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Abstract

Standardization is a fundamental notion for connecting program-
ming languages and rewriting calculi. Since both programming lan-
guages and calculi rely on substitution for defining their dynamics,
explicit substitutions (ES) help further close the gap between theory
and practice.

This paper focuses on standardization for the linear substitution
calculus, a calculus with ES capable of mimicking reduction in A-
calculus and linear logic proof-nets. For the latter, proof-nets can be
formalized by means of a simple equational theory over the linear
substitution calculus.

Contrary to other extant calculi with ES, our system can be
equipped with a residual theory in the sense of Lévy, which is
used to prove a left-to-right standardization theorem for the cal-
culus with ES but without the equational theory. Such a theorem,
however, does not lift from the calculus with ES to proof-nets, be-
cause the notion of left-to-right derivation is not preserved by the
equational theory. We then relax the notion of left-to-right standard
derivation, based on a fotal order on redexes, to a more liberal no-
tion of standard derivation based on partial orders.

Our proofs rely on Gonthier, Lévy, and Mellies’ axiomatic the-
ory for standardization. However, we go beyond merely applying
their framework, revisiting some of its key concepts: we obtain
uniqueness (modulo) of standard derivations in an abstract way and
we provide a coinductive characterization of their key abstract no-
tion of external redex. This last point is then used to give a simple
proof that linear head reduction—a nondeterministic strategy hav-
ing a central role in the theory of linear logic—is standard.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages - Operational
semantics; F.4.1 [Mathematical Logic and Formal Languages):
Mathematical Logic - Lambda calculus and related systems; 1.1.3
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1.

In his seminal paper [35] Plotkin introduced the idea of relating
a calculus (given by means of an equational theory induced by a
rewriting relation) and a programming language (specified as an
abstract machine) via a standardization theorem: the programming
language implements the standard strategy associated to the calcu-
lus. Let us recall what standardization is about. The idea is to iden-
tify a class of derivations, called standard, that is complete: when-
ever t — u then there is a standard derivation from ¢ to u. Often, it
is possible to describe a reduction strategy that produces standard
derivations only (the leftmost-outermost strategy in the A-calculus),
and for which the normalization property holds as a corollary of the
standardization theorem: if ¢ has a normal form then the standard
strategy will reach this normal form. Completeness and normaliza-
tion are the justifications for Plotkin’s approach.

Another approach to close the gap between calculi and program-
ming languages is to resort to explicit substitutions (ES), that are re-
finements of \-calculus where evaluation is decomposed into small
steps, and that can be thought as a framework in which to specify
abstract machines as strategies.

It would be natural to expect calculi with ES to enjoy standard-
ization theorems whose induced standard strategies justify abstract
machines. Surprisingly, the literature does not present any such re-
lationship. This is due to some inherent difficulties. Calculi with ES
are complex and fragile rewriting systems for which already study-
ing normalization is technically demanding. Standardization—that
mixes confluence and termination arguments—generally is simply
out of scope. In particular, ES calculi present critical pairs and thus
lack orthogonality, a basic syntactic property enjoyed by the \-
calculus and on which most standardization techniques rely on.

This paper makes significant progress on standardization for ES.
The starting point is a recent advance in the field of ES. A new
generation of calculi with ES at a distance, having very simple
meta-theories and conceived as behaviorally equivalent copies of
graphical languages such as linear logic proof-nets, have recently
been introduced by Accattoli and Kesner in [6] (see also [2, 3, 5]).
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Traditional calculi with ES implement the ordinary substitution by
percolating ES through the term structure until they reach variable
occurrences, on which they finally substitute or get garbage col-
lected. The key feature of distance calculi is that the percolating
process is factored out from the computational process. Indeed, ES
at a distance do not move: their dynamics is defined using contexts
(i.e. terms with holes) that allows them to act directly on single
variable occurrences (via a context isolating the occurrence), with-
out any need to commute with the other constructors in between.

The Framework. In this paper we focus on a specific calculus
at a distance, the linear substitution calculus Misup, that is both a
slight generalization of a calculus by Robin Milner [33] (related to
bigraphs), from which it inherits the substitution rules at a distance,
and a slight modification of the structural A-calculus by Accattoli
and Kesner [6] (related to proof nets). Such a calculus has some
relevant features:

1. Linear logic and concurrency: it is tightly connected with
the translations of A-calculus into linear logic [4] and the 7-
calculus [3]. In particular, reduction rules for ES act as expo-
nential cut-elimination rules in linear logic (resp. replication in
the m-calculus).

2. Linear head reduction (LHR): given the deep connection be-
tween A1syp and proof-nets [4], our calculus naturally expresses
linear head reduction, a notion of evaluation for proof nets that
is connected with other fundamental models [3, 5, 14, 15, 17,
29]. Notably, LHR is a strategy for Aiswp, While it cannot be
expressed as a strategy in A-calculus.

3. Simplicity and expressiveness: the calculus is simple (only 3
rewriting rules) and it enjoys numerous desirable properties
including: a tight correspondence with the lambda calculus
(simulating (-reduction), confluence on terms and metaterms,
preservation of strong 3-normalisation and—as we will show—
a theory of residuals.

The linear substitution calculus—as do all other extant calculi
with ES—presents critical pairs, and so standardization is non-
trivial. However, Aisup €njoys a unique property, that we call se-
mantical orthogonality.

Orthogonality. Orthogonal (first and higher-order) term rewrit-
ing systems are defined as left-linear systems without critical pairs.
They are the most studied class of rewriting systems, including in
particular the A-calculus. This notion of syntactic orthogonality is
handy and simple, but it has the drawback of being too restrictive.
Fortunately, orthogonality can be defined in a more abstract way,
as the fact that residuals—a standard concept in rewriting theory
(see Section 3)—are sufficient to close local confluence diagrams.
This form of semantical orthogonality is a particular property of
syntactic orthogonality, but it is of a behavioral nature and more
general. The crucial point is that A1sub s not syntactically orthogo-
nal but—in contrast to any other calculus with ES—is semantically
orthogonal, as we prove in this paper. In this sense A\isup is the first
calculus with ES that conservatively refines A-calculus, preserving
its orthogonality. Unfortunately, most techniques for standardiza-
tion rely on syntactical orthogonality. An exception is the abstract
theory of standardization developed by Gonthier, Lévy, and Mellies
(GLM) [19], and later refined by Mellies [30, 32]. Such a theory
can cope even with non semantically orthogonal calculi as the Ao-
calculus, but it takes a much simpler form in presence of semantical
orthogonality.

Left-to-Right Standardization and Beyond. Two first contribu-
tions of this paper are 1) a theory of residuals for A1y and 2) a
proof of the axioms of GLM’s theory. These technical results allow
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us to obtain a left-to-right' standardization theorem generalizing
the well-known standardization theorem for A-calculus, and cap-
turing the deterministic weak (i.e. not reducing under abstractions)
variant of LHR—that is the variant that actually matches evaluation
in the Krivine Abstract Machine and the m-calculus—as a standard
strategy. It is pleasing that the properties of left-to-right derivations
extend naturally to A1su. However, such a standardization theorem
is not fully satisfying.

A first reason is that LHR (without the weak restriction) is a
nondeterministic strategy whose sequences are not necessarily left-
to-right standard. However, the nondeterminism of LHR does not
affect the final result nor the length of evaluation sequences (tech-
nically, LHR enjoys the diamond property). It is then disappointing
that LHR is not left-to-right standard, because LHR is a crucial no-
tion in the theory of linear logic.

