[[y]][y\Iϑ[[x]]], as required.

(c) The internal step r is to the right of t0 = C1[[y]][y\t′0]. Let r1 : t′0→sh\gc I
ϑ[[x]] be

the step isomorphic to r but going under the context C1[[y]][y\�]. Note that r1 cannot
be ϑ-external, since then r would be ϑ-external. Hence r1 is ϑ-external, and we may
apply the i.h. to obtain that there is a non-answer evaluation context Iϑ0 ∈ C·ϑ such
that t′0 = Iϑ0 [[x]]. Taking C0 := C1[[y]][y\Iϑ0 ] ∈ Xϑ, we have that t0 = C1[[y]][y\Iϑ0 [[x]]], as
required.

6. EAppRStr, C = u C1 where u ∈ Sϑ ∪Eϑ and C1 ∈ Chϑ. We consider three cases, depending
on whether (1) the internal step r is at the root of t0, (2) t0 is an application t′0 r0 and the
step r is internal to t′0, (3) t0 is an application t′0 r0 and the step r is internal to r0.

(a) The internal step r is at the root of t0. This case is impossible: r cannot be a dB

step or a lsv step, since the right-hand side of both dB and lsv steps is a substitution,
not an application.

(b) The internal step r is to the left of t0 = t′0 C1[[x]]. Let r1 : t′0→sh\gc u be the step
isomorphic to r but going under the context � C1[[x]]. Note that r1 must be ϑ-internal,
otherwise r would be ϑ-external. Then by the fact that normal forms are backwards
preserved by internal steps (Lem. 104), we have that t′0 must be a strong ϑ-structure
u0. By taking C0 := u0 C1 ∈ Xϑ we have that t0 = u0 C1[[x]], as required.

(c) The internal step r is to the right of t0 = u t′0. Let r1 : t′0→sh\gc C1[[x]] be the step
isomorphic to r but going under the context u�. By i.h. there is an evaluation context
C10 ∈ Chϑ such that t′0 = C10[[x]]. Taking C0 := u C10 ∈ Xϑ we have that t0 = u C10[[x]], as
required.

7. ELam, C = λy.C1, where C1 ∈ Chϑ∪{y}. Then t0 is an abstraction λy.t′0 and the step r

is internal to t′0. Let r1 : t′0 →sh\gc C1[[x]] be the step isomorphic to r but going under the
lambda. Note that r1 cannot be a (ϑ∪ {y})-external step, since then r would be ϑ-external.
Hence r1 is (ϑ ∪ {y})-internal and by i.h. we have that there exists an evaluation context
C10 ∈ Chϑ∪{y} such that t′0 = C10[[x]]. Taking C0 := λy.C10 ∈ Xϑ we have that t0 = λy.C10[[x]],
as required.

8. eAppRCons, C = t C1 and t ∈ Kϑ and C1 ∈ Chϑ. Similar to EAppRStr.

9. eCase1. C = case C1 of (cix̄i ⇒ si)i∈I ∈ C·ϑ and C1 ∈ Chϑ and h /∈ {ci}i∈I or h = cj ∈
{ci}i∈I and |A(C, y)| 6= |x̄j | . Similar to previous cases.

10. eCase2, C = case t of c1x̄1 ⇒ t1, . . . , cj x̄j ⇒ C1, . . . , cnx̄n ⇒ tn ∈ C·ϑ and t ∈ Nϑ and
t � (cix̄i ⇒ si)i∈I and tk ∈ Nϑ∪x̄k

for all k < j C1 ∈ Chϑ∪x̄i
. Similar to previous cases.
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Lemma 106 (Permutation of internal steps and external dB steps). Given any set of variables ϑ
such that fv(t0) ⊆ ϑ, if t0 →¬ϑsh t1 �ϑ

sh t3 where the second step is a dB step, there exists a term
t2 such that t0 �ϑ

sh t2�sh\gc t3 where the first step is a dB step. An explicit construction for the
diagrams is given.

Proof. Let r be the internal step t0 →¬ϑsh t1 and r′ the external dB step t1 �ϑ
sh t3. Then t1 =

C[(λx.s)Lu] and t3 = C[s[x\u]L]. Throughout the proof we write ∆ for the dB redex (λx.s)Lu and
∆′ for its contractum s[x\u]L. By induction on the derivation that C ∈ Chϑ , the term t0 will be
shown to be of the form C0[∆0], where C0 ∈ Chϑ , and ∆0 is a dB redex, and t2 = C0[∆′0], where ∆′0
is the contractum of ∆0, in such a way that the diagram is closed as required by the statement.

1. EBox, C = � ∈ Chϑ. Then there is a dB redex at the root of t1. By Lem. 79, the internal
step t0 →¬ϑsh t1 must be of the form

r : t0 = (λx.s0)L0 u0 →¬ϑsh (λx.s)Lu = t1

and the anchor of r must lie either inside s0, inside u0, or inside one of the arguments of L0.
Then the situation is:

(λx.s0)L0 u0
¬ϑ //

��

ϑ

��

(λx.s)Lu
��

ϑ

��

s0[x\u0]L0
sh\gc

// s[x\u]L

By taking C0 := � we conclude.
As a further observation, note that the step at the bottom of the diagram is not necessarily
ϑ-internal, for instance, it is external if it happens to take place at the root of s0.

2. EAppL, C = C1 r ∈ Chϑ with C1 ∈ Chϑ and h 6= λ. The situation is:

t0
¬ϑ // C1[∆] r

��

ϑ

��

C1[∆′] r

We consider three cases: (1) the step r is at the root of t0; (2) t0 is an application t0 = t′0 r0

and the step r takes place inside t′0; (3) t0 is an application t0 = t′0 r0 and the step r takes
place inside r0.

(a) The internal step r is at the root of t0. We claim that this case is impossible.
First, r cannot be a dB or a case step, since that would be a ϑ-external step, as � ∈ Chϑ .
Second, r cannot be a lsv or a fix step, since its right-hand side is C1[∆] r, which is an
application node, and the right-hand side of any lsv or fix step is a substitution node.

(b) The internal step r is to the left of t0 = t′0 r0. Then there is a step r1 : t′0→sh\gc
C1[∆]. We consider two subcases, depending on whether r1 is ϑ-external or ϑ-internal.
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i. If r1 is ϑ-external. Then t′0 is of the form C2[Σ] where C2 ∈ Ch
′

ϑ and Σ is the
anchor of a redex. Note that h′ = λ, since otherwise C2 r ∈ Chϑ and we would have
that the step r : C2[Σ] r →¬ϑsh C1[∆] r is external, contradicting the hypothesis that
it is internal. Hence since C2 ∈ Cλϑ by Lem. 45 we conclude that t′0 is of the form
v0L0, i.e. an answer. Moreover, since answers are stable by reduction (Lem. 77)
we have that C1[∆] is an answer, and this is impossible since answers do not have
redexes below non-answer evaluation contexts (Lem. 97).

ii. If r1 is ϑ-internal. Then by i.h. we have that there exists a non-answer evaluation
context C2 ∈ Chϑ , a dB redex ∆0, and ∆′0 its contractum such that t′0 = C2[∆0] and:

C2[∆0]
¬ϑ //

��

ϑ

��

C1[∆]
��

ϑ

��

C2[∆′0]
sh\gc
// // C1[∆′]

By taking C0 := C2 r ∈ Chϑ we have that:

t0 = C0[∆0] r
¬ϑ //

��

ϑ

��

C1[∆] r = t1
��

ϑ

��

t2 = C0[∆′0] r
sh\gc
// // C1[∆′] r = t3

(c) The internal step r is to the right of t0 = t′0 r0. Then t′0 = C1[∆] and r0 →¬ϑsh r.
By taking C0 := C1 r0, we have that C0 ∈ Chϑ , and closing the diagram is immediate:

t0 = C1[∆] r0
¬ϑ //

��

ϑ

��

C1[∆] r = t1
��

ϑ

��

t2 = C1[∆′] r0 ¬ϑ
// C1[∆′] r = t3

3. ESubLNonStr, C = C1[y\r] with y 6∈ ϑ, r 6∈ Sϑ ∪ Eϑ and C1 ∈ Chϑ. The situation is:

t0
¬ϑ // C1[∆][y\r]

��

ϑ

��

C1[∆′][y\r]

There are three cases: (1) the step r is at the root of t0; (2) t0 is a substitution t0 = t′0[y\r0]
and the step r takes place inside t′0; (3) t0 is a substitution t0 = t′0[y\r0] and the step r takes
place inside r0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB, fix or case

109



step, as that would be an external step. Suppose then that r is a lsv step:

t0 = C[[z]][z\vL′] ¬ϑ
r
// C[v][z\v]L′ C1[∆][y\r]

��

ϑ

��

C1[∆′][y\r]

We know that C[v][z\v]L′ = C1[∆][y\r]. The outermost substitution [y\r] is either [z\v]
(if L′ is empty) or it is the outermost substitution in L′. In any case, the substitution
[y\r] is not part of C.

Let L1 be a substitution context such that [z\v]L′ = L1[y\r] and using Lem. 95 let us
strip the substitution L1 from C1[∆]. This gives us two possibilities, case A and case B
in the statement of Lem. 95:

i. Case A. Then C1 = C11L1 in such a way that:

C[v] = C11[∆]

where ϑ′ = fzϑ(L1[y\r]) = fzϑ([z\v]L′) and C11 ∈ Chϑ′ .

We consider three subcases, depending on the position of the hole of C relative to
the position of the hole of C11.

