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ABSTRACT
Resource types are types that statically quantify some aspect of

program execution. They come in various guises; this paper focusses

on a manifestation of resource types known as non-idempotent
intersection types. We use them to characterize weak normalisation

for a type-erased lambda calculus for the Calculus of Inductive

Construction (λe), as introduced by Gregoire and Leroy. The λe
calculus consists of the lambda calculus together with constructors,

pattern matching and a fixed-point operator. The characterization is

then used to prove the completeness of a strong call-by-need strategy
for λe. This strategy operates on open terms: rather than having

evaluation stop when it reaches an abstraction, as in weak call-by-

need, it computes strong normal forms by admitting reduction inside

the body of abstractions and substitutions. Moreover, argument

evaluation is by-need: arguments are evaluated when needed and

at most once. Such a notion of reduction is of interest in areas such

as partial evaluation and proof-checkers such as Coq.
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1 INTRODUCTION
This paper is about the lambda calculus, the programming language

that lies at the core of all Functional Programming Languages (FPL).

FPLs evaluate programs until a value is obtained, if such a value

exists at all. Programs are modeled as closed lambda calculus terms;

values are a subset of programs that represent the possible results

that one obtains by evaluation, typical examples being numerals,

booleans and abstractions. FPLs implement an evaluation strategy

called weak reduction since evaluation does not take place under an
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abstraction.When computing values from programs, such strategies

typically also implement some form of memoization or sharing in

order to avoid performing duplicate work. Moreover, this work is

only performed if it is actually needed for obtaining a value. One

thus speaks of call-by-need strategies for weak reduction, a notion

that originates in the seminal work of Wadsworth [27].

Often one is interested in reducing inside the bodies of abstrac-
tions. One simple example is a technique known as partial evalua-
tion (PE). In PE one has knowledge about some, but not all, of the

arguments to a function, the remaining ones being supplied at a

later stage. In this case, one can specialize the code of the function

to those specific arguments. Here is a classic example. Assume we

have a function for computingmn
, n ≥ 0:

pow := λn.λm.ifn = 0 then 1 elsem ∗ pow (n − 1)m

If we know the value of n to be 2, then we can produce a more

efficient version of pow 2 as follows:

pow 2 → λm.if 2 = 0 then 1 elsem ∗ (pow (2 − 1)m)

→ λm.m ∗ (pow (2 − 1)m)

→ λm.m ∗ (if 1 = 0 then 1 elsem ∗ (pow (1 − 1)m))

→ λm.m ∗ (m ∗ (pow (1 − 1)m))

→ λm.m ∗ (m ∗ (if 0 = 0 then 1 elsem ∗ (pow (0 − 1)m)))

→ λm.m ∗ (m ∗ 1)

→ λm.m ∗m

Notice that all the reduction steps depicted above, take place under

the lambda abstraction λm. Such a notion of reduction is called

strong reduction. The values computed are normal forms which we

refer to as strong normal forms to distinguish them from the normal

forms of weak reduction.

Another area of interest of strong reduction is in the implemen-

tation of proof assistants that require checking for definitional

equality. Proof assistants, such as Coq, that rely on definitional

equality of types typically include a typing rule called conversion:
Γ ⊢ t : τ τ ≡ σ

Γ ⊢ t : σ
Checking that types τ and σ are definitionally equal, denoted by

the judgement τ ≡ σ , involves computing the strong normal form

of these types. In turn, this involves computing the strong normal

form of the terms that occur in them. The reason that terms occur

in types is that the type theory on which such proof assistants are

erected are dependent type theories. These terms include constants

for building values of inductive types and fixed-point operators for

encoding recursive functions over inductive types.
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https://doi.org/10.1145/3236950.3236972
https://doi.org/10.1145/3236950.3236972


PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany P. Barenbaum et al.

The Extended Lambda Calculus. The Extended Lambda Cal-

culus [21] (referred in op.cit. as the “type-erased lambda calculus”),

denoted λe, extends the lambda calculus with constants, pattern

matching and fixed-points. Here is an example of a term in λe that
computes the length of a list encoded with constants nil and cons
(see Sec. 2 for a detailed definition of λe):

fix (l . λxs . case xs of (nil ⇒ zero) · (conshd tl ⇒ succ (l tl)))

The Extended Lambda Calculus is a subset of Gallina, the specifica-

tion language of Coq. Gregoire and Leroy [21] study judicious

mechanisms for implementing strong reduction in λe in order

to apply it to check type-conversion. They propose a notion of

strong reduction for λe on open terms (i.e. terms possibly con-

taining free variables) called symbolic call-by-value. Symbolic CBV

iterates call-by-value, accumulating terms for which computation

cannot progress. No notion of sharing is addressed. Indeed, unnec-

essary computation may be performed. For example, consider the

following λe term, where id abbreviates the identity term λz.z:

case c (id id) of cx ⇒ d (1)

This term is a case expression that has condition c (id id) and branch
cx ⇒ d, the pattern of the branch being cx and the target d. Notice
that the branch does not make use of x in the target. However,

Symbolic CBV will contract the redex id id since the argument of c
must be a value before selecting the matching branch.

Adding Sharing to Strong Reduction. This paper proposes a
notion of strong reduction for λe that only reduces redexes that are
needed in order to obtain the (strong) normal form. e.g. our strategy
will not reduce the id id redex in (1). Arguments to functions will

be suspended until needed. Moreover, they will be reduced at most

once. The latter requires us to extend λe with an additional syntactic
construct to hold such suspended arguments: explicit substitutions.
The resulting theory of sharing (λsh) replaces the usual β rule in

the lambda calculus (λx .t) s →β t{x := s} with (λx .t) s →dB t[x\s].
The term t[x\s] is also often written let x = s in t . Notice that
rather than substitute all free occurrences of x in t with s , the latter
suspends this substitution process. Moreover, since explicit substitu-

tionsmay nowhide redexes, such as in (λx .x)[x\y] z, a slightlymore

general formulation of dB is adopted, namely (λx .t)L s →dB t[x\s]L.
The notation L denotes a possibly empty list of explicit substitu-

tions [6].

In order to make use of an argument suspended in an explicit sub-

stitution it has to have been fully evaluated to a result. Asmentioned

above, results typically include numerals, booleans and abstractions.

In our setting, values shall either be abstractions or terms headed

with constants (cf. Sec. 2.1). An additional consideration is that

values v may be “polluted” with explicit substitutions L. We thus

have the following rule to be able to use a suspended argument:

C[[x]][x\vL] →lsv C[v][x\v]L. Note how this rule makes use of a

context C and the notation C[[x]] to mean that there is a free oc-

currence of x . For example, (x x)[x\λy.y] →lsv ((λy.y)x)[x\λy.y]
and also (x x)[x\λy.y] →lsv (x (λy.y))[x\λy.y]. Of course, also
((λy.z)x)[x\λy.y] →lsv ((λy.z) (λy.y))[x\λy.y], even though x is

not needed since it will be discarded by (λy.z). Selecting only needed
occurrences of x to be replaced by results will be achieved by im-

posing a specific reduction strategy on →sh, as described below.

Additional rules for dealing with case expressions and fixed-points

are discussed in Sec. 2.1.

Resource Types for the Lambda Calculus. The challenge in
establishing that the strong call-by-need theory is well-behaved is

proving that every term in λe that has a normal form also has a
normal form in λe with sharing (λsh). That is, that the restricted
notion of replacement of results is general enough to capture all

normalising derivations in λe.

t ∈ WN(λe) ⇒ t ∈ WN(λsh)

The notationWN(λe) denotes the set of λe-terms that have a normal

form via λe and similarly for WN(λsh). Arguably this has been

the main technical hurdle in prior works for weak reduction such

as [8, 25] which introduced ad hoc notions of development, redex

tracking and dags with boxes. It was recently noticed [23] that by

devising an appropriate non-idempotent intersection type system T

for λsh, one could achieve this as follows:

t ∈ WN(λe)

Step 1︷︸︸︷
⇒ t ∈ Typable(T )

Step 2︷︸︸︷
⇒ t ∈ WN(λsh) (2)

Non-idempotent intersection types [20] track/count the uses of vari-

ables in terms and thus restrict reduction properties of its typable

terms e.g., they may be used to characterize weak, head and strongly

normalising terms [12]. If one writes non-idempotent intersection

types as multisets of types, then x : [τ1,τ2] means that x has to be

used twice with the indicated types. Similarly, y : [[τ1,τ2] → τ3]

means that y has to be used once and that the argument to y has to

be typed twice, once with type τ1 and once with τ2.