A second reason for not being satisfied with the left-to-right
standardization theorem concerns the close relationship between
the linear substitution calculus and linear logic proof-nets, the
model behind its inception. Terms and proof-nets are behaviorally
equivalent in a strong sense: every term ¢ maps to a proof-net Py,
and every evaluation step on ¢t or P, maps to an evaluation step on
the other. Additionally, the redexes are in bijection and so concepts
such as residuals transfer from terms to proof-nets and viceversa.
The interest of proof-nets is that they provide a quotient of terms;
remarkably, this quotient can be explicitly characterized by a sim-
ple equational theory ~ (in the style of [6, 23], and here generated
by 3 equations only) turning the behavioral equivalence with linear
logic proof-nets into a true isomorphism: for every proof-net P
there is a ~-class containing all and only the terms behaviorally
equivalent to P. Consequently, any notion or result that is stable by
equivalence ~ immediately lifts to proof-nets. Unfortunately, left-
to-right derivations in the linear substitution calculus are not stable
by ~, because ~ swaps some constructors, inverting the relative
position of some redexes. Thus, our left-to-right standardization
theorem does not hold for proof-nets. This is quite disappointing
because proof nets provide an operational model, and one would
like to have a notion of standard derivation that can be freely trans-
ported from the language to the model and viceversa. We then
refine our left-to-right standardization theorem.

Partial Standardization Orders. Standard derivations are defined
as those reductions that respect a certain order on redexes, for in-
stance the left-to-right order. In GLM’s theory such a total order is
replaced by a partial order, providing a more general but also sub-
tler setting. To achieve a notion of standard derivation that is stable
by ~ we are forced to relax the total left-to-right order into a partial
order. In the setting of total orders, given a derivation p : ¢t — u
there is a unique standard derivation p’ to which p standardizes, and
moreover a deterministic and normalizing standard strategy can be
easily obtained by selecting the minimum redex according to the or-
der. When the order is partial, instead, there can be many standard
derivations to which a derivation standardizes, i.e. uniqueness is
lost: a standard derivation is an ordered derivation but only up to
swaps of <-disjoint steps. Moreover, although GLM’s theory does
support partial orders, it requires a number of axioms to hold, some
of which are not enjoyed by A\isuw modulo ~. So we shall switch to
the axiomatics of Mellie¢s’ PhD thesis [32], which is more general
and allows us to prove existence of standard derivations for a suit-
able partial order. However, alas, A1y modulo ~ does not even
satisfy the axioms of [32] required to obtain uniqueness of stan-

' We distinguish between the leftmost strategy (that repeatedly reduces the
leftmost redex) from left-to-right standardization that re-arranges redexes
(not necessarily involving the leftmost redex) from left to right. We also use
leftmost (considering terms as strings of symbols) for what is sometimes
called leftmost-outermost (that is relative to terms seen as trees).



dard derivations. Nor does it supply us with the guarantee that re-
ducing external redexes—the generalization to partial orders of the
notion of minimum redexes in the setting of total orders—Ieads to
normal forms. We circumvent these inadequacies of the axiomatic
framework by exploiting the embedding of a partial order into a to-
tal order, thus proving uniqueness (modulo swappings) of standard
derivations and the normalization of a (specific) external strategy.

Main Contributions. A summary of our results follows:

1. The Standardization Theorem. We identify a partial order
g that is related to the concept of exponential box in linear
logic proof-nets, and that is stable by ~. We show that Mellies’
axioms for existence of a standard derivation hold for <3,
obtaining a standardization theorem for A\1sw» modulo ~.

2. Uniqueness Modulo. For partial orders, GLM’s theory has
some additional axioms that ensures uniqueness modulo inde-
pendent swaps (see Section 8) but one of these axioms does not
hold for \1sw. Nonetheless, we prove uniqueness in an abstract
way, relying on the embedding of the partial box order into the
total left-to-right order.

3. Coinductive External Redexes. In GLM’s theory external re-
dexes are defined somewhat indirectly, via an extraction pro-
cess [32]. We clarify this concept by providing a direct and sim-
ple coinductive characterization: an external redex is a minimal
redex that is persistently minimal, i.e. whose (unique) residual
after any other redex is still external.

4. Applications. We use the coinductive characterization of exter-
nal redexes to obtain a normalization theorem for the leftmost
strategy and to give a concise proof by coinduction of the fact
that LHR is a standard strategy.

The nonstandard character of our standardization result comes
at least from the following facts: highlight of the first semantical
orthogonal calculus with ES being isomorphic to linear logic proof-
nets and enjoying standardization; use of a partial (vs total) order
on redexes being stable by equivalence classes; proof of uniqueness
(modulo) of standard derivations by means of simple arguments
and an original application of GLM’s theory to a non-syntactical
orthogonal case.

Abstract Machines. As mentioned before, we will show that
weak LHR is a standard strategy. In parallel, Accattoli, Barenbaum
and Mazza [7] studied the relationship between abstract machines
and calculi at a distance obtaining that weak LHR is the strategy
implemented by the Krivine Abstract Machine, up to a certain no-
tion of structural equivalence. This result refines a similar one by
Danos and Regnier [14], and completes the lifting of Plotkins’s
approach (relating the SECD machine with a standard strategy in
the call-by-value A-calculus) to the granularity of explicit substi-
tutions. Moreover, [7] contains similar correspondences between
machines for call-by-value (the CEK and Leroy’s ZINC) and call-
by-need (Sestoft’s machine) and some variations over weak LHR.
We are confident that the new understanding of standardization for
ES provided by our work will lead to analogous standardization
theorems for call-by-value and call-by-need variant of the linear
substitution calculus, completing the picture.

Related Work. A brief history of standardization may be found
in [30]. Standardization was introduced in 1958 by Curry and
Feys [13] for the lambda calculus. Lévy [27] strengthens this result
by defining the notion of permutation equivalence and showing that
every derivation has a unique standard derivation in each equiva-
lence class. Huet and Lévy [21] extend these ideas to first-order
term rewriting without critical pairs and also show that one must
abandon the left-to-right order for more general orders in these
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systems. Klop gives the first abstract proof of standardization and
applies these ideas to higher-order rewriting [26]. Boudol [10] ex-
tends Huet and Lévy’s work to term rewriting systems with critical
pairs. Clark and Kennaway [12], Khasidashvili and Glauert [25],
Paolini and Ronchi Della Rocca [34], and Xi [41] provide further
generalizations along various axes. Gonthier, Lévy and Mellies [19]
introduce an axiomatic approach to standardization, later refined by
Mellies [30, 32], that has turned out to be convenient to deal with
our case, due to its abstract nature. Indeed, simple techniques such
as Plotkin’s inductive reasoning in [35] or the proof terms technique
by van Oostrom and De Vrijer [40]—extended to the higher-order
case by Bruggink [11]—are not easily adaptable to our equational
setting. Takahashi’s technique [37] does not apply either. There is
no relationship between our results and standardization by levels
for linear logic proof-nets’: both approaches use partial orders, but
such orders are incomparable. This is a further reason to consider
our result as nonstandard.

Plan of the Paper. The next section introduces the linear substitu-
tion calculus. Section 3 defines residuals and Section 4 shows that
residuals are compatible with the equivalence ~ in a very strong
sense. Section 5 explains the ideas behind the abstract approach to
standardization and Section 6 proves the left-to-right standardiza-
tion theorem. Section 7 explains how the left-to-right order can be
relaxed to cope with the equational theory and Section 8 proves our
equational standardization theorem. Section 9 provides uniqueness
of standard derivations. Section 10 presents a coinductive charac-
terization of external redexes and Section 11 proves the normal-
ization theorem and the fact that (weak) linear head reduction is
standard.