A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that

Ĉ[�, v] = C11 and Ĉ[∆,�] = C

And the situation is:

t0 = Ĉ[∆, z][z\vL′] ¬ϑ // Ĉ[∆, v][z\v]L′ = t1
��

ϑ

��

Ĉ[∆′, v][z\v]L′ = t3

Recall that Ĉ[�, v] = C11 ∈ Chϑ′ where ϑ′ = fzϑ([z\v]L′). Note that z 6∈ ϑ′ since
the value v is not a strong structure. By the fact that evaluation contexts are
backwards-stable by substitutions (Lem. 89) there are two possibilities: the left
and the right branch of the disjunction. Let us analyze each branch:

• Left branch: Ĉ[�, z] ∈ Chϑ′ . Then by Lem. 91 we have that Ĉ[�, z][z\vL′] ∈
Xϑ, and the situation is:

t0 = Ĉ[∆, z][z\vL′] ¬ϑ //
��

ϑ

��

Ĉ[∆, v][z\v]L′ = t1
��

ϑ

��

t2 = Ĉ[∆′, z][z\vL′]
sh\gc

// Ĉ[∆′, v][z\v]L′ = t3
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• Right branch: Ĉ[∆,�] ∈ Chϑ′ . This case is not possible, as we would have

that Ĉ[∆,�][z\v]L′ ∈ Xϑ, since fzϑ([z\v]L) = ϑ′ by Lem. 90. This implies
that there are two different steps of the generalized call-by-need evaluation
strategy under ϑ outgoing from t1: one is the dB step:

t1 = Ĉ[∆, x][x\v]L′�ϑ
sh Ĉ[∆′, x][x\v]L′ = t3

and the other one is the lsv step:

t1 = Ĉ[∆, x][x\v]L′�ϑ
sh Ĉ[∆, v][x\v]L′

The coexistence of two different steps contradicts the fact that �ϑ
sh is a

strategy (as shown in the unique decomposition lemma, Lem. 58).

B. The context C is a prefix of C11. We claim that this case is impossible.
Indeed, since C is a prefix of C11 we have that C11 = C[C′] for some context C′.
By the decomposition of evaluation contexts (Lem. 50) the context C must be
an evaluation context, more precisely C ∈ Chϑ′ .
We claim that C ∈ Xϑ. Observe that ϑ′ ⊆ ϑ ∪ {z} ∪ dom L′ since C1 = C11L1

and L1[y\r] = [z\v]L′. But z is not bound to a structure in [z\v], so z 6∈ ϑ′,
which implies that ϑ′ ⊆ ϑ ∪ dom L′. Moreover, by the variable convention, the
context C cannot contain any occurrence of a variable in dom L′, since C takes
part in an expression of the form C[[z]][z\vL′], in which it is outside the scope of
L′. In particular, the variables in dom L′ cannot be structural variables in C, so
by the fact that non-structural variables are not required in “ϑ” (Lem. 87), we
conclude that indeed C ∈ Xϑ.
Recall that the internal step r is of the form:

t0 = C[[z]][z\vL′]→¬ϑsh C[v][z\v]L′ = t1

but since C is a ϑ-evaluation context we conclude that the step r is actually
external, which is a contradiction.

C. The context C11 is a prefix of C. Since C11 is a prefix of C we have that
C = C11[C′] for some context C′. Hence C′[v] = (λx.s)Lu, and there are four
possibilities for the position of the hole of C′: inside s, inside one of the substi-
tutions in L, inside u, or right above λx.s (i.e. C′ = �Lu). Let us analyze each
case:

• The hole of C′ is inside s. Then C′ = (λx.C′′)Lu and s = C′′[v]. Then
the steps are essentially orthogonal, i.e. ∆Φ = (λx.C′′[Φ])Lu and ∆′Φ =
C′′[Φ][x\u]L; and the situation is:

t0 = C11[∆z][z\vL′]
¬ϑ //

��

ϑ

��

C11[∆v][z\v]L′ = t1
��

ϑ

��

t2 = C11[∆′z][z\vL′]
sh\gc

// C11[∆′v][z\v]L′ = t3

To be able to close the diagram, we must justify that the context C11[z\vL′]
is a ϑ-evaluation context. We already know that C11 ∈ Chϑ′ , and it suffices to
show that C11 ∈ Xϑ.
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Start by noting that ϑ′ ⊆ ϑ ∪ {z} ∪ L′ and z 6∈ ϑ′ since z is bound to a
value in [z\v], so actually ϑ′ ⊆ ϑ ∪ L′. Moreover, the variables in dom L′ do
not occur in the context C11 by the variable convention, since C11 takes part
in an expression of the form C11[(λx.C′′[[z]])Lu][z\vL′] in which it is outside
the scope of L′. In particular, the variables in dom L′ cannot be structural
variables in C11, so by the fact that non-structural variables are not required
in “ϑ” (Lem. 87), we conclude that indeed C11 ∈ Xϑ.

• The hole of C′ is inside L. Then C′ = (λx.s)L21[x′\C′′]L22u and L =
L21[x′\C′′[v]]L22. Then the steps are essentially orthogonal, i.e. ∆Φ = (λx.s)L21[x′\C′′[Φ]]L22 u
and ∆′Φ = s[x\u]L21[x′\C′′[Φ]]L22 and the diagram is closed as in the previous
case.

• The hole of C′ is inside u. Then C′ = (λx.s)LC′′ and u = C′′[v]. Then
the steps are essentially orthogonal, i.e. ∆Φ = (λx.s)L C′′[Φ] and ∆′Φ =
s[x\C′′[Φ]]L and the diagram is closed as in the previous case.

• The context C′ is of the form C′ = �Lu. We claim that this case is
impossible.
Observe that in this case the internal step r is of the form:

t0 = C11[zLs][z\vL′]→¬ϑsh C11[vLs][z\v]L′ = t1

As in the previous case, we may argue that C11 ∈ Xϑ. This in turn implies
that C11[�Ls][z\vL′] ∈ Xϑ. This means that the r is actually an external step,
which is a contradiction.

ii. Case B. Then C1 = C11[[x′]]L {�} in such a way that:

C[v] = C11[[x′]] L1 = �L {∆}

where ϑ′ = fzϑ(L1[y\r]) = fzϑ([z\v]L′), the evaluation context is C11 ∈ Chϑ′ , and L
is a (ϑ, x′)-chain context.
We consider three subcases, depending on the position of the hole of C relative to
the position of the hole of C11.

A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 Ĉ[x′,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities: the left and the right branch of the dis-
junction. Let us analyze each branch:

• Left branch: Ĉ[�, z] ∈ C11. Note that L is a (ϑ, x′)-chain context, so
�L {∆} binds x′. Moreover, �L {∆}[y\r] = L1[y\r] = [z\v]L′. So it must
be the case that x′ = z. Otherwise, x′ would be bound by a substitution in
L′ and it would occur free on the left hand side t0 = Ĉ[x′, z][z\vL′] which is
impossible since a free variable cannot become bound by reduction.

Then since x′ = z we have that vL′ = C1[∆] for some evaluation context
Iϑ ∈ C·ϑ. This is impossible by Lem. 97.
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• Right branch: Ĉ[x′,�] ∈ C11. Then Ĉ[x′,�] ∈ Chϑ′ . Note that ϑ′ =

fzϑ([z\v]L′), so ϑ′ ⊆ ϑ∪dom L′. Since variables in dom L′ do not occur in C, as
C is outside the scope of L′ on the starting term t0, in particular they are not
structural variables, so by repeatedly applying the fact that non-structural
variables are not required in “ϑ” (Lem. 87) we have that Ĉ[x′,�] ∈ Chϑ , so
C[z\vL′] = Ĉ[x′,�][x\vL′] is an evaluation context in Chϑ . This means that the
step r is internal, which is a contradiction.

B. The context C is a prefix of C11. Then C11 = C[C′], so by the decomposition
lemma for evaluation contexts (Lem. 50) C ∈ Chϑ′ . Note that ϑ′ ⊆ ϑ ∪ dom L,
so by the fact that non-structural variables are not required in “ϑ” (Lem. 87)
we have that C ∈ Chϑ . This means that the step r is internal, contradicting the
hypothesis.

C. The context C11 is a prefix of C. Then C = C11[C′], so since C[v] = C11[[x′]]
we have that v = x′ which is impossible.

(b) The internal step r is to the left of t0 = t′0[y\r0]. Then r0 = r and the internal
step r is of the form:

t0 = t′0[y\r]→¬ϑsh t′1[y\r] = C1[∆][y\r] = t1

Note that the corresponding step t′0→sh\gc t
′
1 is internal:

t′0 →¬ϑsh t′1 = C1[∆]

for, were it external, we would conclude that the step r is also external, contradicting
the hypothesis. Moreover:

t′1 = C1[∆]�ϑ
sh C1[∆′] = t′3

By i.h. we have that there exists an evaluation context C10 ∈ Chϑ , a dB redex ∆0, and
∆′0 its contractum such that t′0 = C10[∆0] and:

C10[∆0]
¬ϑ //

��

ϑ

��

C1[∆]
��

ϑ

��

C10[∆′0]
sh\gc

// // C1[∆′]

By taking C0 := C10[y\r] ∈ Chϑ we have that:

t0 = C0[∆0][y\r] ¬ϑ //
��

ϑ

��

C1[∆][y\r] = t1
��

ϑ

��

t2 = C0[∆′0][y\r]
sh\gc

// // C1[∆′][y\r] = t3

(c) The internal step r is to the right of t0 = t′0[y\r0]. Then t′0 = C1[∆] and the
internal step r is of the form:

t0 = C1[∆][y\r0]→¬ϑsh C1[∆][y\r] = t1
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where r0 →sh\gc r, and we may conclude directly, since the internal and the external
steps are essentially orthogonal:

t0 = C1[∆][y\r0]
¬ϑ //

��

ϑ

��

C1[∆][y\r] = t1
��

ϑ

��

t2 = C1[∆′][y\r0]
sh\gc

// C1[∆′][y\r] = t3

To be able to close the diagram, we must justify that the step at the left is external,
i.e. that C1[y\r0] is an ϑ-evaluation context. Indeed, the facts that C1 ∈ Chϑ and that
adding an arbitrary substitution preserves evaluation contexts (Lem. 80) imply that
C1[y\r0] ∈ Chϑ , as required.

4. ESubLStr, C = C1[y\r] with r ∈ Sϑ ∪ Eϑ and C1 ∈ Chϑ∪{y}. The situation is:

t0
¬ϑ // C1[∆][y\r] = t1

��

ϑ

��

C1[∆′][y\r] = t3

There are three cases: (1) the step r is at the root of t0; (2) t0 is a substitution t′0[y\r0] and
the step r takes place inside t′0; (3) t0 is a substitution t′0[y\r0] and the step r takes place
inside r0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB, fix or case

step, as that would be an external step. Suppose then that r is a lsv step:

t0 = C[[z]][z\vL′] ¬ϑ
r
// C[v][z\v]L′ C1[∆][y\r] = t1

��

ϑ

��

C1[∆′][y\r] = t3

We know that C[v][z\v]L′ = C1[(λx.s)Lu][y\r]. Note that L′ cannot be empty since the
outermost substitution [y\r] cannot coincide with [z\v], given that r ∈ Sϑ ∪ Eϑ is a
structure, and therefore it cannot be a value like v.