The argument behind Step 1 is roughly as follows. Given a term in

normal form, for any variable x , one “counts” each of its occurrences
by giving it a type and then takes the multiset of all those types as

the type of x . Then one shows a Subject Expansion result: if the

contractum via a reduction step of a term is typable, then so is the

term itself. For those variables that reduction does not erase, their

type in the contractum can be used to type the redex, those that

are erased are not typed at all in the redex (they occur in subterms

that are typed with the empty multiset).

The argument behind Step 2 involves showing that reduction of

redexes that are typed in T decreases the size of the type deriva-

tion. Reduction of redexes that are not typed could lead to non-

termination [9, 23]. For example, x Ω, where Ω is (λx .x x) (λx .x x),
is typable by setting x to have type [] → α , for α a type variable;

the empty multiset of type [] allowing the typing of Ω to not be
accounted for. However, the term is not normalising in λsh or any
theory of sharing that allows β to be simulated.

Resource Types for the Extended Lambda Calculus. We

must adapt this counting technique to the setting of case and fixed
points. It turns out that the challenge lies in dealing with case
(however, see Rem. 1). Consider the term:

case c of (c ⇒ d) · (d ⇒ Ω)

It will evaluate to d and hence should be typable in T (cf. Step 1).

Since Ω does not participate at all in computing d, there is no need

for T to account for it. Thus our proposed typing rules will only

type branches that are actually used to compute the normal form.

This, however, beckons the question of what happens with case
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expressions that block. In an expression such as:

case c of (d ⇒ d) · (e ⇒ e)

all its subexpressions are part of the normal form and hence should

be typed. Our proposed typing rule shall ensure this, thus avoiding

typing terms such as:

case c of (d ⇒ d) · (e ⇒ Ω)

where, although matching is blocked, have not strong normal form

in λe or λsh. Since blocked case expressions could be applied to

arguments, further considerations are required. Consider the term:

(case c of d ⇒ d)Ω

It does not have a normal form in λe or λsh and hence should not

be typable (Step 2). To ensure that, we need the type assigned to

this term to provide access to the types of the arguments to which

it is applied, namely Ω, so that constraints on these types may

be placed. In other words, we need to devise T such that it gives

case c of (d ⇒ d)Ω a type that includes that of Ω. This would
enable us to state conditions that do not allow this term to be typed

but do allow a term such as (case c of d ⇒ d) e to be typed. This

motivates our notions of error type and error log (cf. Sec. 4).
The above examples were all closed terms. Open terms pose

additional problems. Consider the term:

case x of (c ⇒ d) · (e ⇒ Ω)

Although it does not have a normal form in λsh, it is typable with
type d, if x : [c]. Notice, moreover, that the empty multiset of types

does not occur in the type of x (in fact, it meets all the requirements

of [9, 23]). The reason it is typable is that Ω is never accounted:

since x is known to have type [c], only the c ⇒ d branch is typed.

Hence some restrictions on the types of free variables in Step 2

must be put forward, clearly variables cannot be assigned any type.

In particular, it seems we should not allow contant types such as

c to occur positively in the types of free variables. Indeed, we will

require that constant types do not occur positively in the typing

context and negatively in error logs and in the predicate (cf. notion
of good typing judgements in Sec. 4.1). Note that constants can

occur negatively in the types of variables. This allows terms such

as x c to be typable.

One final consideration is that collecting all the requirements,

both on empty multiset types and type constants, should still allow

weakly normalising terms in λe to be typable in T . We will see that

this will indeed be the case.

A Strong Call-by-Need Strategy. As mentioned, reduction in

the theory of sharing may involve reducing redexes that are not

needed. By restricting reduction in →sh to a subset of the contexts

where reduction can take place, we can ensure that only needed

redexes are reduced. We next illustrate, through an example, our

call-by-need strategy. The strategy will be denoted↣sh, “sh” for

sharing. Consider the term:

(case (λy.x y)(id id) of c ⇒ d) (id c)
It consists of a case expression applied to an argument. This case

expression has a condition (λy.x y)(id id), a branch c ⇒ d with

pattern c and target d, and is applied to an argument id c. The first
reduction step for this term is the same as for weak call-by-need,

namely reducing the β-redex (λy.x y)(id id) in the condition of the

case. It must be reduced in order to determine which branch, if

any, is to be selected. This β-redex is turned into (x y)[y\id id]. The
resulting term is:

(case (x y)[y\id id] of c ⇒ d)(id c)

A weak call-by-need strategy would stop there, since the case ex-

pression is stuck. In the strong case, however, reduction should

continue to complete the evaluation of the term until a strong nor-

mal form is reached. Both the body of the explicit substitution id id
and also the argument of the stuck case expression id c are needed
to produce the strong normal form. Thus evaluation must continue

with these redexes. That these redexes are indeed selected and,

moreover, which one is selected first, depends on an appropriate

notion of evaluation context. Our strategy will include an evaluation

context C of the form (case (x y)[y\□] of c ⇒ d)(id c) and hence

the body of the explicit substitution will be reduced next. Notice

that in order for the focus of computation to be placed in the body

of an explicit substitution, its target y should be needed. In this

particular case, it is because x is free but y is needed for computing

the strong normal form. However, in a term such λx .c[y\id id], the
β-redex id id is not needed for the strong normal form and hence

will not be selected by the strategy.

The remaining computation steps leading to the strong normal

form are depicted below.

(case (λy.x y)(id id) of c ⇒ d)(id c)
↣sh (case (x y)[y\id id] of c ⇒ d)(id c)
↣sh (case (x y)[y\z[z\id]] of c ⇒ d)(id c)
↣sh (case (x y)[y\id[z\id]] of c ⇒ d)(id c)
↣sh (case (x id)[y\id][z\id] of c ⇒ d)(id c) (∗)

↣sh (case (x id)[y\id][z\id] of c ⇒ d)(z[z\c])
↣sh (case (x id)[y\id][z\id] of c ⇒ d)(c[z\c])

Note that in the fourth step (indicated with an asterisk), y has been

replaced by id. As in weak call-by-need, only answers shall be sub-
stituted for variables. Answers are abstractions under a possibly

empty list of explicit substitutions or data structures possibly in-

terspersed with explicit substitutions. Finally, crucial to defining

the strong call-by-need strategy will be identifying variables and

case expressions that will persist. The former are referred to as

frozen variables and are free variables (or those that are bound

under abstractions and branches of case expressions) that we know

will never be substituted by an answer. The latter are referred

to as error terms and are case expressions that we know will be

stuck forever. An example of the former is x y in (x y)[y\id id];
an example of the latter is case (x id)[y\id][z\id] of c ⇒ d in

(case (x id)[y\id][z\id] of c ⇒ d)(id c).
Contribution. The main contributions of this paper are:

• A non-idempotent intersection type system for λe satisfying
(2).

• A strong call-by-need strategy for λe.
• A proof of completeness of the strategy.

Discussion. Although comparison with related work is devel-

oped in Sec. 7, we would like to comment on [9], the most closely

related work (co-authored by two of the present authors). The

work in [9] proposes a strong call-by-need strategy for the lambda

calculus without matching and fixed point. It should perhaps be
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mentioned that standard encodings of inductive types in the un-

typed lambda calculus such as the Church or Scott encodings do not

address the above mentioned problems. The culprit is the absence

of a high-level construct such as “case” which makes the notion

of “blocked case” not obvious in terms of the underlying encoding.

Eg. consider the standard Church encoding of a constant ci of arity
a(i):

λx1 . . . xa(i).λc1 . . . cn .ci (x1 ®c) . . . (xn ®c)

How would the blocked case expression case c of (d ⇒ d) be
encoded? Resorting to the iterators of Church encodings, we would

have: (λcd .c) ? (λcd .d), where the question mark is the missing

branch. Consider also case x of (c ⇒ d; d ⇒ Ω) with x : [c].
This would be encoded as x (λcd .d) (λcd .Ω). The non-idempotent

intersection type system of [9] does not account for Ω.
Structure of the paper.We revisit the Extended Lambda Cal-

culus λe in Sec. 2 and also introduce the theory of sharing for it

λsh in the same section. Sec. 3 introduces the type system T . Sec. 4

addresses Step 1 and 2 as described above. We present the strong

call-by-need strategy in Sec. 5 and address the final completeness

result (standardization theorem) in Sec. 6. Finally, we comment on

related work and conclude, suggesting further avenues to pursue.

2 A THEORY OF SHARING FOR THE
EXTENDED LAMBDA CALCULUS

We assume given a denumerable set of variables x ,y, z, . . . and
constants c, c′, c′′, . . ..