2. The Linear Substitution Calculus

The set of terms of the linear substitution calculus, denoted by 7T,
is generated by the following grammar:

t o= | tt | Azt | t[z/t]

A term x is called a variable, tu an application, Ax.t an abstrac-
tion and ¢[z/u] an explicit substitution. The notions of free and
bound variables are defined as usual plus fv(t[z/u]) := £v(¢) \
{z} U fv(u). We work with the standard notion of a-conversion
(i.e. renaming of bound variables for abstractions and substitu-
tions). We use C' to denote a context w.r.t. the previous grammar
(i.e. a term with a unique occurrence of a designated symbol [
called the hole). We write C[t] for the term obtained by replacing
the hole of C' by the term ¢. We write C'[u] when the free variables
of u are not captured by the context C, i.e. there are no abstractions
or explicit substitutions in C' that bind the variables of £v(u).

The Aiswp-calculus is given by the set of terms 7 and by the
reduction relation — ) defined as the union of —4g, —1s, and
—gc, Which are the closure by contexts C of the following rewriting
rules, where L denotes a (possibly empty) list of substitutions
[$1/t1] e [Ik/tk]I

(Az.t)lu  —a  t[z/u]L
Clalz/u] =1 Clu]lz/u]
t[x/u] g ifx ¢ £v(t)

The names db, 1s, and gc stand for distant beta, linear substitution,
and garbage collection, respectively. Rule — g, (resp. —15) comes
from the structural A-calculus [6] (resp. Milner’s calculus [33]),
while . belongs to both calculi. In db we may assume w.l.o.g.
that Uf:l{xz} Nfv(u) =0and x ¢ fv(u)U Ule fv(t;) .

Note that the meta-notation L = [x1/t1]...[zr/tr] can also
be seen as a context O]z /¢1] . .. [xk/tk]. This fact, together with

2 Such a standardization theorem is folklore in the linear logic community.
See [2, 16] for details.



the use of a context C' in the second rule, and the global side
condition in the third rule, justify the idea of rewriting rules at a
distance. The substitution context in rule db is motivated by its
encoding in proof-nets, where explicit substitutions are partially
free to float (i.e. to traverse some term constructors). Such freedom
is formalized by the forthcoming graphical equivalence and by the
study of its properties in Section 4.

The linear substitution calculus enjoys all the properties re-
quired of calculi with ES (including simulation of 3-reduction,
preservation of strong normalisation, confluence on terms and
metaterms and full composition), whose proofs are simple and
omitted, as they are minor variations over those for Milner’s calcu-
lus [24], or those of the structural A-calculus [6].

In order to study residuals we need to fix a precise terminology
about redexes. A redex occurrence in a term ¢ is either a tuple
(D, r) where t = D[r] and r = (Az.s)Lu (a dB-redex) or a tuple
(D, r,C) where t = D[r] and r = C[z][z/u] (a 1s-redex), or a
tuple (D, r) where t = D[r], r = s[z/u] and x ¢ £v(s) (a gc-
redex). For example, the term ¢ = (zz)[z/y] has two different
redex occurrences, namely (Dy,r1,C1) = (O, (zz)[z/y], Ox)
and (D2, r2,C2) = (O, (zz)[z/y], z0). The pattern of a redex
is r, the second component of the tuple; the box> of the redex is
the subterm of the pattern noted u, and the context of the redex is
D, the first component of the tuple. We use A, B, ... for redexes
occurrences and Red () for the set of all redex occurrences of ¢.

Given a redex occurrence A € Red(s) we write s 2 ¢ for the
reduction step obtained by contracting A in s.

The graphical equivalence ~ is given by the contextual, transi-
tive, symmetric and reflexive closure of a-conversion (i.e. renam-
ing of bound variables) and the following axioms:

tle/ully/v] mes tly/ollefu] @ ¢ £v(v) &y ¢ £u(u)
Oyd)aful ~e Ayilefu] y ¢ tv(u)
(t)z/u] ey taofuy @ ¢ (o)

This equivalence characterizes exactly the representation of terms
as proof-nets, in the sense that t ~ w iff ¢ and v map to the same
proof-net [4].

The Alip-calculus is given by the set of terms 7 and by
the reduction relation — Al defined by the rewriting rules
{db, gc, 1s} modulo the equations {CS, 01,02}, i.e. , t —ax U
iff t ~t —., v ~ u. Thusin particular t —,,,, t implies
t—ap, t

Given any reduction relation R, an R-derivation is a (possibly
empty) sequence of reduction steps having the form s = tg —xr
ti —® .... An R-derivation is finite iff the associated sequence
is finite. We write d, e, . .. for derivations and d : s —»® t when
we stress the source s and target ¢ of the (finite) derivation. We
write e for the empty derivation and A; d : s — ¢ for the derivation

composing s 2 wtothe left of d : u —» ¢. A reduction relation
R is said to be terminating iff every R-derivation is finite. An
element ¢ is said to be in R-normal form iff there is no v such that
t —R U.

3. Residuals

The residuals of a redex A after a reduction step ¢ Z w are
the traces of the redex A that appear in the target term u. The
crucial property that residuals need to satisfy is that any local

confluence diagram wu; P u2 can be closed by reducing
in u; (resp. uz) all and only the residuals of the redex A, after
A; (resp. of Ay after A3). When this happens for every possible
local confluence diagram we say that the system is semantically

3 When terms are represented as linear logic proof-nets, what we call box
corresponds exactly to the exponential box.
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orthogonal. The subtlety in the study of residuals is that redexes
may be duplicated or erased along the way and duplication may
even nest two residuals of the same redex. For further references
the reader may consult [20, 27, 31, 38].

Another simpler notion of orthogonality is syntactical orthogo-
nality [21], and happens when the system is left-linear and has no
critical pairs. Syntactical orthogonality implies semantic orthog-
onality but the converse does not hold. In particular, the Ajsup-
calculus is not syntactically orthogonal but, as we will show in Sec-
tion 6, it turns out to be semantically orthogonal, a property that no
other calculus with ES enjoys. In order to give an intuition on such
a phenomenon let us consider a calculus with ES such as Ao [1] or
Ax [9] containing at least the following reduction rules:

(Az.t)u
(tu)[z/v]

The following critical pair arises:

Az.t)[y/v]uly/v] e ((Az.t)u)ly/v] —o tlz/u]ly/v]

However, the @-step has no residual after the b-step. The b-step
also has no residual (note how it would have a residual if the rule
were at a distance). The diagram can be closed, but only reducing
created redexes, and so the calculus is not semantically orthogonal.

The formal development of residuals is based on a notion of
(well-)labeled term to be introduced next. Note that since Ajgyp 18
not syntactically orthogonal the technique of underlining the redex
pattern [26] cannot be applied, e.g. in (zz)[z/s] the underlining
does not distinguish between the two occurrences of the 1s redexes.

Labels. In order to follow redexes along a derivation we mark
them with special symbols called labels, denoted «, (3,7, . . .. The
obtained set of labeled terms, denoted by 7, is generated by the
following grammar.

tu=o |z |t ] Azt | Ax®.t | tz/t] | t{z /1]

—

t[z/u)
t[z/v]ul[z/v]

—a

The notations z(®), Az(®) .t and ¢[2(®)/t] mean that = may
or may not be labeled. We write Lab(¢) to denote the set of all
the labels of ¢ and ¢° to denote the term obtained from ¢ by
removing all its labels. Thus for example ((z%y%)[y/\z7.2])° =
(ay)[y/Az.2].