Let L1 be a substitution context such that [z\v]L′ = L1[y\r], and using Lem. 95 let us
strip the substitution L1 from C1[∆]. This gives us two possibilities, case A and case B
in the statement of Lem. 95:

i. Case A. Then C1 = C11L1 in such a way that

[z\v]L′ = L1[y\r] and C[v] = C11[(λx.s)Lu]

where ϑ′ ∪ {y} = fzϑ∪{y}(L1[y\r]) = fzϑ∪{y}([z\v]L′) and C11 ∈ Xϑ′∪{y}.

We consider three subcases, depending on the position of the hole of C relative to
the position of the hole of C11.
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A. The hole of C and the hole of C11 are disjoint. Then there exists a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 and Ĉ[∆,�] = C

Then the situation is:

t0 = Ĉ[∆, z][z\vL′] ¬ϑ // Ĉ[∆, v][z\v]L′ = t1
��

ϑ

��

Ĉ[∆′, v][z\v]L′ = t3

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:

• Left branch. Ĉ[�, z] ∈ Xϑ′∪{y}. Then by Lem. 91 we have that Ĉ[�, z][z\vL′] ∈
Xϑ, and the diagram can be closed:

t0 = Ĉ[∆, z][z\vL′] ¬ϑ //
��

ϑ

��

Ĉ[∆, v][z\v]L′ = t1
��

ϑ

��

t2 = Ĉ[∆′, z][z\vL′]
sh\gc

// Ĉ[∆′, v][z\v]L′ = t3

• Right branch. Ĉ[∆,�] ∈ Xϑ′∪{y}. This contradicts the fact that the step r

at the top of the diagram is internal.

B. The context C is a prefix of C11. Then C11 = C[C1]. By the decomposition
of evaluation contexts lemma (Lem. 50) we obtain that C ∈ Xϑ′∪{y}. This
contradicts the fact that the step r at the top of the diagram is internal.

C. The context C11 is a prefix of C. Then C = C11[C1], so the dB redex contracted
by r′ is ∆ = (λx.s)Lu = C1[v]. There are four subcases, depending on the
position of v inside ∆: it can be internal to s, internal to L, internal to u or it
can be precisely λx.s:

• v is internal to s. That is, C1 = (λx.C2)Lu and s = C2[v]. Let ∆Φ =
(λx.C2[Φ])Lu and ∆′Φ = C2[Φ][x\u]L. Then the diagram can be closed as
follows:

t0 = C11[∆z][z\vL′]
¬ϑ //

��

ϑ

��

C11[∆v][z\v]L′ = t1
��

ϑ

��

t2 = C11[∆′z][z\vL′]
sh\gc

// C11[∆′v][z\v]L′ = t3

• v is internal to L. That is, C1 = (λx.s)L1[x′\C2]L2u and L = L1[x′\C2[v]]L2.
Let ∆Φ = (λx.s)L1[x′\C2[Φ]]L2u and ∆′Φ = s[x\u]L1[x′\C2[Φ]]L2. Then the
diagram can be closed as in the previous subcase.
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• v is internal to u. That is, C1 = (λx.s)LC2 and u = C2[v]. Let ∆Φ =
(λx.s)LC2[Φ] and ∆′Φ = s[x\C2[Φ]]L. Then the diagram can be closed as in
the previous subcase.

• v is precisely λx.s. That is, C1 = �Lu. Then the step r at the top of the
diagram is of the form:

t0 = C11[zLu][z\vL′]→ C11[vLu][z\v]L′ = t1

Note that C11[z\vL′] ∈ Chϑ by Lem. 91. Hence by the decomposition lemma
for evaluation contexts lemma (Lem. 50) we have C11[�Lu][z\vL′] ∈ Chϑ , which
contradicts the fact that r is an internal step.

ii. Case B. Then C1 = C11[[x′]]L {�} such that:

C[v] = C11[[x′]] �L {∆} = L1

where ϑ′ ∪ {y} = fzϑ∪{y}(L1), the evaluation context C11 is in Xϑ′∪{y}, and L is a
(ϑ ∪ {y}, x′)-chain context.
We consider three subcases, depending on the position of the hole of C relative to
the position of the hole of C11.

A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 Ĉ[x′,�] = C

We argue that this case is impossible. Note that the original term is of the
form:

t0 = C[[z]][z\vL′] = Ĉ[x′, v][z\vL′] = C11[[x′]][z\vL′]

and t0 → t1. The variable x′ is bound in t1, so it must also be bound in t0,
so x′ = z. Since L is a (ϑ ∪ {y}, x′)-chain context we know that �1L {�2} =
�1[z\�2]L′. This means that v = Iϑ

′′

1 [∆] where Iϑ
′′

is a non-answer evaluation
context, for some appropiate value of ϑ′′. In any case, this is impossible, since
answers do not have redexes under non-answer evaluation contexts (Lem. 97).

B. The context C is a prefix of C11. Then C11 = C[C′]. Hence by the decom-
position lemma for evaluation contexts (Lem. 58) we have that C must be an
evaluation context in Xϑ′∪{y}.
As in the two previous cases, we may note that ϑ′ ∪{y} ⊆ y∪dom L′ and apply
Lem. 87 to conclude that C ∈ Xϑ. So also C[z\vL] ∈ Xϑ, which contradicts that
that the step r is internal.

C. The context C is a prefix of C11. Then C11 = C[C′]. Since C[v] = C11[[x′]] we
have that v = x′, which is impossible.

(b) The internal step r is to the left of t0 = t′0[y\r]. Here t′0→sh\gc t
′
1 = C1[∆]. Note

that the step t′0→sh\gc t
′
1 must be (ϑ ∪ {y})-internal, for otherwise the step at the top

of the diagram r : t′0[y\r]→sh\gc t
′
1[y\r] would be a ϑ-external step.
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By i.h. we have that there exists an evaluation context C10 ∈ Xϑ∪{y}, a dB redex ∆0,
and its contractum ∆′0 such that t′0 = C10[∆0] and:

C10[∆0]
¬(ϑ∪{y})

//
��

(ϑ∪{y})−need

��

C1[∆]
��

(ϑ∪{y})−need

��

C10[∆′0]
sh\gc

// // C1[∆′]

By taking C0 := C10[y\r] ∈ Chϑ we have:

t0 = C10[∆0][y\r] ¬ϑ //
��

ϑ

��

C1[∆][y\r] = t1
��

ϑ

��

t2 = C10[∆′0][y\r]
sh\gc

// // C1[∆′][y\r] = t3

(c) The internal step r is to the right of t0 = t′0[y\r0]. Here r0→sh\gc r and t′0 = C1[∆].
We consider two cases, depending on whether the step r1 : r0→sh\gc r is ϑ-external or
ϑ-internal:

i. If r1 is ϑ-external. Two further subcases, depending on whether y ∈ sv(C1) or
not:

• If y ∈ sv(C1). Since r1 : r0→sh\gc r is a ϑ-external step, we can write r0 = C3[Σ]
and r = C3[Σ′] where:

– Σ is the anchor of r1 and Σ′ is its contractum,

– C3 is an evaluation context C3 ∈ Chϑ .

Moreover, by the fact that structural variables are below evaluation contexts
(Lem. 88) there is an evaluation context C2 ∈ Chϑ such that C1[∆] = C2[[y]].
Hence the step r at the top of the diagram is of the form:

r : t0 = C2[[y]][y\C3[Σ]]→sh\gc C2[[y]][y\C3[Σ′]] = t1

If C3 happens to be a non-answer evaluation context, i.e. C3 ∈ C·ϑ then the
composition C2[[y]][y\C3] is a ϑ-evaluation context and r is a ϑ-external step,
contradicting the hypothesis that it was internal.
So we may suppose that C3 is not a non-answer evaluation context. By Lem. 45
we know that evaluation contexts which are not non-answer evaluation contexts
have the shape of an answer. In particular C3[Σ′] = (λx′.t′)L′′ and we have a
ϑ-external step:

r2 : t1 = C2[[y]][y\(λx′.t′)L′′]�ϑ
sh C2[λx′.t′][y\λx′.t′]L′′

Hence t1 has two distinct external steps, namely r′ and r2. This is impossible
as a consequence of the unique decomposition lemma (Lem. 58).

• If y 6∈ sv(C1). Then by the fact that non-structural variables are not required
in “ϑ” (Lem. 87), we have that C1 ∈ Chϑ , so C1[y\r0] ∈ Chϑ , regardless of whether
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r0 is a ϑ-structure or not. This lets us close the diagram as follows:

t0 = C1[∆][y\r0]
¬ϑ //

��

ϑ

��

C1[∆][y\r] = t1
��

ϑ

��

t2 = C1[∆′][y\r0]
sh\gc

// C1[∆′][y\r] = t3

ii. If r1 is ϑ-internal. Then by the fact that normal forms are backwards preserved
by internal steps (Lem. 104), r0 is a structure; more precisely r0 ∈ Sϑ ∪ Eϑ. This
allows us to conclude that C1[y\r0] ∈ Chϑ , and the diagram can be closed just like in
the previous subcase.

5. ESubsR, C = C1[[y]][y\C2], where C1 ∈ Chϑ and C2 ∈ C·ϑ. The situation is:

t0
¬ϑ

r
// C1[[y]][y\C2[∆]] = t1

��

ϑ

��

C1[[y]][y\C2[∆′]] = t3

There are three cases: (1) the step r is at the root of t0; (2) t0 is a substitution t′0[y\r0] and
the step takes place inside t′0; (3) t0 is a substitution t′0[y\r0] and the step takes place inside
r0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB, fix or case

step since then it would be ϑ-external, so r must be a lsv step:

t0 = C[[z]][z\vL′] ¬ϑ // C[[z]][z\v]L′ = C1[[y]][y\C2[∆]] = t1

Let L1 be a substitution context such that [z\v]L′ = L1[y\C2[∆]], and using Lem. 95 let
us strip the substitution L1 from C1[[y]]. This gives us two possibilities, case A and case
B in the statement of Lem. 95:

i. Case A. Then C1 = C11L1 such that:

C11[[y]] = C[v]

where ϑ′ = fzϑ(L1) and the evaluation context C11 ∈ Ch
′

ϑ′ .

We consider three subcases, depending on the position of the hole of C relative to
the position of the hole of C11.