Definition 2.1. The terms of the Extended Lambda Calculus
Λe are defined as follows:

Terms t , s,u, . . . ::= x | λx .t | t s | c | case t of ¯b | fix(x .t)
Branch b ::= cx̄ ⇒ t
Contexts C ::= □ | λx .C | C t | t C | fix(x .C) | case C of ¯b

| case t of (c1x̄1 ⇒ s1) . . .

. . . (ci x̄i ⇒ C) . . . (cnx̄n ⇒ sn )

In addition to the standard terms of the lambda calculus, vari-
ables, abstraction and application, we have constants, case ex-
pressions and fixed-point expressions. In case t of ¯b we say t
is the condition of the case and

¯b are its branches; ¯b is shorthand

for a (possibly empty) sequence of branches. If I = {1, 2, . . . ,n},
we sometimes write case t of (ci x̄i ⇒ si )i ∈I for case expressions.
Branches are assumed to be syntactically restricted so that if i , j
then (ci , |x̄i |) , (cj , |x̄ j |), where |x̄ j | denotes the length of the se-

quence x̄ j . Moreover, the list x̄i of formal parameters in each branch

is assumed to have no repeats. We write fix(x .t) for the standard
fixed-point expression. We often write λx̄ .t for λx1. . . . λxn .t if x̄
is the sequence of variables x1 · . . . · xn and similarly ts̄ stands for
ts1 . . . sn if s̄ = s1 · . . . · sn . Free and bound variables are defined

as expected. In particular, x is bound by a fixed point operator

fix(x .t), and all the variables x1, . . . ,xn are bound in a branch

cx1 . . . xn ⇒ t . Terms are considered up to renaming of bound

variables. A context is a term C with a single free occurrence of a

hole □, and the variable-capturing substitution of the hole □ by a

term t is written C[t]; C[[t]] has the additional requirement that no

free variables in t are bound in C.

Remark 1. In [21] a family of fixed-point operators fixn , for n a
positive integer, is used. The index n indicates the expected number of

arguments and also the index of the argument that is used to guard
recursion to avoid infinite unfoldings. The type system of the Calculus
of Constructions guarantees that the recursive function is applied
to strict subterms of the n-th argument. Although we use the more
general fixed-point operator fix in our calculus similar ideas to “case”
can be applied to fixn which “blocks” if given less than n arguments.

Definition 2.2. The Extended Lambda Calculus λe is given by

the following reduction rules over Λe, closed by arbitrary contexts.

We write→e for the resulting reduction relation.

(λx .t)s 7→dB t{x := s} (β)
fix(x .t) 7→fix t{x := fix(x .t)} (fix)

case cj t̄ of (ci x̄i ⇒ si )i ∈I 7→case sj {x̄ j := t̄} (case)
if j ∈ I and |t̄ | = |x̄ j |

Capture-avoiding substitution of a variable x by a term s in a

term t is written t{x := s}. Similarly, the simultaneous capture-

avoiding substitution of a list of variables x̄ by a list of terms s̄ of
the same length in a term t is written t{x̄ := s̄}. A term t matches
with a branch cx̄ ⇒ s if t = cs̄ with |s̄ | = |x̄ |. A term t matches with

a list of branches if it matches with at least one branch. Given our

syntactic formation condition on case-expressions, in λe terms in

fact match with at most one branch. Note that term reduction may

become blocked if the condition of a case does not match any branch

(and never will). The normal forms of λe may be characterized as

follows:

Lemma 2.3 (Normal forms). The normal forms of λe are charac-
terized by the grammar:

N ::= λx̄ .xN̄ | λx̄ .cN̄ | λx̄ .(case N0 of (ci x̄i ⇒ Ni )i ∈I )N̄

where N0 does not match with (ci x̄i ⇒ Ni )i ∈I . Note that the lists x̄
and N̄ may be empty.

Remark 2. Since we work in an untyped setting blocked terms such
as case c of d ⇒ e must be admitted. In the Calculus of Inductive
Constructions, case analysis must be exhaustive.

We conclude this section with some standard terminology on

rewrite systems. Given a notion of reduction R over a set of terms,

we use the following rewriting concepts. A term t is in R-normal
form (R-nf) if there is no s such that t →R s . We write nR for

any term in R-normal form. We write ↠R for the reflexive and

transitive closure of any reduction relation→R . A term t isweakly
R-normalising, if there exists s in R-normal form s.t. t ↠R s .
NF(→R ) denotes the set of R-normal forms and WN(→R ) the set

of weakly R-normalising terms. We write ↔∗
R
for the reflexive,

symmetric, transitive closure of→R . We say that t is definable as
s in→R , if t ↔

∗
R
s for s ∈ NF(R). Also, t is definable in→R if it

is definable as s , for some s , in →R . We use “:=” for definitional

equality.

Remark 3. t is definable in λe iff t ∈ WN(→e). This follows from
confluence of→e.

2.1 A Theory of Sharing (Step 1)
Definition 2.4. The terms of the theory of sharing terms Λsh

are defined as follows:

t , s,u, . . . ::= x | λx .t | t s | fix(x .t) | c | case t of ¯b | t[x\s]



Strong Call-By-Need for Pattern Matching and Fixed Points PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

A term t[x\s] is called a closure, and [x\s] is called an explicit
substitution. Terms without explicit substitutions are called pure
terms. Closures are often written as let x be s in t in the literature
(e.g. [8]). The notions of free and bound variables of extended
terms are defined as usual, in particular, fv(t[x\s]) = (fv(t) \ {x}) ∪
fv(s) and bv(t[x\s]) = bv(t) ∪ {x} ∪ bv(s).

Definition 2.5. A pure term t⋄ is obtained from any t ∈ Λsh by

unsharing:

x⋄ := x
c⋄ := c

(λx .t)⋄ := λx .t⋄

(t s)⋄ := t⋄ s⋄

fix(x .t)⋄ := fix(x .t⋄)
(case t of ¯b)⋄ := case t⋄ of ¯b⋄

(t[x\s])⋄ := t⋄{x := s⋄}
(cx̄ ⇒ t)⋄ := cx̄ ⇒ t⋄

e.g. ((case z of c ⇒ z)[z\d d])⋄ = case d d of c ⇒ d d. Additional
syntactic categories will be required for describing reduction in

λsh. First of all, in call-by-need computation one cannot substitute

arbitrary terms for variables, rather one substitutes values for vari-

ables. In our theory of sharing apart from abstractions as values we

also have terms headed by constants as values. Also, values may

be embraced by pending explicit substitutions. This leads to the

definition of answers.
Answers a ::= L[v]
Values v ::= λx .t | A[c]
Constant Context A ::= □ | L[A] t
Substitution Context L ::= □ | L[x\t]

A term of the form L[v] is sometimes written vL and called an

answer. An answer of the form (λx .t)L is an abstraction answer
and one of the form A[c]L is a constant answer. An example of

the latter is ((cx)[x\y] d)[y\s].
Second, reduction in λsh will take place under arbitrary contexts.

We define such a set of full contexts next:

Full Context C ::= □ | λx .C | C t | t C | fix(x .C)
| case C of ¯b
| case t of (c1x̄1 ⇒ s1) . . .

. . . (ci x̄i ⇒ C) . . . (cnx̄n ⇒ sn )
| C[x\s] | t[x\C]

Definition 2.6. The theory of sharing λsh consists of the reduc-
tion rules over Λsh given below, closed by full contexts. We write

→sh for the reduction relation.