We extend the meta-notation L to lists of possibly labeled substi-
tutions, and C' to possibly labeled contexts. Similarly, the notions
of free and bound variables are extended to labeled terms as ex-
pected together with their corresponding notion of a-conversion.
We use £1v(¢) to denote the subset of £v(¢) having at least one
labeled occurrence, e.g. £1v(z“y°[y/z]) = {z}.

Labeled reduction = on labeled terms is defined as the con-
textual closure of the following rewriting rules:

Dz* Ly Se tz/u]l
Cle*]lz/ul  S1e Clullz/u]
t{xz® /u] Foge  t x & fv(t)

Definition of redexes for terms naturally extends to labeled ones. A
labeled redex A is a redex having a pattern of the form (Az®.t)Lu,
Clz*][z/u] or t[x*/u], and « is called the label of the redex
A. The anchor of a redex (labeled or not) is the variable possibly
carrying its label. We will usually associate the labels «, § and ~y
to the redex names A, B and C respectively; occasionally we will
write A, to emphasize that « is the label of the redex A. We write
Red, (t) for all the redexes of ¢ labeled with a.

In order to show some key properties required by the axiomatic
approach (cfr. Section 6) we will work with a subset of labeled
terms, written 7y 2, called well-labeled terms, and defined by:

o x € Tyweand z® € Ty



o Ift € Ty, and x ¢ £1v(¢) then Azt € Ty,

o Ift,u € Tyyr, thentu € Ty

o If (A\z.t)L,u € Tyyz, then (Az™.¢)Lu € T

o Ift,u € Tywe, then t[z/u] € Tiwe

o Ift,u € Tywe and x ¢ £v(t), then t[z*/u] € Ty

Note that A\z®.z, Az.z® and z[z*/u] are not in Ty, . Note also
that subterms of well-labeled terms are not necessarily well-labeled
(e.g. the abstraction of a labeled db-redex). Well-labeled terms are
stable by reduction and graphical equivalence:

LEMMA 1. Lett € TWL.Iftiuort ~ u, thenu € Tyyr.

Residuals. Here we define residuals for the reduction relation
A1swb. In Section 4 we will extend them to the A\J%,.

A term ¢ can be labeled in different ways, leading to different
variants of ¢. More precisely, we say that ¢ is a variant of w iff
t® = u°. Thus in particular, ¢ is a variant of itself. If ¢ is a variant
of u, then we will consider the obvious bijection between the sets
of redexes of ¢ and w; sometimes, we will even identify some
particular redexes of them which are related by this bijection.

To define the residuals of aredex A € Red(t) afterastep ¢ Z o,
we consider the a-lift of ¢ w.rt. A by «, written 1ift(¢, A, ),
which is a particular variant of ¢ obtained as follows. Let o be a
fresh symbol, i.e. « ¢ Lab(t). If the redex A is already labeled in
t, then change the label of A to «, otherwise, if A is not already
labeled, assign o to A. Let us write 1ift(¢, A, o) L for the
induced associated reduction step. Then, the set of residuals of A
after B is given by A(B) := {Reda(u) | 1ift(t, 4, a) 5 u}.

It is clear that this definition is completely independent from
the variant used to lift the term ¢. We write A(B)A’ for A’ €
A(B), and A(B) for |J,. 4 A(B). For example, taking v =

(P2l aP)[x/y], B = (O, v, z°02) (so that v 5 (xPyz®)[z/y] =

v') and A = Redg(v) \ B, we have A(B) = {B’, B"}, where
B' = (O,v',0yz®) and B” = (O, z’y0).

Creation. Given areduction step ¢t — ., u, the set of redexes in
u that are not residuals of redexes in ¢ are said to be created. While
there are only 3 possible ways to create redexes in A-calculus [27],
in the Ajsu-calculus redexes may be created in one of 6 possible
ways, we just show below one example for each case, where the
reduced redex has label o and the created redex is underlined:

db creates db:  ((Az*.(A\y.s))u)v —a (Ay.s)[z/u]v

db creates 1s:  (Az%.z)u —a  z[z/u

db creates gc:  (Az%.y)u —a ylx/u]

1s creates db:  x[z/A\y.s]u =15 (Ay.s)[z/Ay.s]u
1s creates gc:  z%[z/y] =1 ylz/y]

gc creates gc: z[y™/x][x/u] —ec  z[x/ul

Note that dB-steps can create every kind of redex, 1s-steps can
create {dB, gc}-redexes, and gc-redexes can only create other gc-
redexes. Note also that whenever a labeled redex creates a redex A,
then A is not labeled.

Developments. Labels are particularly useful to study develop-
ments, i.e. derivations in which only residuals of an initial set
of redexes are contracted. For that, we first extend the concept of
residual to finite derivations as follows: A{e) := A, A(B;d) :=
(A(B))(d).

Given A C Red(t), a (possibly infinite) derivation ¢ = to 4

t1 Bty isa development of A iff A; € A(Ai;...; A1)
for all i. For example, in the Aisw-calculus, to = (zz)[z/I] —
(zI)[xz/I] — (II)[z/I] is a development of the set containing
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the two 1s-redexes of to. In the sequel, A;i;...; A, denotes any
derivation dy; ...; d,, such that d; is a development of the set of re-
dexes A; for all 4. The finite developments (FD) property states that
given a term ¢ and a set of redexes A C Red(¢), any development
of A starting at ¢ terminates. This property (proved in Section 6)
is one of the key requirements for the axiomatic theory of stan-
dardization that we are going to apply. The residual of a deriva-
tion over a set of redexes A is defined as follows: e(A) = ¢ and
(B;d)(A) = Ble); d(A(B)), where e is any development of .A.

4. Working with Equivalence Classes

In this section we first define the notion of residual of a redex
along an equation, so that we will be able to trace redexes along
Alzup-derivations. We then show that the notion of residual defined
in Section 3 is well-defined w.r.t equivalence classes, i.e. 1) the
residual relation yields a unique bijection between two redexes in
the same ~-equivalence class and 2) residuals of rewriting steps lift
to ~-equivalence classes.

The labeled graphical equivalence’ ~ on labeled terms is
given by the contextual, transitive, symmetric and reflexive closure
of a-conversion and the following axioms:

ta(@ fu][y(®) /o) tly @ /][ fu)

(). /u] MOt fu] -y ¢ £v(u)

(tv)[z(®) /u] tz(®) /ulv x & fv(v)

The axioms are to be understood in such a way that each label
occurs either in both sides of the axiom or in none of them. An
equational proof of ¢ ~ w is a derivation tree ending in ¢t ~ u
which uses a-conversion, the axioms ~cs, ~», and ~,, and the
standard inference schemes expressing compatibility of ~ w.r.t. all
term constructors and transitivity, symmetry and reflexivity of ~.

~cs
~

Rop
~

o2

Residuals Along Equations. We now propose a notion of trace of
a redex along an equational proof which is similar to that used for
derivations. Although the intuitive idea is quite natural, one needs
to guarantee that this notion is independent from the particular
syntactic proof used to show that a term ¢ is equivalent to another
term u, a property that we call well-definedness.

Givent ~ u, A € Red(¢) and o ¢ Lab(t), we consider the la-
beled equation 1ift(¢, A, &) ~ u. The set of residuals of A after
t ~ u,is given by A(t ~ u) := {Redq(u) | 1ift(¢, A, a) ~ u}.
Again, this definition is independent from the variant used to lift
the term t. We write A(t ~ u) A’ iff A’ € A(t ~ u) and we extend
this notion to sets of redexes as expected, in which case we write
A(t ~ u)A’, where A C Red(t) and A" C Red(u). For exam-
ple. given v = (a2 [e/ylle’ fy'] ~ (°Ta’ [y']=")[z/y) =
and B = (0[z'/y'], (x%z*)[z/y], Ox*), we have B{v ~ v')
(O, Ol /y 12 ).