A. The hole of C and the hole of C11 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C11 Ĉ[y,�] = C

Then the original term t0 is of the form:

t0 = C[[z]][z\vL′] = Ĉ[y, z][z\vL′] = C11[[y]][z\vL′]
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and t0 →sh\gc t1. The variable y occurs bound in t1, so it must also occur
bound in t0, which means that y = z. Since L1[y\C2[∆]] = [z\v]L′ we have
that C2[∆] = v. This is impossible since answers do not have redexes under
non-answer evaluation contexts (Lem. 97).

B. The context C is a prefix of C11. Then C11 = C[C′], so by the decomposition
lemma for evaluation contexts (Lem. 50) C is an evaluation context in Chϑ′ . Note

that ϑ′ = fzϑ([z\v]L′) ⊆ ϑ ∪ dom L′ and variables in dom L cannot occur free in
C, since C is outside the scope of L in the original term t0. In particular, the
variables in dom L do not occur as structural variables in C, so by repeatedly
applying the fact that non-structural variables are not required in “ϑ” (Lem. 87)
we have C ∈ Chϑ . This in turn means that C[z\vL′] is an evaluation context in
Chϑ , contradicting the fact that r is an internal step.

C. The context C11 is a prefix of C. Then C = C11[C′]. Given that C[v] = C11[[y]]
we have that v = y, which is impossible.

ii. Case B. Then C1 = C11[[x′]]L {�} such that:

C11[[x′]] = C[v] L1 = �L {y}

where ϑ′ = fzϑ([z\v]L′) = fzϑ(L1[y\C1[∆]]), the evaluation context C11 is in Chϑ′ , and
L is a (ϑ, x′)-chain context.
The remainder of this case is analogous to the previous item 5(a)i. For case 5(a)iA,
recall that answers do not have variables under non-answer evaluation contexts
(Lem. 97).

(b) The internal step r is to the left of t0 = t′0[y\r0]. Then there is a step r1 :
t′0→sh\gc C1[[y]]. The step r1 must be ϑ-internal, for if it were ϑ-external, we would have
that the step r : t′0[y\C2[∆]]→sh\gc C1[[y]][y\C2[∆]] is also ϑ-external, contradicting the
hypothesis.

Since r1 is internal, by the fact that needed variables are backwards preserved by internal
steps (Lem. 105) we have that t′0 is of the form C0[[y]], where C0 is an evaluation context
in Chϑ .

This allows us to close the diagram:

t0 = C0[[y]][y\C2[∆]]
¬ϑ //

��

ϑ

��

C1[[y]][y\C2[∆]] = t1
��

ϑ

��

t2 = C0[[y]][y\C2[∆′]]
sh\gc

// C1[[y]][y\C2[∆′]] = t3

(c) The internal step r is to the right of t0 = t′0[y\r0]. Then there is a step r1 :
r0 →sh\gc C2[∆]. We consider two subcases, depending on whether r1 is ϑ-external or
ϑ-internal:

i. If r1 is ϑ-external. Then its source r0 is of the form r0 = C3[Σ] where C3 ∈ Chϑ
is an evaluation context and Σ is the anchor of a redex. Moreover, h 6= ·, since
otherwise we would have that the step r : C1[[y]][y\r0] →sh\gc C1[[y]][y\C2[∆′]] is
external, contradicting the hypothesis that it is internal.
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So given that h 6= ·, then either h is a lambda or a constant and by Lem. 45 we
conclude that r0 is an answer. By the fact that answers are stable by reduction
(Lem. 77) this means that C2[∆′] is also an answer, which contradicts the fact that
answers do not have redexes below non-answer evaluation contexts (Lem. 97).

ii. If r1 is ϑ-internal. Then by i.h. we have that there exists a non-answer evaluation
context C3, a dB redex ∆0 and its contractum ∆′0 such that r0 = C3[∆0] and:

C3[∆0]
¬ϑ //

��

ϑ

��

C1[∆]
��

ϑ

��

C3[∆′0]
sh\gc

// // C1[∆′]

So by taking C0 := C1[[y]][y\C3] ∈ Chϑ we have:

t0 = C1[[y]][y\C3[∆0]]
¬ϑ //

��

ϑ

��

C1[[y]][y\C2[∆]] = t1
��

ϑ

��

t2 = C1[[y]][y\C3[∆′0]]
sh\gc

// // C1[[y]][y\C2[∆′]] = t3

6. EAppRStr, C = r C1, where r ∈ Sϑ ∪ Eϑ and C1 ∈ Chϑ. The situation is:

t0
¬ϑ // r C1[∆] = t1

��

ϑ

��

r C1[∆′] = t3

There are three cases: (1) the step r is at the root of t0; (2) t0 is an application r0 t
′
0 and the

step takes place inside r0; (3) t0 is a substitution r0 t
′
0 and the step takes place inside t′0.

(a) The internal step r is at the root of t0. This case is impossible. Note that r cannot
be a dB, fix or case step at the root, since it would be an external step. Moreover, r
cannot be a lsv step at the root, since then the outermost constructor of t1 = r C1[∆]
would be a substitution, but it is an application.

(b) The internal step r is to the left of t0 = r0 t
′
0. Then there is a step r1 : r0→sh\gc r.

The step r1 cannot be ϑ-external, for this would imply that r : r0 C1[∆]→sh\gc r C1[∆]
is also ϑ-external, contradicting the hypothesis.

Recall that r ∈ Sϑ ∪ Eϑ, so by the fact that normal forms are backwards preserved by
internal steps (Lem. 104) we have that r0 ∈ Sϑ ∪ Eϑ. Hence we may close the diagram
as follows:

t0 = r0 C1[∆]
¬ϑ //

��

ϑ

��

r C1[∆] = t1
��

ϑ

��

t2 = r0 C1[∆′]
sh\gc

// r C1[∆′] = t3
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(c) The internal step r is to the right of t0 = r0 t
′
0. Then there is a step r1 : t′0→sh\gc

C1[∆]. The step r1 cannot be ϑ-external, for this would imply that r : r0 C1[∆]→sh\gc
r C1[∆] is also ϑ-external, contradicting the hypothesis.

By i.h. we have that there exists an evaluation context C10 ∈ Chϑ , a dB redex ∆0 and ∆′0
its contractum such that t′0 = C10[∆0] and:

C10[∆0]
¬ϑ //

��

ϑ

��

C1[∆]
��

ϑ

��

C10[∆′0]
sh\gc

// // C1[∆′]

So by taking C0 := r C10 ∈ Chϑ we have:

t0 = r C10[∆0]
¬ϑ //

��

ϑ

��

r C1[∆] = t1
��

ϑ

��

t2 = r C10[∆′0]
sh\gc

// // r C1[∆′] = t3

7. EAppCons, C = r C1, where r ∈ Kϑ, h = hc(r), and C1 ∈ Chϑ. Similar to EAppRStr.

8. ELam, C = λy.C. The internal step r is of the form:

r : t0 →¬ϑsh λy.C[∆]

Note that r cannot be at the root of t0, so t0 must be an abstraction λy.t′0, and r must be
internal to t′0. Let r1 : t′0→sh\gc C[∆]. Note that r1 cannot be a (ϑ∪{y})-external step, since
this would imply that r is ϑ-external. So r1 is (ϑ ∪ {y})-internal. Then closing the diagram
is straightforward by i.h..

9. ECase1. Similar to previous cases.

10. ECase2. Similar to previous cases.

Lemma 107 (Permutation of internal steps and external lsv steps). Given any set of variables ϑ
such that fv(t0) ⊆ ϑ, if t0 →¬ϑsh t1 �ϑ

sh t3 where the second step is a lsv step, there exists a term
t2 such that t0 �ϑ

sh t2�sh\gc t3 where the first step is a lsv step. An explicit construction for the
diagrams is given.

Proof. Let r be the internal step t0 →¬ϑsh t1 and r′ the external lsv step t1 �ϑ
sh t3. Then

t1 = C1[C2[[x]][x\vL]] and t3 = C1[C2[v][x\v]L], where C1[C2[x\vL]] ∈ Chϑ . We write ∆ to stand for
the lsv redex C2[[x]][x\vL] and ∆′ for its contractum C2[v][x\v]L.

By induction on the derivation that C1 ∈ Chϑ , the term t0 will be shown to be of the form
C10[C20[[x]][x\v0L0]], where C10[C20[x\v0L0]] ∈ Chϑ , and then t2 = C10[C20[v0][x\v0]L0], in such a way
that the diagram is closed as required by the statement. We write ∆0 to stand for the lsv redex
C20[[x]][x\v0L0] and ∆′0 for its contractum C20[v][x\v0]L0.

Furthermore, suppose that C2 ∈ Ch
′

ϑ′ . Then the inductive construction will ensure that C20 ∈ Ch
′

ϑ′′ .
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1. EBox, C1 = � ∈ Chϑ. Note that in this case ϑ′ = fzϑ(�) = ϑ. Then there is a lsv redex
at the root of t1 = C2[[x]][x\vL]. We consider three cases: (1) the step r : t0 →¬ϑsh t1 is at
the root of t0; (2) t0 is a substitution t′0[x\s0] and r is internal to t′0; (3) t0 is a substitution
t′0[x\s0] and r is internal to s0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB, fix or case

step, since it would be external. So r is a lsv step, i.e.:

t0 = C[[y]][y\v′L′]→¬ϑsh C[v′][y\v′]L′ = t1 = C2[[x]][x\vL]

Let L1 be a substitution context such that [y\v′]L′ = L1[x\vL], and using Lem. 95 let us
strip L1 from C2[[x]]. This gives us two possibilities, case A and case B in the statement
of Lem. 95:

i. Case A. Then C2[[x]] = C21[[x]]L1 where ϑ′′ = fzϑ(L1), the evaluation context C21 is
in Chϑ′′ and we have:

C[v′] = C21[[x]]

We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C21.