(λx .t)L s 7→dB t[x\s]L
C[[x]][x\vL] 7→lsv C[v][x\v]L

t[x\s] 7→gc t , if x < fv(t)
fix(x .t) 7→fix t[x\fix(x .t)]

case A[cj ]L of (ci x̄i ⇒ si )i ∈I 7→case sj [x̄ j\A]L
if |A[□]| = |x̄ j | and j ∈ I

The dB rule transforms an application of an abstraction (possibly

under multiple explicit substitutions) to an argument, into the body

of the abstraction t subject to a new explicit substitution [x\s]. The
lsv rule substitutes a free occurrence of x with the value v . Since
variables inv might be bound in L and we do not wish to duplicate L,
the scope of the substitution context is adjusted. This rule is said to

operate at a distance since the explicit substitution is not required to
propagate to variables before it is executed [6]. It is closely related

with the notion of linear head reduction [4]. Rule gc removes garbage

Figure 1 The set of→sh-normal forms (X ∈ {S,L, E,K})

cNfCons

c ∈ K

t ∈ K s ∈ N
cNfApp

t s ∈ K

sNfVar

x ∈ S

t ∈ S s ∈ N
sNfApp

t s ∈ S

t ∈ K ∪ L ∪ S t ⊁ (ci x̄i ⇒ si )i ∈I (si ∈ N)i ∈I
eNfStrt

case t of (ci x̄i ⇒ si )i ∈I ∈ E

t ∈ E s ∈ N
eNfApp

t s ∈ E

t ∈ E (si ∈ N)i ∈I
eNfCase

case t of (ci x̄i ⇒ si )i ∈I ∈ E

t ∈ N
lNfLam

λx .t ∈ L

t ∈ X s ∈ S ∪ E x ∈ fv(t)
nfSub

t[x\s] ∈ X

t ∈ K
nfCons

t ∈ N

t ∈ S
nfStruct

t ∈ N

t ∈ E
nfError

t ∈ N

t ∈ L
nfLam

t ∈ N

substitutions. Rule fix is standard. Rule case tests whether the

condition of the case “matches” one of its branches. Note that the

condition A[cj ]L may have explicit substitutions interspersed. The

length of a constant context is defined as follows: |□| := 0 and

|L[A] t | := 1+ |A|. Given a list of variables x̄ and a constant context A
s.t. their lengths coincide, we define the substitution context [x̄\A]
as follows: [ϵ\□] := □ and [x̄ ,y\L[A] t] := [x̄\A]L[y\t]. The reduct
of 7→case uses this notion to build an appropriate list of explicit

substitutions for each parameter of the branch.

Remark 4. t definable in λsh iff t ∈ WN(→sh). This follows from
confluence of→sh.

A characterization of the →sh-normal forms is given in Fig. 1.

The normal form judgement t ∈ N is defined simultaneously

with four other judgements, namely constant normal forms t ∈
K, structure normal forms t ∈ S, error normal forms t ∈ E ,

and abstraction normal forms t ∈ L . We comment on some

salient rules. First note that rule eNfStrt captures a blocked case

where its condition is not a blocked case itself. If the condition of

the case is t ∈ L ∪ S, then we know that it cannot possibly match

any branch. If t ∈ K, we must make sure of this, as explained next.

We say a term t enables a branch in a list of branches (ci x̄i ⇒

si )i ∈I , written t ≻ (ci x̄i ⇒ si )i ∈I , if t = A[cj ]L, for some A, L, and
j ∈ I and |A| = |x̄ j |. This is the natural extension of the notion

of t matching a branch in λe but where t may be “polluted” with

explicit substitutions. Note that if t ⊁ (ci x̄i ⇒ si )i ∈I , then either,

1) t , A[c]L for any A, c, L; or 2) t = A[c]L with c < {ci }i ∈I ; or 3)
t = A[c]L and c = cj for some j ∈ I but |A| , |x̄ j |. Rule nfSub is

actually a rule scheme in which X can be any of S, L , E , or K.

Condition x ∈ fv(t) is required since we would otherwise have

a gc-redex. Condition s ∈ S ∪ E is required too since we would

otherwise have a lsv redex.

Lemma 2.7. t ∈ N iff t ∈ NF(→sh).

We conclude with a simple result that relates reduction in →sh

with that in →e.
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Lemma 2.8. Let t , s ∈ Λsh.

(1) If t →sh s , then t⋄ ↠e s
⋄.

(2) t ∈ NF(→sh) implies t⋄ ∈ NF(→e).

3 INTERSECTION TYPES FOR THE THEORY
OF SHARING

This section introduces T , a non-idempotent intersection type

system for λsh. We assume α , β ,γ , . . . to range over a set of type
variables. The set of types is ranged over by τ ,σ , ρ, . . ., and finite
multisets of types are ranged over by M,N ,P, . . .. The empty

multiset is written [], and [τ1, . . . ,τn ] stands for the multiset con-

taining each of the types τi with their corresponding multiplicities.

Moreover, M +N stands for the (additive) union of multisets. For

instance [a, b] + [b, c] = [a, b, b, c].

Definition 3.1. The types of T are defined as follows:

Types τ ::= α | M → τ |D | E
Datatypes D ::= c |DM

PreError type G ::= eτ B̄ |G τ
Error types E ::= ⟨G⟩ | E τ
Branch type B ::= ¯M ⇒ τ

The type α is a type variable,M → τ is a function type, D is a

datatype and E is an error type. A datatype is either a constant type
c or an applied datatypeDM. Informally, cM1 . . .Mn is the type of

a constant applied to n arguments, each of which has been assigned

a multiset of types. PreError types are solely introduced for building

error types; error types are used for typing case expressions which

will eventually become stuck. A case is stuck if, intuitively, it can

be decided that the condition cannot match any branch. An error
type ⟨eτ ( ¯Mi ⇒ σi )i ∈I ρ1 . . . ρ j ⟩ ρ j+1 . . . ρk is the type of a case

expression:

(1) whose condition has type τ and branches type
¯Mi ⇒ σi ;

(2) which is stuck;

(3) which has been applied to arguments of type ρ1 . . . ρ j ; and
(4) which is expecting arguments of type ρ j+1 . . . ρk .

We call e an error type constructor.
Letters Γ,∆,Θ, . . . range over typing contexts, which are func-

tions mapping variables to multisets of types. Γ(x) is the multiset

associated to the variable x . dom Γ is the domain of Γ, namely the

set of x s.t. Γ(x) , [].

Letters Σ, ϒ, . . . range over error logs, sets of error types. The
sum of typing contexts Γ + ∆ is defined as follows: dom(Γ + ∆) :=

dom Γ∪dom∆ and (Γ+∆)(x) := Γ(x)+∆(x). The disjoint sum of

typing contexts Γ⊕∆ is defined as Γ+∆ provided dom Γ∩dom∆ = �.

We write Γ,x : M for Γ + {x : M} and Γ,x :: M for Γ ⊕ {x : M}.

Also, we write x̄ :
¯M for ((xi )i ∈I : (Mi )i ∈I ) :=

∑
i ∈I (xi : Mi ) and

similarly for x̄ ::
¯M.

Definition 3.2. The typing system T is defined by means of the

typing rules of Fig. 2. These rules introduce four, mutually recursive,

typing judgements:

(1) Typing (Γ; Σ ⊢ t : τ )
Term t has type τ under context Γ and error log Σ.

(2) Multi-typing (Γ; Σ ⊢ t : M)

Term t has the types inM under context Γ and error log Σ.

(3) Application (τ @ M ⇒ σ )
A term of type τ may be applied to an argument that has all

the types inM, resulting in a term of type σ .
(4) Matching (τ ⟨¯b⟩ Γ; Σ,σ )

Type τ might be the condition of a case with branches
¯b,

which will result in a term of type σ , provided certain hy-

potheses Γ and error logs Σ, or else fail.

We write π , ξ , . . . for typing derivations and π (Γ; Σ ⊢ t : τ ) if π
is a typing derivation of the judgement Γ; Σ ⊢ t : τ . We comment

on the salient typing rules. The axioms are linear w.r.t. the typing
context in that they require the typing context to be empty but for

the type assigned to x in tVar and the typing context to be empty

in tCons. The error context, however, is said to be intuitionistic in
that it may hold any number of error types. Rule tApp caters for

typing applications of terms of functional type, data structures and

error terms, to arguments by means of the application judgement
τ @ M ⇒ σ . Indeed, τ may be of the form M → σ (cf. tAppFun),
or a datatype D in which case σ is DM (cf. tAppData), or an error

type ⟨G⟩ τ1 . . . τn in which caseM must be a singleton [τ1] and σ
of the ⟨G τ1⟩ τ2 . . . τn (cf. tAppErr). The restriction to a singleton

type in the last case is due to the fact that all one wants to do is

enforce that the arguments of a stuck case be typable. Note also that

typing contexts are multiplicative whereas error logs are additive.
The tFix splits its resources so that they are dealt out to be used for

one unfolding (Γ) and the rest of the unfoldings (∆). The tCase rule
relies on the matching judgement τ ⟨¯b⟩ ∆; Σ,σ . The latter checks
whether the type of the condition τ matches the list of branches. A
type τ matches with a branch cx̄ ⇒ s if τ = c ¯M with | ¯M| = |x̄ |.
A type matches with a list of branches if it matches with at least one

branch. Returning to our description of tCase, if τ matches with a

branch, then that branch is typed (cf. tCMatch). However, if τ does

not match any branch (cf. tCMismatch), then all branches have to
be accounted for by the type system. Moreover, the type of the case

expression will be an error type of the form ⟨eτ ( ¯Mi ⇒ σi )i ∈I ⟩ ρ̄,
which is recorded in the error log. Note that ρ̄ = ρ1, . . . , ρk are the

types of the arguments to which the stuck case expression will be

allowed to be applied to. Finally, tMulti allows a term to be typed

with a multiset type. In this rule, if n = 0, then

∑n
i=1

[τi ] denotes
the empty multiset [].