Well-Definedness. Despite the simplicity of the equivalence rela-
tion ~, the result of well-definedness is not as straightforward as it
may seem. In principle, it could be shown by introducing proof-nets
and showing that the proof nets corresponding to two ~-equivalent
terms s and ¢ are identical: thus there is a bijection between redexes
in s and redexes in ¢, since there is a bijection between redexes in
s (resp t) and redexes in their proof-net representation. We prefer,
however, to avoid introducing proof-nets here: on one hand because
they are only apparently simpler than terms, on the other hand, to
resort to a unique formalism, namely terms, to develop our ideas.
Note that our equations do not duplicate/erase/rename labels, so
that any redex has a unique residual along the equivalence. Then
well-definedness can be stated as the fact that every equational
proof of ¢ ~ w induces the same bijection of redexes. The proof

4By abuse of notation we use the same symbol both for the equivalence
relation on labeled and unlabeled terms.

z ¢ fv(v) &y ¢ £v(u)



of this property is based on the identification of three structural
invariants of labeled redexes with respect to the equivalence ~, it
is omitted for lack of space.

LEMMA 2 (Well-Definedness). Let t,u € Ty, s.t. t ~ u. Then
there is unique bijection ¢ : Red(t) — Red(u) s.t. p(A) = A iff
At ~ u)A'.

. e, d d
Note that uniqueness guarantees that if ¢ ~ u and t ~ u are

two derivation trees of ¢ ~ u, then A(t S u) A" iff At 2 u)yA’.

The last result concerns preservation of residuals by means of
~-equivalence classes, where below we write ¢ ~¢ u to emphasize
that ¢ is the (unique) bijection given by Lemma 2.

LEMMA 3. Let t ~g u. Consider A, B € Red(t). If t At then:

1. Simulation: Ju’ s.t. u *2 W' and
2. Same equivalence target: t' ~ v/, i.e. 3¢ s.t. t' ~¢ v, and
3. Preservation of residuals: if B(A)B’, then ¢(B){¢p(A))¢(B').

5. Abstract Standardization

A standard derivation is a canonical element of a class of deriva-
tions, where canonicity is expressed by means of completeness:
whenever ¢ — wu then there is a standard derivation from ¢ to
u. In A-calculus, a derivation is standard if redexes are selected
from left-to-right. It is easy to see that the right-to-left order, in-
stead, does not provide completeness. Consider the derivation t =
(MA.xx)(II) —g (II)(II) —p I(II): it reduces both redexes in
t, but it can only be obtained by reducing these redexes according
to a left-to-right order, as the right-to-left order would instead give
(Az.xzx)(II) —g (Ax.xzx)] —g I1. The left-to-right orientation
is specific to the A-calculus and may not be appropriate for other
term rewriting systems, as for example the first-order TRS contain-
ing the unique rewriting rule f(z,a) — x. The abstract theory of
standardization then replaces the left-to-right order with an abstract
order <, capturing what we call the action principle.

The Action Principle. Let us introduce two crucial concepts.
Firstly, reduction of a redex A may directly act on another re-
dex B (i.e. duplicate/erase it). For example in A-calculus, if t =
(Az.xx)(II) —g (II)(I1), then reduction of the leftmost redex A
in ¢ duplicates the redex B = I1. Secondly, reduction of a redex A
may indirectly act on a redex B by 1) creating a new redex C that
may directly (or indirectly act) on (a residual of) B, or 2) changing
the set of redexes that can act on B or on which B can act. An ex-
ample of the first case: if ¢ = (Az.x(II1))M —g M(II), where
M = Az.xzx, then reduction of the leftmost redex A in ¢ indirectly
acts on the redex B = II by creating the redex M (1) which can
duplicate (the residual of) B. An example of the second case will
be given at the end of Section 8.

Standard derivations are defined abstractly according to the ac-
tion principle: for every redex A, reduction of A forbids future
reductions of redexes which may have acted (directly or indirectly)
on A before. The nesting order < essentially has to induce this prin-
ciple by capturing as much action as possible (we will see that <
has to capture direct action, while in general it might capture only
some cases of indirect action). The abstract theory of standardiza-
tion re-organizes derivations according to the action principle, re-
lying on some axioms about the interaction between the nesting
order and residuals. Then, whenever the axioms are satisfied, the
standardization theorem follows: an abstract reasoning proves that
<-ordered derivations are complete [19, 30, 32].

Total and Partial Orders. The left-to-right order has a fundamen-
tal property, it is a rotal order, i.e. given two coinitial different re-
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dexes A and B, then either A < B or B < A. In such a case the
abstract theory is quite simple.

Total orders have a limited descriptive power, though. Consider
a head-normal form ¢ = zuw. The left-to-right order forces the
redexes in u to be reduced before those in v. However, it is clear that
v and v cannot interact in any way, and consequently they could be
reduced in parallel even if this parallelism is not captured by the
left-to-right order. In other words, the left-to-right order captures
more than the action principle. Standardization can then be refined
by switching to a partial order. For instance, the partial tree order
<tree, Where A <yree B if B is a sub-term of A (so that A and B
are unrelated if B is to the right of A), captures the parallelism
of redexes in ¢ and admits a standardization theorem [30, 32].
The abstract theory of standardization for partial orders is more
sophisticated, so for the moment we stay with total orders and shall
return to partial orders in Section 7.

In the rest of this section we introduce the necessary notions to
deal with the abstract standardization theorem for total orders. In
Section 6 we will adapt the left-to-right order to the A1sup-calculus
and obtain a left-to-right standardization theorem. From Section 7
to the end of the paper, we will motivate and study a relaxed variant
of this order, introducing the framework for partial orders and prove
a more general standardization theorem for the AT;,,-calculus.

The Abstract Theory. In this paper we resort to the abstract
framework developed by Gonthier, Lévy, and Melliés in [19], but
we adopt the more general formulation given by Mellies in his PhD
thesis [32], as the axioms in [19] will not work when we shall later
relax the left-to-right order. The framework is based on Abstract
Rewrite Systems (ARS), a general formalism encompassing first
and higher-order rewriting, plus a residual relation _(_)_and a par-
tial order < on redexes, verifying some axioms. The axioms are
divided into two groups: The basic axioms, which guarantee a well-
behaved theory of residuals, and the standardization axioms, which
concern the interaction of the order with the residual relation.

To formally define the axioms we introduce the following no-
tion. An Abstract Rewrite System (ARS) is a tuple of the form
(O, R, Sre(.), Tqt(-), (-)-, - < -) where O is called the set of
objects, R is called the set of redexes , Src(-) and Tgt(.) are
functions from redexes to objects that we call source and target
functions (resp.), _(_) - is a family of binary relations indexed by the
set of redexes that we call the residual relation and < is a partial
order on redexes. We say that two redexes A and B are coinitial
if Src(A) = t = Src(B) for some term ¢. Note that the Aisus-
calculus may be seen as an ARS where O is the set of terms 7°
defined in Section 2, whereas the A\J;,,-calculus is an ARS where
O is the set of ~-equivalence classes generated by 7 modulo the
graphical equivalence ~. The basic axioms are”:

¢ Autoerasure (AE). For any redex A, A(A) = 0.

¢ Finite residuals (FR). Let A, B be coinitial redexes. Then the
set {C' | A(B)C} is finite.