A. The hole of C and the hole of C21 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v] = C21 Ĉ[x,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:

• Left branch. Then Ĉ[�, y] is an evaluation context in Chϑ′′ . Note that ϑ′′ =

fzϑ(L1[x\vL]) = fzϑ([y\v′]L′) ⊆ ϑ ∪ dom L′, and that variables in dom L′ do
not occur in Ĉ[�, y], since Ĉ[�, y] is outside the scope of L′ in the original
term t0. By repeatedly applying the fact that non-structural variables are
not required in “ϑ” (Lem. 87) we obtain that Ĉ[�, y] ∈ Chϑ .
Note also that x is bound by L1[x\vL] = [y\v′]L′, and that it must occur
bound in t0 = Ĉ[x, y][y\v′L′], since free variables cannot become bound. So
x it must be bound by [y\v′L′], which means that x = y, and in particular
v = v′ and L = L′. We may then close the diagram as follows:

t0 = Ĉ[x, x][x\vL]
¬ϑ //

��

ϑ

��

Ĉ[x, v][x\v]L = t1
��

ϑ

��

t2 = Ĉ[v, x][x\v]L
sh\gc

// Ĉ[v, v][x\v]L = t3

• Right branch. Then C = Ĉ[x,�] is an evaluation context in Chϑ′′ . Note that

ϑ′′ = fzϑ([x\v′]L′) ⊆ ϑ∪dom L′ and variables in dom L′ do not occur in C, since
C is outside the scope of L in the original term t0. By repeatedly applying the
fact that non-structural variables are not required in “ϑ” (Lem. 87) we obtain
that C ∈ Chϑ . We conclude that the step r : C[[y]][y\v′L′] →¬ϑsh C[v′][y\v′]L′ is
external, which contradicts the hypothesis that it is internal.
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B. The context C is a prefix of C21. Then C21 = C[C′]. By the decomposition
of evaluation contexts lemma (Lem. 50) we know that C must be an evaluation
context in Xϑ′′ . By the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we obtain that C ∈ Chϑ . This contradicts the hypothesis that r is
an internal step.

C. The context C21 is a prefix of C. Then C = C21[C′]. Since C[v′] = C21[[x]] this
implies that v′ = x, which is impossible.

ii. Case B. Then C2[[x]] = C21[[z]]L {x} such that:

C[v′] = C21[[z]] �L {x} = L1

where ϑ′′ = fzϑ(L1), the evaluation context C21 is in Chϑ′′ , and L is a (ϑ, z)-chain
context.
The remainder of this case is by case analysis on the relative positions of the hole
of C and the hole of C21, similar to item 1(a)i. The only significant difference is for
1(a)iA in the Left branch subcase. In this subcase we have that:

t0 = Ĉ[z, y][y\v′L′]→¬ϑsh Ĉ[z, v′][y\v′]L′ = Ĉ[z, v′]L {x}[x\vL] = t1

where Ĉ[�, y] ∈ Xϑ and L is a (ϑ, z)-chain context. Note that z must be bound
by [y\v′]L′, so z = y. Moreover, z must also be bound by �L {x} to a term of the

form Iϑ̂[[x′]]. Thus v′ = Iϑ̂[[x′]] which is a contradiction, since answers do not have
occurrences of variables below non-answer evaluation contexts (Lem. 97).

(b) The internal step r is to the left of t0 = t′0[x\s0]. Then there is a step r1 :
t′0 →sh\gc C2[[x]]. Note that r1 cannot be ϑ-external, for this would imply that r is ϑ-
external. Hence r1 is ϑ-internal, so by the fact that needed variables are backwards
preserved by internal steps (Lem. 105) we have that there is an evaluation context
C20 ∈ Chϑ such that t′0 = C20[[x]]. Thus the diagram can be closed as follows:

t0 = C20[[x]][x\vL]
¬ϑ //

��

ϑ

��

C2[[x]][x\vL] = t1
��

ϑ

��

t2 = C20[v][x\v]L
sh\gc

// C2[v][x\v]L = t3

(c) The internal step r is to the right of t0 = t′0[x\s0]. Then there is a step r1 :
s0 →sh\gc vL. We consider two cases, depending on whether r1 is a ϑ-external or a
ϑ-internal step:

i. If r1 is ϑ-external. Then s0 is of the form C3[Σ], where C3 is an evaluation context
in Ch′

ϑ and Σ is the anchor of a redex. Note that h 6= · since otherwise the context
C2[[x]][x\C3] would be an evaluation context, and the step:

r : C2[[x]][x\C3[Σ]]→sh\gc C2[[x]][x\vL]

would be external, contradicting the hypothesis that it is internal.
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Then since h 6= · by the Lem. 45 we may conclude that C3[Σ] = v0L0. Hence the
diagram can be closed as follows:

t0 = C2[[x]][x\v0L0]
¬ϑ //

��

ϑ

��

C2[[x]][x\vL] = t1
��

ϑ

��

t2 = C2[v0][x\v0]L0
sh\gc

// C2[v][x\v]L = t3

ii. If r1 is ϑ-internal. Then by the fact that answers are backwards stable by internal
steps (Lem. 78) we have that s0 is of the form s0 = v0L0, and the diagram can be
closed just as in the previous case.

2. EAppL, C1 = C3 t and h 6= λ and C3 ∈ Chϑ. The situation is:

t0
¬ϑ // C3[∆] t = t1

��

ϑ

��

C3[∆′] t = t3

where C3[C2[x\vL]] ∈ Ch′

ϑ with h′ 6= λ.

This case is analogous to item 2 of the previous lemma (Lem. 106), as the proof does not
rely on ∆ being a dB redex.

3. ESubLNonStr, C1 = C11[y\t], where y 6∈ ϑ, t 6∈ Sϑ ∪ Eϑ, and C11 ∈ Chϑ. The situation is:

t0
¬ϑ // C11[∆][y\t] = t1

��

ϑ

��

C11[∆′][y\t] = t3

We consider three cases, depending on whether (1) the internal step r is at the root of t0, (2)
t0 is a substitution t′0[y\r0] and the step r is internal to t′0, (3) t0 is a substitution t′0[y\r0]
and the step r is internal to r0.

(a) The internal step r is at the root of t0. Then r cannot be a dB, fix or case step,
since it would be external. So it must be a lsv step. Then the step r is of the form:

t0 = C[[z]][z\v′L′]→¬ϑsh C[v′][z\v′]L′ = C11[∆][y\t] = t1

Let L1 be a substitution context such that L1[y\t] = [z\v′]L′. Recall that ∆ = C2[[x]][x\vL].
Using Lem. 96 let us strip L1 from C11[C2[x\vL]]. This gives us four possibilities, A, B,
C, and D in the statement of Lem. 96.

i. Case A. Then:
C11 = C111L1 C[v′] = C111[∆]

where ϑ̂ = fzϑ(L1) and C111 ∈ Ch
′

ϑ̂
.

We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C111.
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A. The hole of C and the hole of C111 are disjoint. Then there is a two hole
context Ĉ such that

Ĉ[�, v′] = C111 Ĉ[∆,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:

• Left branch. Then Ĉ[�, z] is an evaluation context in Ch′

ϑ̂
. Since ϑ̂ =

fzϑ([z\v′]L′) ⊆ ϑ ∪ dom L′, by applying the fact that non-structural variables
are not required in “ϑ” (Lem. 87) we obtain that Ĉ[�, z] ∈ Ch′

ϑ . This allows
us to close the diagram as follows:

t0 = Ĉ[∆, z][z\v′L′] ¬ϑ //
��

ϑ

��

Ĉ[∆, v′][z\v′]L′ = t1
��

ϑ

��

t2 = Ĉ[∆′, z][z\v′L′]
sh\gc

// Ĉ[∆′, v′][z\v′]L′ = t3

• Right branch. Then C ∈ Ch′

ϑ̂
. Since ϑ̂ ⊆ ϑ ∪ dom L′, by applying the fact

that non-structural variables are not required in “ϑ” (Lem. 87) we obtain
that C ∈ Ch′

ϑ . This contradicts the fact that r is an internal step.

B. The context C is a prefix of C111. Then by the decomposition of evaluation
contexts lemma (Lem. 50) we know that C ∈ Ch′

ϑ̂
. Since ϑ̂ ⊆ ϑ ∪ dom L′, by

applying the fact that non-structural variables are not required in “ϑ” (Lem. 87)
we obtain that C ∈ Ch′

ϑ . This contradicts the fact that r is an internal step.

C. The context C111 is a prefix of C. Then C = C111[C1], so C1[v′] = C2[[x]][x\vL].
We proceed by case analysis on the position of the hole of C1 in the term
C2[[x]][x\vL]: it can be to the left of the substitution [x\vL], or inside the sub-
stitution.

• Left of the substitution, C1 = C11[x\vL]. Now C11[v′] = C2[[x]]. Let us
analyze the relative positions of the holes of the contexts C11 and C2. Observe
that C2 cannot be a prefix of C11, as this would imply that x = C2[v]. So there
are two possibilities, either the holes of C11 and C2 are disjoint, or C11 is a
prefix of C2:

– If the holes of C11 and C2 are disjoint. Then there is a two-hole context
Ĉ such that:

Ĉ[�, v′] = C2 Ĉ[x,�] = C11

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:
Left branch Then Ĉ[�, z] ∈ Y ϑ′

, so we may close the diagram as follows:

t0 = C111[Ĉ[x, z][x\vL]][z\v′L′] ¬ϑ //
��

ϑ

��

C111[Ĉ[x, v′][x\vL]][z\v′]L′ = t1
��

ϑ

��

t2 = C111[Ĉ[v, z][x\v]L][z\v′L′]
sh\gc

// C111[Ĉ[v, v′][x\v]L][z\v′]L′ = t3
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Right branch Then C11 ∈ Y . Hence the context C = C111[C11[x\vL]][z\v′L′]
is in Chϑ . This contradicts the fact that r is internal.

– If C11 is a prefix of C2. Then C2 = C11[C2]. The situation is:

t0 = C111[C11[[z]][x\vL]][z\v′L′]
→¬ϑsh C111[C11[v′][x\vL]][z\v′]L′ = t1

and we have that C2[[x]] = C11[v′]. Given that C11 is a prefix of C2, we have
in particular that x occurs free in v′. This is impossible by Barendregt’s
variable convention, since v′ is outside the scope of the substitution binding
x in t0.

• Inside the substitution, C1 = C2[[x]][x\C11]. So C1[v′] = vL. We consider
two further subcases, depending on whether the hole of C1 is inside v or inside
one of the substitutions in L.