Remark 5. T does not enjoy unique typing. For example, it is pos-
sible to assign many types the expression cons zero (cons zero nil),
namely cons [] [] or cons [zero] [], or cons [zero, zero] [].

3.1 An Example
Let t be the term fix(f .λn.case n of z ⇒ s z; sn ⇒ sn ∗ f n)
representing the factorial function. We exhibit type derivations for

the judgements:

(1) �;� ⊢ t : [z] → s [z]; and
(2) �;� ⊢ t : [s [z, z]] → s [z].

We use
¯b to denote the branches z ⇒ s z; sn ⇒ sn ∗ f n. The

derivation π for the first judgement is in Fig. 3(a). Note the absence

of f in the typing context of the judgement

�;� ⊢ λn.case n of z ⇒ s z; sn ⇒ sn ∗ f n : [z] → s [z]
Since the type of n is [z] the branch with the recursive call will not

be used and hence is not typed. The missing subderivation of π
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Figure 2 Typing rules for T

tVar

x : [τ ]; Σ ⊢ x : τ
tCons

�; Σ ⊢ c : c

Γ ⊕ x :: M; Σ ⊢ t : τ
tAbs

Γ; Σ ⊢ λx .t : M → τ

Γ; Σ ⊢ t : τ τ @ M ⇒ σ ∆; Σ ⊢ s : M
tApp

Γ + ∆; Σ ⊢ ts : σ

Γ ⊕ x :: M; Σ ⊢ t : τ ∆; Σ ⊢ fix(x .t) : M
tFix

Γ + ∆; Σ ⊢ fix(x .t) : τ

Γ; Σ ⊢ t : τ τ ⟨¯b⟩ ∆; Σ,σ
tCase

Γ + ∆; Σ ⊢ case t of ¯b : σ

Γ ⊕ x :: M; Σ ⊢ t : τ ∆; Σ ⊢ s : M
tES

Γ + ∆; Σ ⊢ t[x\s] : τ

(Γi ; Σ ⊢ t : τi )1≤i≤n (n ≥ 0)
tMulti

n∑
i=1

Γi ; Σ ⊢ t :

n∑
i=1

[τi ]

tAppFun

M → τ @ M ⇒ τ
tAppData

D @ M ⇒ DM

τ̄ = τ1 . . . τn
tAppErr

⟨G⟩ τ̄ @ [τ1] ⇒ ⟨G τ1⟩ τ2 . . . τn

cj ¯M matches (ci x̄i ⇒ si )i ∈I Γ ⊕ x̄ j ::
¯M; Σ ⊢ sj : σj

tCMatch

cj ¯M ⟨(ci x̄i ⇒ si )i ∈I ⟩ Γ; Σ,σj

τ does not match (ci x̄i ⇒ si )i ∈I
(
Γi ⊕ x̄i ::

¯Mi ; Σ ⊢ si : σi
)
i ∈I

tCMismatch

τ ⟨(ci x̄i ⇒ si )i ∈I ⟩ (
∑
i ∈I

Γi ); Σ ∪ {⟨eτ ( ¯Mi ⇒ σi )i ∈I ⟩ ρ̄}, ⟨eτ ( ¯Mi ⇒ σi )i ∈I ⟩ ρ̄

Figure 3 Example derivation

(a)

tVar

n : [z];� ⊢ n : z
π1

z ⟨¯b⟩ �;�, s [z]
tCase

n : [z];� ⊢ case n of ¯b : s [z]
tAbs

�;� ⊢ λn.case n of ¯b : [z] → s [z]
TMulti

�;� ⊢ t : []

tFix

�;� ⊢ t : [z] → s [z]

(b)

tCons

�;� ⊢ s : s
tAppData

s @ [z] ⇒ s [z]
tCons

�;� ⊢ z : z
tMulti

�;� ⊢ z : [z]
tApp

�;� ⊢ s z : s [z]
tCMatch

z ⟨(z ⇒ s z; sn ⇒ sn ∗ f n)⟩ �;�, s [z]

(c)

TVar

n : [s [z, z]];� ⊢ n : s [z, z]
ξ1

s [z, z] ⟨¯b⟩ { f : [[z] → s [z]]};�, s [z]
tCase

f : [[z] → s [z]],n : [s [z, z]];� ⊢ case n of ¯b : s [z]
tAbs

f : [[z] → s [z]];� ⊢ λn.case n of ¯b : [s [z, z]] → s [z]

π
tMulti

� ⊢ t : [[z] → s [z]]

tFix

� ⊢ t : [s [z, z]] → s [z]

(d)

ξ2

n : [z];� ⊢ sn : s [z]

f : [[z] → s [z]];� ⊢ f : [z] → s [z] [z] → s [z] @ [z] ⇒ s [z] n : [z];� ⊢ n : [z]
tApp

n : [z], f : [[z] → s [z]];� ⊢ f n : s [z]
tProd

f : [[z] → s [z]],n : [z, z];� ⊢ sn ∗ f n : s [z]
tCMatch

s [z, z] ⟨¯b⟩ { f : [[z] → s [z]]};�, s [z]

called π1, of the judgement z ⟨¯b⟩ �, s [z], is given in Fig 3(b). Since

z matches with (z ⇒ s z), we only type this branch.

A derivation ξ of � ⊢ t : [s [z, z]] → s [z] is in Fig. 3(c). We use

the following typing rule for the product:
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Γ; Σ ⊢ t : sn z ∆; Σ ⊢ s : sm z
tProd

Γ + ∆; Σ ⊢ t ∗ s : sn∗m z
The derivation ξ1 of s [z, z] ⟨¯b⟩ { f : [[z] → s [z]]};�, s [z] is given
in Fig. 3(d). The missing subderivation ξ2 may be completed without

trouble.

4 TOWARDS COMPLETENESS OF THE
STRATEGY

We next outline the proof method [9] that we use to prove that the

strong call-by-need strategy (to be introduced in Sec. 5) is correctly

behaved w.r.t. reduction in λe.

• Step 1 (Sec. 4.1). Weakly normalising terms of λe are typable
in the non-idempotent intersection type system T .

• Step 2 (Sec. 4.2). Typable terms inT are weakly normalising

in the theory of sharing λsh.
• Step 3 (Sec. 6). Factorization of the reduction sequence in

λsh obtained in Step 2 into an external part followed by an

internal part, by means of a standardisation theorem. The

former part corresponds to the strong call-by-need strategy

and the latter shown to be superfluous. The end term of the

external part is shown to be identical modulo unsharing (or

unfolding of explicit substitutions) to the original normal

form from Step 1.

A corollary is that the strong call-by-need strategy is complete

w.r.t reduction in the Extended Lambda Calculus: if t reduces to a

normal form s in λe, then the strategy computes a normal form u
such that s is the unsharing of u.

4.1 Definable Terms in λe are Typable (Step 1)
This section addresses Step 1 of the diagram below, where t ∈ λe:

t ∈ WN(λe)

Step 1︷︸︸︷
⇒ t ∈ Typable(T )

Step 2︷︸︸︷
⇒ t ∈ WN(λsh)

As discussed in the Introduction, we don’t want t to just be typable
in T but to be typable with some additional constraints so that

Step 2 holds too. For example, we mentioned that x Ω is typable

by setting x to have type [] → α , for α a type variable; however,

the term is not normalising in λsh. We must require that the typing

judgement Γ; Σ ⊢ t : τ be such that [] < N(Γ) and [] < P(τ ) [12].
Here N(Γ) and P(τ ) refer to the usual notions of negative and

positive occurrences of types in τ (cf. Fig. 4). In the presence of

constants and case expressions, this constraint does not suffice.

We introduce an extended set of constraints below that determines

what we call good judgements (cf.Def. 4.1). We revisit below some

examples from the introduction to motivate them.

Consider the term case c of (d ⇒ d)Ω. It is typable with, for ex-
ample, type ⟨e c ( ¯[d] ⇒ d)i ∈I []⟩. Notice how the type of the blocked

case includes occurrences of the types of arguments to which it

applies (in this case the empty multiset type). This will allow us to

extend the above mentioned constraint to blocked case expressions.

Consider now the term case x of (c ⇒ d) · (e ⇒ Ω). This
term is typable with type d, if x : [c], however, it is not weakly
normalizing in λsh. This motivates the new constraints c < P(Γ),
c < N(Σ), and c < N(τ ) in Def. 4.1. In particular, in a term such as

case x of (c ⇒ d) · (e ⇒ d) which is in normal form, we will type

it by assigning x an appropriate error type.