¢ Uniqueness of ancestors (UA). Let A, B,C be coinitial
redexes. Then, B(A)B’ and C'(A)C’ and B’ C’ imply
B=C.

¢ Finite Developments (FD). Let A be a set of coinitial re-
dexes. Then any development of A terminates.

e Semantic Orthogonality (SO). Let A, B be coinitial re-

dexes. Then Tgt(B(A)) Tgt(A(B)) and the relations
(A; B(A)) and (B; A(B)) are exactly the same, where A; B(A)

5In [32] Autoerasure is called A, Finite residuals is called B, Unique-
ness of ancestors is called D, and Semantic Orthogonality is called
PERM.



is the derivation that contracts A and then develops B{A); like-
wise for B; A(B) (cf. end of Sec. 3).

We consider two standardization axioms:

e Linearity. Let A and B be coinitial redexes s.t. A £ B. Then
3B’ s.t. B{A)B'.

e Context-freeness. Let A, B, C' be coinitial redexes s.t. B{A) B’
and C(A)C'. If A £ C'then (B < C < B' < ().

The linearity axiom captures direct action: if A does not nest B
then it cannot directly act (i.e. duplicate/erase) on B, and so B has
exactly one residual after A. The context-freeness axiom forbids a
form of indirect action of the second kind: whenever A cannot act
on C (i.e. A 4 C)then it cannot grant or remove the power to act
on C' to any other coinitial redex.

A derivation d : t — w is said to be obtained from a derivation
e : t — wu by a standardizing permutation, written e ~» d
(noted dZe in [32]), if d is obtained from e by swapping two
consecutive redexes which form an inversion w.r.t. < in d; more
precisely, e ~ d if e fiB;A;gand d = f;A;h;g, and
A < B, where A(B)A’ and h develops B{A). We also say that d
is more standard than e. The classic notion of Lévy’s permutation
equivalence on derivations, adapted to total orders, can be seen as
the equivalence generated by standardization, indeed d : ¢t — u
is permutation equivalent to e : ¢t — wu, written d = e, iff
d(~ U ~»"1)*e. In the sequel we write =~ when we wish to
emphasize the underlying order <.

A derivation d is standard if it is a ~»-normal form. The
standardization theorem then follows by specializing Thm. 4.7
in [32] to total orders:

THEOREM 1 (Abstract Total Standardization). Consider any
ARS equipped with a total order < and satisfying the basic and
the standardization axioms. Then for any derivation d : t — u
there exists a standard derivation e : t — w such that d ~~" e.

6. The Left-to-Right Standardization Theorem

In this section we prove a standardization theorem for the Aigup-
calculus relative to a total order. This result is an extension of the
left-to-right standardization theorem for \-calculus.

The Left-to-Right Order. Given two redexes A and B in ¢t we say
that A is left-to-right nesting or on the left of B, written A <1 B,
if the anchor of A is to the left of the anchor of B (looking at ¢ as a
string of symbols). Clearly, <y is a total order so that A A, B and
A # Bimply B < A.

In order to prove standardization for the Aisup-calculus by
means of Theorem 1 we need to verify the basic and the stan-
dardization axioms.

Basic Axioms. The first three basic axioms are trivially true. By
using (well-)labeled terms to trace residuals we can prove the finite
development axiom.

PROPOSITION 1 (FD). Lett € T and let A C Red(t). Then any
A1sun-development of A terminates.

Proof. Consider any ¢t € T and lift every redex in A C Red(t)
with a different label belonging to some arbitrary set L. It is clear
that the resulting term is a well-labeled term. Now, let us consider
the labeled reduction relation —p:= Ua cL 2. To prove the
(FD) property it is sufficient to show that the reduction relation
—1, terminates on well-labeled terms. Termination is proved by
means of a measure that strictly decreases with every reduction step
(similar to that one used in the proof of Lemma 2 in [6]).
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The next proposition proves the semantical orthogonality prop-
erty for A1sup, that is expressed as a form of local confluence for the
labeled system. Again we resort to well-labeled terms.

PROPOSITION 2 (SO). The \isuw-calculus endowed with the left-
to-right order satisfies Semantic Orthogonality.

Proof. The proof uses well-labeled terms to trace residuals in
such a way that axiom (SO) can be reformulated as follows:

The reduction relations < and - locally commute, i.e. if
t,ui,ue € Twe, t L w1 and t A uo then there exists v s.t.

~
u1 —» v and us j»v.

This alternative statement can be proved by induction on the
relations = and .

Standardization Axioms. Totality of the order <. provides very
simple proofs of these axioms:

PROPOSITION 3. The \isw-calculus endowed with the left-to-right
order satisfies Linearity and Context-freeness.

Proof. Linearity. By totality of <, we have to show that if
B <. Aint then 3B’ s.t. B(A)B’. Now, if A is a db-redex this
is obvious, as no redex is duplicated/erased by a db-step. If A is a
{gc, 1s}-redex then it can only act on redexes whose anchor is in
its box, i.e. on redexes on its right, and thus not on B.
Context-freeness. If A 4; C then C' < A. Assume B < C
(and so B < C' <. A). Then, A is on the right of both B and C.
It is easily seen that A can only change the order between redexes
on its right; consequently B’ <; C'. The other direction is by
contraposition. Assume B 4. C, that is C' < B. We have to
prove that B A, C’,ie. C' <. B’. There are two cases. If
C <L B <. A then we reason as in the previous direction, getting
C' <y B'. Otherwise, we have C' <1, A <1 B. Now, the only case
that is not immediate is when A is a 1s-step. It is enough to observe
that a 1s-step can only move the redexes in its box at most where
the step itself was; hence, B’ can at most be where A was (while
the position of C is left unchanged), and so C’ <, B'.

We can then conclude with our first standardization theorem:

COROLLARY 1 (Left-to-right Standardization for \isuw). If
t = xw U then there is a <y -standard Aisw-derivation from t to
U.

Proof. It follows from Theorem 1, whose hypothesis are given
by Propositions 2, 1, and 3 (the first three basic axioms are imme-
diately seen to hold).

7. Towards Equational Standardization

Proof-Nets. The linear substitution calculus has been designed
to mimic the representation of A-calculus in linear logic proof-
nets [18], where §-reduction is decomposed into small steps. The
relationship between the two formalisms occurs at the static and
the dynamic levels: every term can be mapped to a proof-net, and
every proof-net can be mapped to an ~-equivalence class of terms,
as defined in Section 2. Moreover, there is a bijection ¢ between the
redexes of a term ¢ and the redexes of its corresponding proof-net
P N, which induces a strong bisimulation between terms and proof-
nets: if ¢ —»,,,, w by reducing a redex A, then PN; —pn PN,
by reducing ¢(A), and if PN; —px R then there exists a term u
s.t.t - uwand R = PN,.

The graphical equivalence ~ introduced in Section 2 then inher-
its a remarkably strong property: it is a strong bisimulation between
A1swp and itself, i.e. ¢ ~ u — v implies that 3 r s.t. ¢ — r ~ v (the
proof is similar to that of the structural A-calculus [6]). It, moreover,



induces a bijection of redexes, and so it is possible to mimic deriva-
tions via ~ as follows: given a derivation d : ¢ —™ w and a term
t' ~ t we can unambiguously refer to the projection d’ : ' —™ v’
(withu' ~ u)of dont’. Since d and d’ essentially reduce the same
redexes at each step, one expects any reasonable notion of standard-
ization to apply without distinction to both derivations in the sense
that either both are standard or none of them is. This would im-
ply. in particular, that our standardization theorem for A1gu (Corol-
lary 1) also applies to proof-nets. Unfortunately, the left-to-right
order does not meet this requirement. Indeed, a left-to-right deriva-
tion for t[z/u][y/v] (where y ¢ £v(u)) does not project to a left-to-
right derivation for ¢[y/v][x/u], obtained by applying the equation

tle/ully/v] ~os tlz/ully/v].