– If C1 = C111L and v = C111[v′]. There are two possibilities, depending on
whether the context C111 is empty:
Empty, i.e. C111 = � Then the situation is:

t0 = C111[C2[[x]][x\zL]][z\v′L′]
→¬ϑsh C111[C2[[x]][x\v′L]][z\v′]L′ = t1

Note that the context C111[C2[[x]][x\�L]][z\v′L′] is a ϑ-evaluation context,
so the step r is external, contradicting the hypothesis that it is internal.
Non-empty, i.e. C111 = λx′.C2 Then if we let vΦ = λx′.C2[Φ] the diagram
can be closed as follows:

t0 = C111[C2[[x]][x\vzL]][z\v′L′] ¬ϑ //
��

ϑ

��

C111[C2[[x]][x\vv′L]][z\v′]L′ = t1
��

ϑ

��

t2 = C111[C2[vz][x\vz]L][z\v′L′]
sh\gc

// // C111[C2[vv′ ][x\vv′ ]L][z\v′]L′ = t3

– If C1 = vL1[y\C111]L2 and L = L1[y\C111[v′]]L2. Then if we let LΦ =
L1[y\C111[Φ]]L2 the diagram can be closed as follows:

t0 = C111[C2[[x]][x\vLz]][z\v′L′]
¬ϑ //

��

ϑ

��

C111[C2[[x]][x\vLv′ ]][z\v′]L′ = t1
��

ϑ

��

t2 = C111[C2[v][x\v]Lz][z\v′L′]
sh\gc

// C111[C2[v][x\v]Lv′ ][z\v′]L′ = t3

ii. Case B. Then:

C11 = C111[[w]]L {�} C[v′] = C111[[w]] L1 = �L {∆}

where ϑ̂ = fzϑ(L1), the evaluation context C111 is in Xϑ̂, and L is a (ϑ,w)-chain
context.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C111.
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A. The hole of C and the hole of C111 are disjoint. Then there is a two hole
context Ĉ such that

Ĉ[�, v′] = C111 Ĉ[w,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:

• Left branch. Then Ĉ[�, z] ∈ Xϑ̂. Note that in the term t1, the variable w
is bound by �L {∆}[y\t] = [z\v′]L′ since L is a (ϑ,w)-chain context. Then
w must also occur bound in the term t0 = Ĉ[w, v′][z\v′L′], since reduction
cannot make a free variable become bound. Hence w = z.
Consider the binding of w in the substitution context �L {∆}. We know
that it is of the form Iϑ1 [Σ] where Iϑ1 is a non-answer evaluation context
for some value of ϑ1, and Σ is either ∆ (if L has exactly one jump) or a
variable (if L has more than one jump). So we have that v′L′ = Iϑ1 [Σ]. This
is impossible by the fact that answers do not have redexes or variables below
non-answer evaluation contexts (Lem. 97).

• Right branch. Then C ∈ Xϑ̂. Since ϑ̂ ⊆ ϑ ∪ dom L′, by repeatedly applying
the fact that non-structural variables are not required in “ϑ” (Lem. 87) we
have that C ∈ Chϑ . This contradicts the hypothesis that the step r is internal.

B. The context C is a prefix of C111. Then by the decomposition of evaluation
contexts lemma (Lem. 50) we know that C1 ∈ Xϑ̂. Since ϑ̂ ⊆ ϑ ∪ dom L′, by
repeatedly applying the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we have that C ∈ Chϑ . This contradicts the hypothesis that the
step r is internal.

C. The context C111 is a prefix of C. Then C = C111[C1], so w = C1[[v′]], which
is impossible.

iii. Case C. Then C11 is a substitution context, and:

C2 = C21L2 L1 = C11[L2[x\vL]] C[v′] = C21[[x]]

where ϑ̂′ = fzϑ
′
(L2) and the evaluation context C21 is in Y ϑ̂

′
.

We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C21.

A. The hole of C and the hole of C21 are disjoint. Then there is a two hole
context Ĉ such that

Ĉ[�, v′] = C21 Ĉ[x,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:

• Left branch. Then Ĉ[�, z] ∈ Y ϑ̂′
. The step r is of the form:

t0 = Ĉ[x, z][z\C11[v′L2[x\vL]]][y\r]
→¬ϑsh C11[Ĉ[x, v′][z\v′]L2[x\vL]][y\r] = t1

This is impossible by Barendregt’s variable convention, since the variable x
occurs free in t0 and becomes bound to the substitution [x\vL] in t1.
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• Right branch. Then C ∈ Y ϑ̂′
. Since ϑ̂′ ⊆ ϑ∪dom L′ by repeatedly applying

the fact that non-structural variables are not required in “ϑ” (Lem. 87) we
have that C ∈ Y ϑ. This contradicts the hypothesis that r is internal.

B. The context C is a prefix of C21. Then by the decomposition lemma for

evaluation contexts (Lem. 50) we know that C ∈ Y ϑ̂′
. Since ϑ̂′ ⊆ ϑ ∪ dom L′ by

repeatedly applying the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we have that C ∈ Y ϑ. This contradicts the hypothesis that r is
internal.

C. The context C21 is a prefix of C. Then C = C21[C1] and in particular x =
C1[v′], which is impossible.

iv. Case D. Then C11 is a substitution context, and:

C2 = C21[[w]]L {�} L1 = C11[�L {x}[x\vL]]

C[v′] = C21[[w]]

where ϑ̂′ = fzϑ
′
(�L {x}), the evaluation context C21 is in Y ϑ̂

′
, and L is a (ϑ′, w)-

chain context.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C21.

A. The hole of C and the hole of C21 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v′] = C21 Ĉ[w,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:

• Left branch. Then Ĉ[�, z] ∈ Y ϑ̂
′
. Note that w is bound on the term

t1 = C11[Ĉ[w, v′]L {x}[x\vL]][y\r], since L is a (ϑ′, w)-chain context. So it
must also be bound on the term t0 = Ĉ[w, z][z\v′L′], which means that w = z.
In particular, consider the binding of w in �L {x}. It is of the form Iϑ1 [[x′]]
for some set ϑ1 and some variable x′. Moreover, since w = z, it is also bound
to v′. Hence v′ = Iϑ1 [[x′]]. This is impossible since answers do not have
variables under non-answer contexts (Lem. 97).

• Right branch. Then C ∈ Y ϑ̂′
. Since ϑ′ ⊆ ϑ∪dom L′, by repeatedly applying

the fact that non-structural variables are not required in “ϑ” (Lem. 87) we
have that C ∈ Y ϑ, contradicting that r is internal.

B. The context C is a prefix of C21. Then by the decomposition lemma for

evaluation contexts (Lem. 50) we know that C ∈ Y ϑ̂′
. Since ϑ′ ⊆ ϑ ∪ dom L′,

by repeatedly applying the fact that non-structural variables are not required
in “ϑ” (Lem. 87) we have that C ∈ Y ϑ, contradicting that r is internal.

C. The context C21 is a prefix of C. Then C = C21[C′]. In particular w = C′[v],
which is impossible.

(b) The internal step r is to the left of t0 = t′0[y\r0]. Then there is a step r1 :
t′0→sh\gc C11[∆]. Note that r1 must be ϑ-internal, for otherwise r would be ϑ-external.
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By i.h. we have that there exists an evaluation context C110 ∈ Chϑ , a lsv redex ∆0 and
∆′0 its contractum such that t′0 = C110[∆0] and:

C110[∆0]
¬ϑ //

��

ϑ

��

C11[∆]
��

ϑ

��

C110[∆′0]
sh\gc

// // C11[∆′]

So by taking C10 := C110[y\t] ∈ Chϑ we have:

t0 = C110[∆0][y\t] ¬ϑ //
��

ϑ

��

C11[∆][y\t] = t1
��

ϑ

��

t2 = C110[∆′0][y\t]
sh\gc

// // C11[∆′][y\t] = t3

(c) The internal step r is to the right of t0 = t′0[y\r0]. Then r : r0→sh\gc r and it is
immediate to close the diagram:

t0 = C11[∆][y\r0]
¬ϑ //

��

ϑ

��

C11[∆][y\r] = t1
��

ϑ

��

t2 = C11[∆′][y\r0]
sh\gc

// // C11[∆′][y\r] = t3

4. ESubLStr, C1 = C11[y\t] with C11 ∈ Chϑ∪{y} and t ∈ Sϑ ∪ Eϑ. The situation is:

t0
¬ϑ // C11[∆][y\t] = t1

��

ϑ

��

C11[∆′][y\t] = t3

We consider three cases, depending on whether (1) the internal step r is at the root of t0, (2)
t0 is a substitution t′0[y\r0] and the step r is internal to t′0, (3) t0 is a substitution t′0[y\r0]
and the step r is internal to r0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB, fix or case

step, since it would be external. So it must be a lsv step of the form:

r : t0 = C[[z]][z\v′L′]→¬ϑsh C[[v′]][z\v′]L′ = t1

Let L1 be a substitution context such that L1[y\t] = [z\v′]L′. Recall that ∆ = C2[[x]][x\vL].
Using Lem. 96 let us strip L1 from C11[C2[x\vL]]. This gives us four possibilities, A, B,
C, and D in the statement of Lem. 96.

i. Case A. Then:
C11 = C111L1 C[v′] = C111[∆]

where ϑ̂ = fzϑ∪{y}(L1) \ {y} and C111 ∈ Chϑ∪{y}. We consider three cases, depending
on whether the holes of C and C111 are disjoint, C is a prefix of C111, or C111 is a
prefix of C.
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A. The hole of C and the hole of C111 are disjoint. Then there is a two-hole
context such that:

Ĉ[�, v′] = C111 Ĉ[∆,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:

• Left branch. Then Ĉ[�, z] ∈ Ch
ϑ̂∪{y}. Note that ϑ̂ ∪ {y} ⊆ ϑ ∪ dom L′ so by

repeatedly applying the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we have that Ĉ[�, z] ∈ Xϑ and we may close the diagram as
follows:

t0 = Ĉ[∆, z][z\v′L′] ¬ϑ //
��

ϑ

��

Ĉ[∆, v′][z\v′]L′ = t1
��

ϑ

��

t2 = Ĉ[∆′, z][z\v′L′]
sh\gc

// Ĉ[∆′, v′][z\v′]L′ = t3

• Right branch. Then C ∈ Ch
ϑ̂∪{y}. Note that ϑ̂ ∪ {y} ⊆ ϑ ∪ dom L′ so by

repeatedly applying the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we have that C ∈ Chϑ . This contradicts the hypothesis that r

is an internal step.

B. The context C is a prefix of C111. Then by the decomposition of evaluation
contexts lemma (Lem. 50) we know that C ∈ Ch

ϑ̂∪{y}. Note that ϑ̂ ∪ {y} ⊆
ϑ ∪ dom L′ so by repeatedly applying the fact that non-structural variables are
not required in “ϑ” (Lem. 87) we have that C ∈ Chϑ . This contradicts the
hypothesis that r is an internal step.