Finally, note that in pure lambda terms all terms in weak head

normal form have a variable at the head. Since the types of all

variables are in the typing context Γ, we can place restrictions on

their type through Γ. For example, in the above mentioned term x Ω
one may require that [] < Γ(x) to force the type system to account

for Ω. However, now we may have term in weak head normal form

headed by blocked case expressions. In order to have access to their

types so that we may place restrictions on them, we have to record

them. This is the role played by the error logs and motivates the

third, and final, item of our notion of good judgements, namely that

all occurrences of error types be accounted for in the error log.

Definition 4.1 (Good types and typing judgements). The set of

positive (resp. negative) types occurring in τ , denoted P(τ ) (resp.
N(τ )), is defined in Fig 4. A typeτ is good if c < P(τ ) and [] < N(τ ).
We say M is good if each τ ∈ M is good. A typing context Γ is
good if Γ = ΓдΓe and ∀x ∈ dom Γд , Γд(x) is good and ∀x ∈ dom Γe ,
Γe (x) is an error type. A typing judgement Γ; Σ ⊢ t : τ is good if

• Γ is good;

• [] < P(Σ) and [] < P(τ );
• c < N(Σ) and c < N(τ ); and
• coveredΣ(Γ) and coveredΣ(τ ).

The proof of Step 1, namely that terms definable in λe terms

are typable (Thm. 4.4), consists of two steps. First we show that

→e-normal forms are typable with good typing judgements. These

typing judgements Γ; Σ ⊢ t : τ , for t ∈ NF(→e), are such that

constants do not occur negatively in τ nor in Σ nor positively in Γ.
However, constants may occur positively in τ such as when typing

the normal form c and also negatively in Γ such as when typing

the normal form x c where x : [[c] → α].

Lemma 4.2 (Normal forms are typable). Let t ∈ NF(→e). Then
there exists a context Γ, an error context Σ and a type τ such that
π (Γ; Σ ⊢ t : τ ), and Γ; Σ ⊢ t : τ is good. Moreover, if t is of the form:

• x N̄ , then τ is a type variable; and
• (case N0 of (ci x̄i ⇒ Ni )i ∈I )N̄ , where N0 does not match
with (ci x̄i ⇒ Ni )i ∈I , then τ = ⟨eτ ( ¯Mi ⇒ σi )i ∈I ρ1 . . . ρk ⟩
with k = |N̄ |.

The second step consists of showing subject expansion for →e

(i.e. t →e s and Γ; Σ ⊢ s : τ imply Γ; Σ ⊢ t : τ ).

Lemma 4.3 (→e-expansion). Let t →e s . If Γ; Σ ⊢ s : τ then
Γ; Σ ⊢ t : τ .

Theorem 4.4 (Step 1). Suppose t is definable in λe. Then there
exists a context Γ, an error context Σ, a type τ and a derivation π s.t.
π (Γ; Σ ⊢ t : τ ) with Γ; Σ ⊢ t : τ good.

4.2 Typable Terms are Definable in λsh (Step 2)
The idea behind Step 2 is to show that: 1) redexes in a term t that
are accounted for by a typing derivation for t , lets call them typed-
redexes, are finite in number and that that number can only decrease

by reducing them; and 2) terms that are in such typed redex-normal

form and that are typed with good typing judgements are also in

normal form with respect to λsh (i.e. are in NF(→sh)). That a redex

is accounted for in a typing derivation π is expressed as the redex

occurring at a typed occurrence in π . For example, in a term such as
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Figure 4 Positive and negative types

P(α) := {α }
P(M → τ ) := N(M) ∪ P(τ ) ∪ {M → τ }

P(c) := {c}
P(DM) := P(D) ∪ P(M) ∪ {DM}

P(E τ ) := P(E) ∪ P(τ ) ∪ {E τ }
P(⟨G⟩) := P(G) ∪ {G}

P(G τ ) := P(G) ∪ P(τ ) ∪ {G τ }
P(eτ B̄) := P(τ ) ∪ P(B̄) ∪ {eτ B̄}

P(M1, . . . ,Mn ⇒ τ ) :=
⋃
i ∈1..n N(Mi ) ∪ P(τ ) ∪ { ¯M ⇒ τ }

P(M) :=
⋃
τ ∈M P(τ ) ∪ {M}

P(Γ; Σ ⊢ τ ) := N(Γ) ∪ P(Σ) ∪ P(τ )
P(Γ) :=

⋃
P(Γ(x)), for all x ∈ dom Γ

N(α) := �

N(M → τ ) := P(M) ∪ N(τ )
N(c) := �

N(DM) := N(D) ∪ N(M)

N(E τ ) := N(E) ∪ N(τ )
N(⟨G⟩) := N(G)
N(G τ ) := N(G) ∪ N(τ )

N(eτ B̄) := N(τ ) ∪ N(B̄)
N(M1, . . . ,Mn ⇒ τ ) :=

⋃
i ∈1..n P(Mi ) ∪ N(τ )

N(M) :=
⋃
τ ∈M N(τ )

N(Γ; Σ ⊢ τ ) := P(Γ) ∪ N(Σ) ∪ N(τ )
N(Γ) :=

⋃
N(Γ(x)), for all x ∈ dom Γ

coveredΣ(α)T := true
coveredΣ(M → τ )T := coveredΣ(M)T ∧ coveredΣ(τ )T

coveredΣ(D)T := coveredΣ(D)D
coveredΣ(E)T := coveredΣ(E)E ∧ E ∈ Σ

coveredΣ(c)D := true
coveredΣ(DM)D := coveredΣ(D)D ∧ coveredΣ(M)T

coveredΣ(eτ B̄)G := coveredΣ(τ )T ∧ coveredΣ(B̄)B
coveredΣ(G τ )G := coveredΣ(G)G ∧ coveredΣ(τ )T

coveredΣ(⟨G⟩)E := coveredΣ(G)G
coveredΣ(E τ )E := coveredΣ(E)E ∧ coveredΣ(τ )T

coveredΣ( ¯M ⇒ τ )B := coveredΣ( ¯M)T ∧ coveredΣ(τ )T

coveredΣ(Γ) :=
∧
x ∈dom Γ coveredΣ(Γ(x))

x (id id) with x : [[] → α], the redex id id is not typed-redex since
there is no subderivation of π that types/accounts for it.

Theorem 4.5 (Step 2). If π (Γ; Σ ⊢ t : τ ) and Γ; Σ ⊢ t : τ is good,
then t is definable in λsh.

Assembling Step 1 and Step 2 we obtain:

Theorem 4.6 (Soundness of λsh w.r.t. λe). Let t be a term in
Λe. If t ∈ WN(→e), then t ∈ WN(→sh). More precisely, if t ↠e ne,
where ne ∈ Λsh is a →e-normal form, then t ↠sh nsh, where nsh is
a→sh-normal form. Moreover, n⋄sh = ne.

Proof. Let t ↠e ne, where ne is in →e-nf. Then π (Γ; Σ ⊢ t :

τ ) and Γ; Σ ⊢ τ is good by Thm. 4.4. But then t is weakly →sh-

normalising by Thm. 4.5, so that t ↠sh nsh, where nsh is in→sh-nf.

By Lem. 2.8(1) t⋄ ↠β n⋄sh and by Lem. 2.8(2) n⋄sh ∈ NF(→e). Since

t⋄ = t ↠β ne and t
⋄ ↠e n⋄sh, then we conclude n⋄sh = ne because

→e is Church-Rosser. □

5 THE STRONG CALL-BY-NEED STRATEGY
The strong call-by-need strategy ↣ϑ

sh is a binary relation over

terms in Λsh and is parameterized over a set ϑ of variables called

frozen variables. It is defined by means of reduction rules similar to

those given for the theory of sharing (Def. 2.6) only that the garbage

collection rule is absent and reduction is restricted to a subset of

the set of full contexts called evaluation contexts. We next describe

evaluation contexts. Note that although they rely on a given set

of normal forms, for expository purposes, we first describe the

evaluation contexts and then characterize its normal forms.