Relaxing the Order. We are therefore going to relax the total
left-to-right order <, to a partial order < that will be stable by
~. The definition of <g shall be guided by the action principle.
Because of the linearity axiom, it is mandatory that <p captures
direct action between redexes. For that, a simple diagrammatic
intuition, due to Klop [26] and then explored by Mellies [30], turns
out to be extremely helpful. The idea relies on the analysis of
local confluence diagrams. Whenever a redex is duplicated (resp.
erased), then the standard derivation should be the longest (resp.
shortest) side of the diagram. Consider for example the diagram in
Fig.1-a. The standard way to get from the source to the sink of
the diagram is the longest (i.e. down-below) side, because the 1s-
redex acts on (i.e. nests) the redexes in s ® The standard derivation
associated to the diagram in Fig.1-b —which is an erasing case—
is instead the shortest side, because the erasing redex acts on the
redexes in s.

The previous two cases are just reformulations of similar cases
in A-calculus, and amount to what can be described as nesting
as subterms. The novelty of Aisu is that direct action (and then
nesting of redexes) can also happen at a distance. Consider now
the example of the diagram in Fig.1-c. The duplicated 1s-redex
on y is not syntactically contained in the acting 1s-redex on x.
Worse, the same diagram applies to terms like (z[z/ylyz)[y/z],
where [x/y] and [y/z] are no longer next to each other. According
to the action principle, our order has to impose that the 1s-redex on
x nests the 1s-redex on y so that the standard side of the diagram
is the longest one. Diagram in Fig.1-d is the version at a distance
of the erasing diagram, requiring the same notion of nesting at a
distance. All these intuitions lead to the partial order of the next
section, that will be used in Section 8 to show standardization of
the AlZup-calculus.

8. The Box Standardization Theorem

‘We now generalize the notions introduced in Section 5 to the partial
box order, and then prove the standardization theorem for the
Alzuwp-calculus with respect to this order.

The Box Order. Let A, B € Red(t). Then,

e A immediately boxes B, noted A -<é B if the anchor of B
(i.e. the variable possibly carrying a label) is in the box of A,
i.e. if the pattern of A is any of (Az.t)Lu, C[z][z/u] or t[z/u],
then the anchor of B appears in u.

e Aboxes B, noted A <z B if A(<3)TB (we use A <g B for
A(<)"B);

e Aand B are disjoint, noted A || B, if A Az B and B £As A.

6 Remark that otherwise one would lose completeness, as there would not
be any standard derivation from C[z][z/s] to the term C[s’][x/s], which
is the intermediate term in the sequence C[z][z/s] —— C[s'][z/s']
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Note that A <z B implies A <. B. Additionally, note the tran-
sitive closure in the definition of <g—unnecessary for <.—which
impacts on the proofs of the standardization axioms for <z.

The key property of the box order is that it is stable by the
equivalence ~. For example, for ¢[x/u][y/v] with y ¢ fv(u) the
redexes in u and the redexes in v are not related by <g, so that
g is stable by the permuting axiom t[y/v][x/u] ~cs t[x/u][y/v]
(where y ¢ fv(u) & = ¢ fv(v)). More precisely, given s ~ t,
the bijection between Red(s) and Red(t) defined in Section 4 is
order-preserving. To show this property it is sufficient to remark
that symbols inside boxes never go in/out these boxes by means of
the equivalence relation. Thus, we get:

LEMMA 4 (Preservation of the Box Order by Equivalence). Let
t,u € T s.t. t ~g4 u, where ¢ is the bijection specified in Lemma 2.
Then, ¢ commutes with <g, i.e. A <g B iff $(A) <z ¢(B).

Several remarks on < are in order:

1. Disjoint redexes may superpose: A || B does not necessarily
imply that A and B are syntactically disjoint. Examples: the re-
dexes A, and Bg are disjoint but 1) syntactically superposed in
(z® 2®)[z/y], and 2) syntactically nested in (Az*.zP[z/z])y.
However, disjoint redexes always strongly locally commute in
the following sense: if to — ¢ and to —> t then there exists
ts s.t. t1 - ¢3 and 5 > ts. Note that this is just a particular
case of axiom (SO) where the diagram can be closed by using
just one reduction step from ¢; to 3.

2. Indirect action: the box order fails to capture indirect action, in
the sense that A || B implies that A cannot directly act on B
but it can still indirectly act on it (and viceversa). For example,
in the following derivation A, || Bg and A, creates a redex
that can act on Bg:

2/ Myy) (V2 2)w) 1o Oyl /Ayl (2" 2))
This apparently odd fact—that is not specific to the box order—
will not forbid the standardization theorem. Its consequences,
and an easy way to deal with them, will be discussed in Section
10. Note that by definition the box order is the minimum stan-
dardization order, in the sense that it is the transitive closure of
the relation capturing direct action only.

3. The order on A-terms: in [30] (pp. 74-75) Mellies considers
three orders on A-terms, the left-to-right order plus two refine-
ments called the tree and the argument order. When restricted
to A-terms, our order coincides with the argument order.

4. Linear logic interpretation: we explained that there are two
kinds of nesting in Aisu, namely, subterm nesting and nesting
at a distance. In the definition of the box order they are both
captured by the notion of immediately boxes. In terms of proof-
nets, however, they have different interpretations, despite they
are both related to the concept of exponential box’.

Standardization Up to Square Equivalence. A consequence of
switching to partial orders is that the notion of standard derivation
has to be refined. In fact, partial orders force to work modulo the
exchanges of disjoint redexes, even to simply define what is an or-
dered (i.e. standard) sequence; this is why abstract standardization
is a form of rewriting modulo.

Standardizing permutations are defined as in Section 5. How-
ever, to deal with disjoint redexes and adequately represent their

7 A subterm nests B when B is contained in the !-box of A, while A
nests B at a distance when the cut corresponding to B crosses an auxiliary
conclusion of the box of A.



Cla]lz/s] ——— Cla][z/s"]

> | |

tlz/s] —— t[z/s’]

v |7

z[z/ylly/z] —— z[z/=][y/7]

c)

ala’ [ylly/ 2] — wla’ /2]y /7]

e

d)

| |

Clsllz/s] ——— C[s'][z/s'] t yla/ylly/z] —— z[z/2][y/=] z[y/z]
Figure 1. Some standardization diagrams.
parallelism induced by the partial order, a new concept is necessary. Redex Order Existence | Uniqueness
A derivation d is said to be obtained from a derivation e by square A1swp | Total, left-to-right (Sec. 6) Thm. 1 Thm. 3
permutation, written d0'e,ifd = f; A; B';gande = f; B; A'; g Alsub Partial, box (Sec. 8) Cor. 2 Thm. 4
and A || B, where A(B)A’ and B(A)B’. We write ¢ for the equiv- Ao Partial, box (Sec. 8) Cor. 3 Thm. 5

alence relation generated by ¢!, and call it square equivalence.
We use ~+¢ for the relation ~ modulo ¢ and we generalize the
permutation equivalence relation =< as (~¢ U ~35 )"

A derivation d is standard if it is a ~»-normal form modulo ¢.
The standardization theorem (Thm. 4.7 in [32]) then follows:

THEOREM 2 (Abstract Partial Standardization). Consider any
ARS equipped with a partial order that enjoys the basic and the
standardization axioms. Then for every derivation d there exists a
standard derivation e s.t. d ~73 e.