C. The context C111 is a prefix of C. Then C = C111[C1]. So ∆ = C1[v′]. Recall
that ∆ = C2[[x]][x\vL].
The remainder of this case is analogous to case 3(a)iC, by case analysis on
whether the hole of C1 lies to the left or inside the substitution [x\vL].

ii. Case B. Then:
C11 = C111[[w]]L {�} C[v′] = C111[[w]]

L1 = �L {∆}

where ϑ̂ = fzϑ∪{y}(L1) \ {y}, the evaluation context C111 is in Ch
ϑ̂∪{y}, and L is a

(ϑ ∪ {y}, w)-chain context.
We consider three further subcases, depending on the position of the hole of C

relative to the position of the hole of C111.

A. The hole of C and the hole of C111 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v′] = C111 Ĉ[w,�] = C

By the fact that evaluation contexts are backwards-stable by substitutions
(Lem. 89) there are two possibilities for Ĉ: the left and the right branch of
the disjunction. Let us analyze each branch:
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• Left branch. Then Ĉ[�, z] ∈ Ch
ϑ̂∪{y}. Note that ϑ̂ ∪ {y} ⊆ ϑ ∪ dom L′, so by

repeatedly applying the fact that non-structural variables are not required
in “ϑ” (Lem. 87) we obtain that Ĉ[�, z] ∈ Chϑ . This allows us to close the
diagram as follows:

t0 = Ĉ[∆, z][z\v′L′] ¬ϑ //
��

ϑ

��

Ĉ[∆, v′][z\v′]L′ = t1
��

ϑ

��

t2 = Ĉ[∆′, z][z\v′L′]
sh\gc

// Ĉ[∆′, v′][z\v′]L′ = t3

• Right branch. Then C ∈ Ch
ϑ̂∪{y}. Note that ϑ̂ ∪ {y} ⊆ ϑ ∪ dom L′, so by

repeatedly applying the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we obtain that Ĉ[�, z] ∈ Chϑ . This contradicts the fact that the
step r is internal.

B. The context C is a prefix of C111. Then by the decomposition lemma for
evaluation contexts (Lem. 50) we know that C ∈ Ch

ϑ̂∪{y}. Note that ϑ̂ ∪ {y} ⊆
ϑ∪ dom L′, so by repeatedly applying the fact that non-structural variables are
not required in “ϑ” (Lem. 87) we obtain that Ĉ[�, z] ∈ Chϑ . This contradicts the
fact that the step r is internal.

C. The context C111 is a prefix of C. Then C = C111[C1]. Hence w = C1[v],
which is impossible.

iii. Case C. Then C11 is a substitution context, and:

C2 = C21L2 L1 = C11[L2[x\vL]] C[v′] = C21[[x]]

where ϑ̂′ = fzϑ
′
(L2) and the evaluation context C21 is in Ch′

ϑ̂′ .

The remainder of this case is analogous to case 3(a)iii, by case analysis on the
relative positions of the holes of C and C21.

iv. Case D. Then C11 is a substitution context, and:

C2 = C21[[w]]L {�} L1 = C11[�L {x}[x\vL]]

C[v′] = C21[[w]]

where ϑ̂′ = fzϑ∪{y}(L1), the evaluation context C21 is in Y ϑ̂
′
, and L is a (ϑ′, w)-chain

context.
The remainder of this case is analogous to case 3(a)iv, by case analysis on the
relative positions of the holes of C and C21.

(b) The internal step r is to the left of t0 = t′0[y\r0]. Then there is a step r1 :
t′0 →sh\gc C11[∆][y\t]. It must be a (ϑ ∪ {y})-internal step, for otherwise r would be
ϑ-external.

By i.h. we have that there exists an evaluation context C110 ∈ Chϑ , a lsv redex ∆0 and
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∆′0 its contractum such that t′0 = C110[∆0] and:

C110[∆0]
¬(ϑ∪{y})

//
��

(ϑ∪{y})
��

C11[∆]
��

(ϑ∪{y})−need

��

C110[∆′0]
sh\gc

// // C11[∆′]

So by taking C10 := C110[y\t] ∈ Chϑ we have:

t0 = C110[∆0][y\r] ¬ϑ //
��

ϑ

��

C11[∆][y\r] = t1
��

ϑ

��

t2 = C110[∆′0][y\r]
sh\gc

// // C11[∆′][y\r] = t3

(c) The internal step r is to the right of t0 = t′0[y\r0]. Then the internal step r is of
the form:

C1[∆][y\r0]→¬ϑsh C1[∆][y\t]

and there is a step r1 : r0→sh\gc t. We consider two cases, depending on whether y is
a structural variable in C1.

i. If y ∈ sv(C1). Then by the fact that structural variables are below evaluation
contexts (Lem. 88) we have that there is a context C3 ∈ Chϑ such that C1[∆] = C3[[y]].
Let us consider two further subcases, depending on whether r1 is ϑ-external or
ϑ-internal:

A. If r1 is a ϑ-external step. Then the step

r : C1[∆][y\r0] = C3[[y]][y\r0]→sh\gc C3[[y]][y\t]

is ϑ-external, contradicting the hypothesis that it is ϑ-internal.

B. If r1 is a ϑ-internal step. Then by the fact that normal forms are backwards
preserved by internal steps (Lem. 104) we have that r0 is a structure in Sϑ∪Eϑ,
so C1[y\r0] is an evaluation context in Chϑ and we may close the diagram as
follows:

t0 = C1[∆][y\r0]
¬ϑ //

��

ϑ

��

C1[∆][y\t] = t1
��

ϑ

��

t2 = C1[∆′][y\r0]
sh\gc

// C1[∆′][y\t] = t3

ii. If y 6∈ sv(C1). Then by the fact that non-structural variables are not required in
“ϑ” (Lem. 87) we have that C is an evaluation context in Chϑ . Hence, regardless of
whether r0 is a structure or not a structure, the context C1[x\r0] is an evaluation
context in Chϑ . It is then straightforward to close the diagram, as in the previous
case.
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5. ESubsR, C1 = C11[[y]][y\C3] with C11 ∈ Chϑ and C3 ∈ C·ϑ. The situation is:

t0
¬ϑ // C11[[y]][y\C3[∆]] = t1

��

ϑ

��

C11[[y]][y\C3[∆′]] = t3

We consider three cases, depending on whether (1) the internal step r is at the root of t0, (2)
t0 is a substitution t′0[y\r0] and the step r is internal to t′0, (3) t0 is a substitution t′0[y\r0]
and the step r is internal to r0.

(a) The internal step r is at the root of t0. Note that r cannot be a dB, fix or case

step, since it would be external, so it must be a lsv step of the form:

r : t0 = C[[z]][z\v′L′]→¬ϑsh C[v′][z\v′]L′ = t1

Let L1 be a substitution context such that L1[y\C1[∆]] = [z\v′]L′. Using Lem. 95 let us
strip L1 from C11[y\C1[∆]]. This gives us two possibilities, A and B in the statement of
Lem. 95.

i. Case A. Then:
C11 = C111L1 C[v′] = C111[[y]]

where ϑ̂ = fzϑ(L1) and C111 ∈ Ch
′

ϑ̂
. We consider three cases, depending on whether

the holes of C and C111 are disjoint, C is a prefix of C111, or C111 is a prefix of C.

A. The hole of C and the hole of C111 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v′] = C111 Ĉ[y,�] = C

Note that the internal step r is of the form:

r : Ĉ[y, z][z\v′L′]→¬ϑsh Ĉ[y, v′][z\v′]L′

and y is bound by L1[y\C1[∆]] = [z\v′]L′ on the right-hand side, so it must be
the case that y = z, for otherwise y would be free on the left-hand side, and
free variables cannot become bound.
Hence, since y = z, we have that v′ = C1[∆]. This is impossible, since answers
do not have redexes below non-answer evaluation contexts (Lem. 97).

B. The context C is a prefix of C111. Then by the decomposition of evaluation
contexts lemma (Lem. 50) we know that C ∈ Ch′

ϑ̂
. Note that ϑ̂∪{y} ⊆ ϑ∪dom L′,

so by repeatedly applying the fact that non-structural variables are not required
in “ϑ” (Lem. 87) we conclude that C ∈ Chϑ . This contradicts the fact that r is
a ϑ-internal step.

C. The context of C111 is a prefix of C. Then C = C111[C1], so y = C1[v′] which
is impossible.
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ii. Case B. Then:
C11 = C111[[w]]L {�} C[v′] = C111[[w]]

L1 = �L {y}

where ϑ̂ = fzϑ(L1), the evaluation context C111 is in Ch′

ϑ̂
, and L is a (ϑ,w)-chain

context.
We consider three cases, depending on whether the holes of C and C111 are disjoint,
C is a prefix of C111, or C111 is a prefix of C.

A. The hole of C and the hole of C111 are disjoint. Then there is a two-hole
context Ĉ such that:

Ĉ[�, v′] = C111 Ĉ[w,�] = C

The internal step r is then of the form:

r : Ĉ[w, z][z\v′L′]→¬ϑsh Ĉ[w, v′][z\v′]L′

Note that w is bound by [z\v′]L′ = L {y}[y\vL] on the right-hand side, hence
w = z, since otherwise w would be free on the left-hand side, and free variables
cannot become bound.
Consider the term p such that w is bound to p in the context �L {y}[y\C1[∆]].
There are two possibilities: either L has no jumps and y = w with p = C1[∆],
or L has at least one jump and p is of the form Iϑ1

1 [[w1]] for some non-answer
evaluation context Iϑ1 ∈ NACtxtϑ1

. Since w = z, we have that p = v′. In any
case, this is impossible by the fact that answers do not have redexes or variables
below non-answer evaluation contexts (Lem. 97).

B. The context C is a prefix of C111. Then by the decomposition of evaluation
contexts lemma (Lem. 50) we know that C ∈ Ch′

ϑ̂
. Note that ϑ̂ ⊆ ϑ ∪ dom L′, so

by repeatedly applying the fact that non-structural variables are not required
in “ϑ” (Lem. 87) we have that C ∈ Chϑ , contradicting the fact that the step r is
ϑ-internal.