Definition 5.1. Evaluation context judgments are expressions
of the form C ∈ Ch

ϑ where C is a full context, ϑ is a set of variables

and h is a symbol called discriminator of the context. This sym-

bol may be one of ‘·’, ‘λ’ or any constant c, d, . . . and will prove

convenient to discriminate the head symbol in the context; evalua-

tion context formation rules will place requirements on them. An

evaluation context is a context C such that the evaluation context

judgement C ∈ Ch
ϑ is derivable using the rules in Fig. 5.

eBox states that any redex at the root is needed (we may dis-

regard ϑ and ‘·’ for now). Rule eApp-L allows reduction to take

place to the left of an application. We must make sure that C is not

an abstraction. This is achieved by requiring that h , λ (cf. eLam
and how all rules persist h). Rule eAppRStruct allows reduction

to take place to the right of an application when it is an argument

of a term t that is a structure normal form or an error normal form.

The ‘·’ in t C ∈ C ·
ϑ reflects that t is not headed by a constant and

that t C is not an abstraction. Rule eAppRCons is similar only that

the discriminator is set to the head variable of t via hc(t) and will

be consulted when deciding if reduction can take place in the con-

dition of a case (cf. eCase1). This function is defined as: hc(c) := c,
hc(t s) := hc(t) and hc(t[x\s]) := hc(t). Note that hc(A[c]L) = c.

The role of frozen variables is best explained in the setting of

eSubsLNonStruct and eSubsLStruct. In a term t such asx[x\y s],
clearly y s is not to be substituted for x since it is not an answer.

Thus, computation has to proceed in s . However, if t is placed under
an explicit substitution, then whether we should reduce s depends
on its context. For example, we do want to reduce it in x[x\y s][y\z]
but not in x[x\y s][y\λz.c] since λz.c does not use s . These two ex-

amples motivate eSubsLStruct (z is a structure normal form) and

eSubsLNonStruct (λz.c is not a structure normal form nor an

error term). Also note that in order for the focus of computation to

be placed to the right of y in y s , we must know that y will never

be substituted for, or else, that it is frozen. Rule eSubs-R allows

computation to take place in the body of an explicit substitution.

There is no rule for fix(x .t) since reduction must take place at

the root in a term such as that. Regarding case expressions, in order

for reduction to take place in the condition we must ensure that

reduction at the root is not possible (cf. eCase1). This is achieved
by requiring that the discriminator either is not a constant listed

in the branches (h < {ci }i ∈I ) or that, if it is, then the number of

expected arguments by the branch are not met (|C[y]| , |x̄ j |). The
notation |C[y]| counts the number of arguments in the spine of the

term C[y]. It is defined as follows:



PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany P. Barenbaum et al.

Figure 5 Evaluation Contexts

eBox

□ ∈ C ·
ϑ

C ∈ Ch
ϑ h , λ

eAppL

C t ∈ Ch
ϑ

t ∈ Sϑ ∪ Eϑ C ∈ Ch
ϑ
eAppRStruct

t C ∈ C ·
ϑ

t ∈ Kϑ C ∈ Ch
ϑ
eAppRCons

t C ∈ C
hc(t )
ϑ

C ∈ Ch
ϑ t < Sϑ ∪ Eϑ x < ϑ

eSubsLNonStruct

C[x\t] ∈ Ch
ϑ

C ∈ Ch
ϑ∪{x } t ∈ Sϑ ∪ Eϑ

eSubsLStruct

C[x\t] ∈ Ch
ϑ

C1 ∈ Ch
ϑ C2 ∈ C ·

ϑ
eSubsR

C1[[x]][x\C2] ∈ Ch
ϑ

C ∈ Ch
ϑ∪{x }

eLam

λx .C ∈ Cλ
ϑ

C ∈ Ch
ϑ h < {ci }i ∈I or h = cj ∈ {ci }i ∈I and |C[y]| , |x̄ j |

eCase1

case C of (ci x̄i ⇒ si )i ∈I ∈ C ·
ϑ

t ∈ Nϑ t ⊁ (ci x̄i ⇒ si )i ∈I tk ∈ Nϑ∪x̄k for all k < j C ∈ Ch
ϑ∪x̄i

eCase2

case t of c1x̄1 ⇒ t1, . . . , cj x̄ j ⇒ C, . . . , cnx̄n ⇒ tn ∈ C ·
ϑ

|x | := 0

|c| := 0

|λx .t | := 0

|t s | := 1 + |t |

|fix(x .t)| := 0

|t[x\s]| := |t |
|case t of ¯b | := 0

We know that in fact C[y] is a constant answer:

Lemma 5.2 (Answer contexts are answers). Suppose C ∈ Ch
ϑ .

• If h = c, then, for any term t , there exist A and L s.t. C[t] =
A[c]L.

• If h = λ, then, for any term t , there exists a variable x , term
s and substitution context L s.t. C[t] = (λx .s)L. Moreover, C is
either of the form (λx .C′)L or (λx .t)L1[y\C

′]L2.

For reduction to proceed in a branch j (cf. eCase2), the condition
must be in normal form, each branch i with i ∈ 1..j must be in

normal form and the condition must not enable any branch (t ⊁
(ci x̄i ⇒ si )i ∈I ). Note that the bound variables in branch j , are added
to the set of frozen variables. We now define the strategy itself.

Definition 5.3. The ↣ϑ
sh strategy is defined by the following

rules.

C[(λx .t)L s] ↣ϑ
sh C[t[x\s]L] (dB)

if C ∈ Ch
ϑ

C1[C2[[x]][x\vL]] ↣
ϑ
sh C1[C2[v][x\v]L] (lsv)

if C1[C2[□][x\vL]] ∈ Ch
ϑ

C[fix(x .t)] ↣ϑ
sh C[t[x\fix(x .t)]] (fix)

C[case A[cj ]L of (ci x̄i ⇒ si )i ∈I ] ↣
ϑ
sh C[sj [x̄ j\A]L] (case)

if C ∈ Ch
ϑ and j ∈ I and |A[□]| = |x̄ j |

The discriminator h in the conditions of all rules is existen-

tially quantified. The condition C1[C2[□][x\vL]] ∈ Ch
ϑ in the defini-

tion of the lsv-redex carries over from [9]. It avoids lsv-reducing
(λx .y)[y\id] in (λx .y)[y\id]t so that the outermost dB-reduction
step takes precedence instead. The condition also avoids to lsv-
reducex[x\(λy.yz)[z\id]] on the variable z, so that the lsv-reduction
step on the variable x takes precedence over it. The following result

states that the strategy is deterministic:

Lemma 5.4 (Determinism). We say r is an anchor in C[r ], if it
is a dB-redex, a fix-redex, a case-redex or a variable bound to an
answer. If C1[r1] = C2[r2], where C1, C2 ∈ Ch

ϑ and r1, r2 are anchors,
then C1 = C2 and r1 = r2.

5.1 Normal Forms of the Strategy
We present an inductive characterization of the normal forms of

↣ϑ
sh. Since reduction in↣ϑ

sh is parameterized over a set of frozen

variables ϑ , the normal forms too will be parameterized by this set.

The set ofnormal forms over ϑ (Nϑ ) is comprised of the constant
normal forms over ϑ (Kϑ ), the structure normal forms over
ϑ (Sϑ ), the error normal forms over ϑ (Eϑ ) and the lambda
normal forms over ϑ (Lϑ ). They are defined in Fig. 6 and are

similar to the characterization of the →sh-normal forms (Fig. 1)

except that: 1) the set of frozen variables is tracked, 2) rule nfSub

is refined into rules nfSubNG, and 3) a new rule nfSubG is added

due to the absence of gc in↣ϑ
sh. In rules nfSubNG and nfSubG,

the symbol X represents either Sϑ , Eϑ , Lϑ or Kϑ . Rule nfSubG

helps capture terms such as z[y\x][x\s]. Note that x ∈ fv(z[y\x])
but this term is in normal form for any s . However, x is not really

“reachable” from z, it is would in fact be erased if we had gc. The
notion of a variable being “reachable” in this sense is defined as

follows:

Definition 5.5. The set of reachable or, better still, non-garbage
variables of a term t , denoted ngv(t), are defined below

1
, where

¯b
stands for (ci x̄i ⇒ si )i ∈I .

ngv(x) := {x}
ngv(λx .t) := ngv(t) \ {x}
ngv(ts) := ngv(t) ∪ ngv(s)

ngv(fix(x .t)) := ngv(t) \ {x}
ngv(c) := �

ngv(case t of ¯b) := ngv(t) ∪
⋃
i ∈1..n ngv(si ) \ x̄i

ngv(t[x\s]) := (ngv(t) \ {x}) ∪

{
ngv(s) if x ∈ ngv(t)

� otherwise

The next result below states that Fig. 6 indeed characterizes the

normal forms of the strategy.

Lemma 5.6. NF(↣ϑ
sh) = Nϑ .
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Figure 6 ϑ -normal forms of the strategy (X ∈ {Sϑ ,Lϑ , Eϑ ,Kϑ })

cNfCons

c ∈ Kϑ

t ∈ Kϑ s ∈ Nϑ
cNfApp

t s ∈ Kϑ

x ∈ ϑ
sNfVar

x ∈ Sϑ

t ∈ Sϑ s ∈ Nϑ
sNfApp

t s ∈ Sϑ

t ∈ Kϑ ∪ Lϑ ∪ Sϑ t ⊁ (ci x̄i ⇒ si )i ∈I (si ∈ Nϑ∪x̄i )i ∈I
eNfStrt

case t of (ci x̄i ⇒ si )i ∈I ∈ Eϑ

t ∈ Eϑ s ∈ Nϑ
eNfApp

t s ∈ Eϑ

t ∈ Eϑ (si ∈ Nϑ∪x̄i )i ∈I
eNfCase

case t of (ci x̄i ⇒ si )i ∈I ∈ Eϑ

t ∈ Nϑ∪{x }
lNfLam

λx .t ∈ Lϑ

t ∈ Xϑ∪{x } s ∈ Sϑ ∪ Eϑ x ∈ ngv(t)
nfSubNG

t[x\s] ∈ Xϑ

t ∈ Xϑ x < ngv(t)
nfSubG

t[x\s] ∈ Xϑ

t ∈ Kϑ
nfCons

t ∈ Nϑ

t ∈ Sϑ
nfStruct

t ∈ Nϑ

t ∈ Lϑ
nfLam

t ∈ Nϑ

t ∈ Eϑ
nfError

t ∈ Nϑ

6 A STANDARDIZATION THEOREM FOR THE
THEORY OF SHARING

This section addresses a standardization theorem for λsh. Suppose
t is definable in λsh as nsh ∈ N. Then there is a reduction sequence

t ↠sh nsh (cf. figure below). Notice that reduction steps in this

sequence can take place under any context and substitution can

take place even though the target is not needed for computing the

strong normal-form. The standardization theorem reorganizes the

computation steps in the reduction sequence t ↠sh nsh so that it

can be factored into two parts t ↣↣ϑ
shu ↠

¬ϑ
sh nsh. The prefix t ↣↣

ϑ
shu

is reduction via the strong-call-by-need strategy; the double headed

arrow indicates multiple steps of the strategy. The suffixu ↠¬ϑ
sh nsh

consists of reduction steps in the theory that are internal, hence
not required for obtaining the strong-normal form. In fact, nsh and
u are shown to be identical via unsharing. Moreover, u is actually

a normal form of the strategy. In summary, and following [9], the

standardization theorem is split into three parts depicted below:

t

nϑ

r nsh

Lem. 6.1

Lem. 6.2

Lem. 6.3

ϑ

sh

¬ϑ

sh \ gc

gc

gc

• Part I (Postponing gc): All gc steps are postponed (Lem. 6.1).

• Part II (Factorization): The resulting prefix is factorized into

an external part that contributes to the strong normal form

and an internal part that does not (Lem. 6.2).

1
They may alternatively be characterized as ngv(t ) = fv(↓gc (t )), where ↓gc (t ) simply

removes all garbage substitutions [9].

• Part III (Internal steps are negligible). Internal steps all take

place inside garbage explicit substitutions (Lem. 6.3).

Part I. Part I is just Lem. 6.1 below. A strict →sh-reduction
step, denoted→sh\gc, is a→sh-reduction step without using the

7→gc-rule.

Lemma 6.1 (Postponement of gc). If t ↠sh s , then there is a
term u s.t. t ↠sh\gc u ↠gc s .

Part II. Part II requires that we first define what an internal step

is. A ϑ -internal→sh step (→¬ϑ
sh ) is a→sh-step that is not a↣ϑ

sh,

i.e. not a ϑ -step in the strategy). External steps are steps in the

strategy, that is,↣ϑ
sh-steps.

Lemma 6.2 (Factorization of Strict Steps). Let fv(t) ⊆ ϑ . If
t ↠sh\gc u, then there is a term s such that t ↣↣ϑ

shu ↠
¬ϑ
sh s .

Part III. As mentioned, if the→sh reduction sequence reaches

a →sh-normal form, then all the internal steps factored out by

Lem. 6.2 can be erased by gc steps.

Lemma 6.3 (Normal Forms Modulo Internal and gc steps).
Let ϑ , t be such that fv(t) ⊆ ϑ .

(1) If t →gc nϑ with nϑ ∈ NF(↣ϑ
sh) then t ∈ NF(↣ϑ

sh).
(2) If t →¬ϑ

sh nϑ with nϑ ∈ NF(↣ϑ
sh) then t ∈ NF(↣ϑ

sh) and there
is u such that t ↠gc u and nϑ ↠gc u.

All three parts can now be assembled to complete the argument

outlined in the Introduction.

Theorem 6.4 (Standardization for→sh). Let ϑ , t be such that
fv(t) ⊆ ϑ . If t ↠sh nsh, where nsh ∈ NF(→sh), then there exists a
term nϑ ∈ NF(↣ϑ

sh) such that t ↣↣ϑ
sh nϑ and nϑ ↠gc nsh.

Corollary 6.5 (Completeness of↣ϑ
sh). Let ϑ , t be such that

fv(t) ⊆ ϑ . If t ↠e ne, where ne ∈ NF(→e), then there exists a term
nϑ ∈ NF(↣ϑ

sh) such that t ↣↣ϑ
sh nϑ and n⋄ϑ = ne.

7 RELATEDWORK AND CONCLUSIONS
Related Work. Call-by-need for weak reduction was introduced

in the 70s [22, 27]. Relating call-by-need strategies with call-by-

need theories has been pioneered in [7, 13, 25]. Big-step semantics
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for call-by-need was studied in [24]. Completeness of call-by-need

through intersection types was first studied in [23], although the

result itself was proved by other means before that [7]. A recent

survey on non-idempotent intersection types and its applications

in the study of the lambda calculus may be found here [12]. The

calculi with explicit substitutions at a distance used here is called the

Linear Substitution Calculus and was inspired from [26] and further

developed in [6]. The use of this tool to study abstract machines

for weak call-by-need reduction appears here [1]. It is also used

in [3], to provide a detailed analysis of the cost of adding pattern

matching to β-reduction, although open terms are not considered.

Regarding strong reduction, as already mentioned in the intro-

duction, [21] proposed an implementation of strong call-by-value,

by iterating the standard call-by-value strategy on open terms

(terms with variables). In [11], it is noted that the implementation

of [21] requires modifying the OCaml abstract machine so they

propose a native OCaml implementation where the tags that dis-

tinguish functions from accumulators are coded directly in OCaml

itself. [15, 16] defined abstract machines for reduction to strong

normal form. Other abstract machines for strong reduction have

been studied too: [17–19]. [5] explore open call-by-value and [2]

study a (call-by-name) machine based on the linear substitution cal-

culus for reduction to strong normal form. None of these mentioned

works address however strong call-by-need except for [9]. The latter

proves similar results to this work but for β-reduction only. While

developing this work we learned of [10]. In his PhD thesis, Bernadet

proposes a non-idempotent intersection type system for a similar

calculus that includes fixed-points and case expressions. The aim

however is to characterize a subset of strongly normalising terms.

Thus, for example, the standard fixed-point combinator used here

cannot be typed; a modified combinator is adopted. Since there is

no notion of call-by-need reduction strategy, ideas related to good

or covered types, as presented here, are not developed either.

Conclusions. The recent formulation of a strong call-by-need

strategy [9] was argued to provide a foundation for checking con-

version in proof assistants. This work emerged out of the realization

that the restriction to β-reduction of [9], and hence lack of treat-

ment of inductive types and fixed point operators, left a gap to be

filled. We have introduced a strong call-by-need strategy that is

proved to be complete with respect to the Extended Lambda Cal-

culus of Grégoire and Leroy [21] that includes the aforementioned

constructs. A key obstacle has been devising a non-idempotent in-

tersection type system that could connect reduction in the Extended

Lambda Calculus with reduction in the theory of sharing, the latter

is also introduced in this paper. This system is able to deal with

case expressions that can block on open terms or non-exhaustive

branches and also that can collect arguments. The presence of the

fixed-point combinator has not provided any substantial obstacles.

In order to base an implementation of conversion in a proof

assistant on our strategy, one should be able to iterate a restriction

of it, to weak head normal form, as described in [14]. This has the

benefit of failing early when types are not equivalent. Another

line of work is to implement a compiled version of the strategy, as

developed in [21]. Finally, big-step semantics and abstract machines

that implement our strategy are yet to be developed.
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