C. The context C111 is a prefix of C. Then C = C111[C1] so w = C1[v′], which is
impossible.

(b) The internal step r is to the left of t0 = t′0[y\r0]. Let r1 : t′0 →sh\gc C11[[y]] be
the step isomorphic to r but going under the substitution [y\C1[∆]]. Note that r1

cannot be ϑ-external since, by the fact that adding an arbitrary substitution to a ϑ-
evaluation context yields a ϑ-evaluation context (Lem. 80) this would imply that r is
also ϑ-external. So r1 is ϑ-internal and we may apply the fact that needed variables are
backwards preserved by internal steps (Lem. 105) to conclude that t′0 has to be of the
form C110[[y]]

So by taking C10 := C110[[y]][y\C3] we may close the diagram as follows:

t0 = C110[[y]][y\C3[∆]]
¬ϑ //

��

ϑ

��

C11[[y]][y\C3[∆]] = t1
��

ϑ

��

t2 = C110[[y]][y\C3[∆′]]
sh\gc

// C11[[y]][y\C3[∆′]] = t3
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(c) The internal step r is to the right of t0 = t′0[y\r0]. Let r1 : r0→sh\gc C3[∆] be the
step isomorphic to r but going inside the substitution C11[[y]][y\�]. Note that r1 cannot
be ϑ-external since this would imply that r is ϑ-external.

By i.h. we have that there exists a non-answer evaluation context C30 ∈ C·ϑ, a lsv redex
∆0 and ∆′0 its contractum such that r0 = C30[∆0] and:

C30[∆0]
¬ϑ //

��

ϑ

��

C3[∆]
��

ϑ

��

C30[∆′0]
sh\gc

// // C3[∆′]

So by taking C10 := C11[[y]][y\C30] we have:

t0 = C11[[y]][y\C30[∆0]]
¬ϑ //

��

ϑ

��

C11[[y]][y\C3[∆]] = t1
��

ϑ

��

t2 = C11[[y]][y\C30[∆′0]]
sh\gc

// // C11[[y]][y\C3[∆′]] = t3

6. EAppRStr, C1 = p C11, where p ∈ Sϑ ∪ Eϑ and C11 ∈ Chϑ. The situation is:

t0
¬ϑ // p C11[∆] = t1

��

ϑ

��

p C11[∆′] = t3

Note that the internal step r cannot be at the root: it cannot be a dB, fix or case step, since
it would be external, and it cannot be a lsv step, since then there would be a substitution
node at the root of t1.

So t0 must be an application node r1 r2 and there are two remaining cases: (1) the step r is
internal to r1, (2) the step r is internal to r2.

(a) The internal step r is internal to the left of t0 = r1 r2. Then t0 = r1 C11[∆].
Let r1 : r1 →sh\gc p be the step isomorphic to r below the context � C11[∆]. Note
that r1 cannot be ϑ-external as this would imply that r is also ϑ-external. Hence r1 is
ϑ-internal.

By the fact that strong normal forms are backwards stable by internal steps (Lem. 104)
we know that r1 must be a strong ϑ-structure, i.e. r1 ∈ Sϑ∪Eϑ. By taking C10 := r1 C11

we may close the diagram as follows:

t0 = r1 C11[∆]
¬ϑ //

��

ϑ

��

p C11[∆] = t1
��

ϑ

��

t2 = r1 C11[∆′]
sh\gc

// p C11[∆′] = t3
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(b) The internal step r is internal to the right of t0 = r1 r2. Then t0 = p r2. Let
r1 : r2 →sh\gc C11[∆] be the step isomorphic to r below the context p�. Note that
r1 cannot ϑ-external since this would imply that r is also ϑ-external. Hence r1 is ϑ-
internal. By i.h. we have that there exists an evaluation context C110 ∈ Chϑ , a lsv redex
∆0 and ∆′0 its contractum such that r2 = C110[∆0] and:

C110[∆0]
¬ϑ //

��

ϑ

��

C11[∆]
��

ϑ

��

C110[∆′0]
sh\gc

// C11[∆′]

We may close the diagram by taking C10 := p C110:

t0 = p C110[∆0]
¬ϑ //

��

ϑ

��

p C11[∆] = t1
��

ϑ

��

t2 = p C110[∆′0]
sh\gc

// p C11[∆′] = t3

7. ELam, C1 = λy.C, where C ∈ Chϑ. Straightforward by i.h., as in the case for the ELam rule
of the previous lemma (Lem. 106, case 8).

8. EAppCons, C = r C1, where r ∈ Kϑ, h = hc(r), and C1 ∈ Chϑ. Similar to EAppRStr.

9. ECase1. Similar to previous cases.

10. ECase2. Similar to previous cases.

Lemma 108 (Permutation of internal steps and external fix steps). Given any set of variables ϑ
such that fv(t0) ⊆ ϑ, if t0 →¬ϑsh t1 �ϑ

sh t3 where the second step is a fix step, there exists a term
t2 such that t0 �ϑ

sh t2�sh\gc t3 where the first step is a fix step. An explicit construction for the
diagrams is given.

Proof. Similar to Lem. 106.

Lemma 109 (Permutation of internal steps and external case steps). Given any set of variables
ϑ such that fv(t0) ⊆ ϑ, if t0 →¬ϑsh t1 �ϑ

sh t3 where the second step is a case step, there exists a
term t2 such that t0 �ϑ

sh t2�sh\gc t3 where the first step is a case step. An explicit construction
for the diagrams is given.

Proof. Similar to Lem. 106

Lemma 110 (Permutation of internal/external steps). Given any set of variables ϑ such that
fv(t0) ⊆ ϑ, if t0 →¬ϑsh t1 �ϑ

sh t3 there exists a term t2 such that t0 �ϑ
sh t2�sh\gc t3. More precisely,

the diagram can be closed constructively and exactly the following swaps are allowed:

→¬ϑsh,lsv�ϑ
sh,lsv ⊆ (�ϑ

sh,lsv)
+(→¬ϑsh,lsv)∗
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and also:

• dB

– →¬ϑsh,dB�ϑ
sh,dB ⊆ (�ϑ

sh,dB)
+(→¬ϑsh,dB)∗

– →¬ϑsh,dB�ϑ
sh,fix ⊆ (�ϑ

sh,fix)
+(→¬ϑsh,dB)∗

– →¬ϑsh,dB�ϑ
sh,case ⊆ (�ϑ

sh,case)
+(→¬ϑsh,dB)∗

– →¬ϑsh,lsv�ϑ
sh,dB ⊆ �ϑ

sh,dB (→¬ϑsh )∗

– →¬ϑsh,dB�ϑ
sh,lsv ⊆ �ϑ

sh,lsv (→¬ϑsh )∗

• fix

– →¬ϑsh,fix�ϑ
sh,fix ⊆ (�ϑ

sh,fix)
+(→¬ϑsh,fix)∗

– →¬ϑsh,fix�ϑ
sh,dB ⊆ (�ϑ

sh,dB)
+(→¬ϑsh,fix)∗

– →¬ϑsh,fix�ϑ
sh,case ⊆ (�ϑ

sh,case)
+(→¬ϑsh,fix)∗

– →¬ϑsh,lsv�ϑ
sh,fix ⊆ �ϑ

sh,fix (→¬ϑsh )∗

– →¬ϑsh,fix�ϑ
sh,lsv ⊆ �ϑ

sh,lsv (→¬ϑsh )∗

• case

– →¬ϑsh,case�ϑ
sh,case ⊆ (�ϑ

sh,case)
+(→¬ϑsh,case)∗

– →¬ϑsh,case�ϑ
sh,dB ⊆ (�ϑ

sh,dB)
+(→¬ϑsh,case)∗

– →¬ϑsh,case�ϑ
sh,fix ⊆ (�ϑ

sh,fix)
+(→¬ϑsh,case)∗

– →¬ϑsh,lsv�ϑ
sh,case ⊆ �ϑ

sh,case (→¬ϑsh )∗

– →¬ϑsh,case�ϑ
sh,lsv ⊆ �ϑ

sh,lsv (→¬ϑsh )∗

Proof. Let us call r to the internal step t0 →¬ϑsh t1 and r′ to the external step t1 �ϑ
sh t3. The proof

goes by case analysis on the kind of step r′. If r′ is a dB step, this is a consequence of Lem. 106.
If r′ is a lsv step, this is a consequence of Lem. 107. If r′ is a fix step, this is a consequence
of Lem. 108. If r′ is a case step, this is a consequence of Lem. 109. Note that in all cases the
construction is given inductively. In all the base cases, the diagram is closed according to the
allowed swaps. In all the inductive cases, the diagram is closed using the same kind of swaps as in
the inductive hypothesis.

Definition 111 (Square Factorization System). A square factorization system (SFS) is a set S
and four reduction relations ( •, ◦, 7→•, 7→◦) on S s.t. the following conditions hold:

1. Termination:  ◦ and 7→◦ strongly normalizing.

2. Row-swap 1:  • ◦⊆ +
◦ 

∗
•

3. Row-swap 2: 7→• 7→◦⊆7→+
◦ 7→∗•

4. Diagonal-swap 1: 7→• ◦⊆ ◦ 7→∗

137



5. Diagonal-swap 2:  • 7→◦⊆7→◦ ∗

where  = ◦ ∪ • and 7→=7→• ∪ 7→◦.

Lemma 112 (Factorization for SFS (Thm 5.2(2) in [Acc12])). Consider a SFS ( •, ◦, 7→•, 7→◦)
on S. Let →:= ∪ 7→ and  := • ∪  ◦ and 7→:=7→• ∪ 7→◦ and →◦:= ◦ ∪ 7→◦ and →•:= •
∪ 7→•. Then →∗⊆→∗◦→∗•

Lemma 113 (Postponement of internal steps). If t�sh\gc s such that s is in→sh\gc-normal form,

given any set of variables ϑ such that fv(t) ⊆ ϑ, there is a term u in �ϑ
sh-normal form such that

t ��ϑ
shu�¬ϑsh s.

Diagramatically:

Λsh

sh\gc
// //

��

ϑ
����

NF(→sh\gc)

NF(�ϑ
sh)

¬ϑ

88 88

Proof. This is an immediate consequence Lem. 112 where

•  ◦:=�ϑ
sh,dB ∪�ϑ

sh,fix ∪�ϑ
sh,case

• 7→◦:=�ϑ
sh,lsv

•  •:=→¬ϑsh,dB ∪ →¬ϑsh,fix ∪ →¬ϑsh,case

• 7→•:=→¬ϑsh,lsv
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