Results. Our goal is to prove a standardization theorem for Ajg,,
relative to <g. The proof consists in first obtaining the theorem for
A1swp and then lifting it to Ajgyp.

The basic axioms do not mention the order, and thus they still
hold for Aisuw. The standardization axioms are proved by the fol-
lowing proposition:

PROPOSITION 4. The Aisup-calculus endowed with the box order
< satisfies Linearity and Context-freeness.

Proof. Linearity is easy, by just remarking that a redex B can
be duplicated or erased by A only if its anchor is in the box of
A, case in which A <p B. Context-freeness requires a detailed
study of the interaction between the box order <g and the reduction
relation. In particular the proof is involved due to the transitive
clause defining the box order, and it is omitted for lack of space.

Then, the previous proposition and Theorem 2 give:

COROLLARY 2 (Box Standardization for A\isuw). If t — a0
then there exists a <g-standard M\ sw-derivation from t to u.

In order to lift the previous result to A7z, we use the results on
equivalence classes developed in Section 4.

PROPOSITION 5. The A iy-calculus endowed with the box order
g satisfies the basic and the standardization axioms.

Proof. By Lemma 3 and Lemma 4 the notion of residual and the
box order lift to ~-equivalence classes preserving their properties.
Moreover, the FD axiom can be shown exactly as done for A1gy in
Proposition 1, by means of a measure that strictly decreases with
every reduction step and remains equal for every pair of equivalent
pairs. Therefore, all axioms hold for AT, and we can conclude.

Proposition 5 allows to apply Theorem 2 again and finally
obtain our nonstandard, equational standardization theorem.

COROLLARY 3 (Box Standardization for A\, ). If t —x~

U
1sub
then there is a <g-standard AT -derivation from t to u.

The next section will strengthen the result by showing unique-
ness (modulo ¢) of the obtained standard derivation. We conclude
this section with a remark.
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Figure 2. Summary of results on standardization

Variation on the Context-Freeness Axiom. We use in this paper
Context-freeness as it appears in Melliés’s thesis [32]. In GLM’s
theory [19], however, the axiom appears in a stronger, symmetric
form which does not hold for A1sw. Indeed,

e Strong context-freeness. Let A, B, C be coinitial redexes s.t.
B(A)B' and C{A)C'.If A £ Cthen (B < C & B' < (")
and (C < B« C' < B)).

Consider t = (A\z®.y"[y/2])(2°[z/u]), where A, || Cy, C- |
Bg, and A, < Bg. The reduction step of the redex A, yields
the term y” [y/z][x/ (2" [2/u]], where C’, <g B}, contradicting
the strong form of the axiom (but not the weaker one we use) and
providing an example of the second kind of indirect action, as A,
changes who can act on (the residual of) Bg.

9. Uniqueness

The standardization results obtained up to now concern the ex-
istence of a standard derivation. In this section the theorems are
strengthened by proving uniqueness of such derivations. We first
discuss the simple case of the left-to-right order, and then provide
an original proof of uniqueness (modulo) for the box order.

The axiomatic theory in Mellies’ thesis provides uniqueness
of standard derivations when two further axioms, Enclave and
Stability, hold (Theorem 4.5 in [32]).

Axiom Enclave has two parts. Let A, B, B’ be coinitial redexes
s.t. B{(A)B'.

1. Creation: If B < A and A creates a redex C, then B’ < C.

2. Nesting: Let C, C’ be redexes. If B < A < C and C(A)C’,
then B’ < C".

In terms of the action principle Enclave forbids yet another form of
indirect action: if B can directly act on A then A cannot indirectly
act on B. Consider the creation part: if C < B’ or C' || B’ then C
may act on B’, and so A would indirectly act on B ; similarly for
the nesting part.

PROPOSITION 6. The Aisuw-calculus endowed with the left-to-right
order < satisfies Enclave.

Proof. Creation: a simple inspection of the cases of creation
(Section 3) shows that a redex A can create a redex C' only on
its right or at most where it was, so that C' cannot nest any redex
that was on the left of A. Nesting: similarly, it is easily seen that A
can only move redexes on its right and at most where it was.

In the case of a total standardization order the axiom Stability
disappears, because its statement (see [32]) assumes two <-disjoint
redexes. Thus, by applying Mellies’ theorem we obtain:



THEOREM 3 (Uniqueness for \isuw). If t —x.. u then there
exists a unique <v-standard A1sw-derivation from t to u.

Switching to partial orders, uniqueness is necessarily relaxed to
uniqueness modulo ¢ (as standard derivations are defined up to ).

Interestingly, for the partial box order both points of Enclave
fail for A\1sup. For creation consider the step:

s = ((Aa”2)(y[=* /2D fu] = (A’ a)y)[2' fu] = t
Let us call A, and Bg the two labeled redexes in s, and Bj (resp.
O) the residual of Bg (resp. the created gc-redex on z) in t. We
have B <p Ao but By A C. For nesting it is enough to consider
aredex C inside u in the counter-example for creation.

So the box order does not capture the indirect action expressed
by Enclave, and Mellies’ axiomatics cannot provide uniqueness
modulo ¢ for AT{,,. However, we can obtain it via another argu-
ment. In particular, our alternative proof shows that Enclave (to-
gether with Stability) is a sufficient but by no means necessary
condition for uniqueness. We first show uniqueness modulo ¢ for
Alsub, and then lift this result to A5

THEOREM 4 (Uniqueness Modulo for Aisuw). If t — ., u then
there exists a <g-standard Misw-derivation from t to w that is
unique modulo .

Proof. (Sketch) Let e be the <g-standard \;su»-derivation given
by Corollary 2 and f be the unique <.-standard derivation given by
Corollary 1. We prove that e{ f, from which the statement follows.

Consider the leftmost contracted redex C' in e = Bi;...; B,
(i.e. the leftmost redex in {A € Red(t) | A(Bi;...; Bi)Bit1,0 <
i < n})and let € be C;eq;es where e1 = (Bi;...; B;){(C) and

C<31; R Bi>Bi+1 and e = Bi+2; e B,. It is not difficult
to prove, given that e is <g-standard, that e’'(e, |e1] ¢ and
so |e1;ea| = |e|] — 1, where |e| denotes the number of steps in
e. By induction hypothesis we obtain a <.-standard derivation f’
s.t. f'O(e1; e2). Therefore C; f' is also <p-standard and moreover
(C; )0(C; e1; e2)0e. Thm. 3 implies C; f' = f.

Note that the proof does not depend concretely on A7, but
only on the fact that <z can be embedded in a total order admitting
a standardization theorem, which is a fully abstract argument.

By exploiting again the results on equivalence classes, we obtain
the strongest result of the paper:

THEOREM 5 (Uniqueness Modulo for A\7g). Ift —xy u then
there exists a <g-standard A\iiy-derivation from t to w that is
unique modulo .

Proof. By Lemma 3 and Theorem 4 using the stability of the
<g-order by the equivalence ~ given by Lemma 4.

10. External Redexes, Coinductively

When the nesting order < is total, standardization is relatively easy,
because a derivation d : ¢ — w may be standardized by simply
selecting the minimum redex A among the redexes in ¢ that are
reduced in d and then repeating the process for the residual of this
derivation after A. However, when the order is partial—as our box
order, and more generally in Gonthier-Levy-Melli¢s’ approach—
there may be many —<-minimal redexes among the redexes in ¢
that are reduced in d; and randomly selecting one of them does
not necessarily produce a standard derivation. This is due to the
fact that the partial box order—as it is usually the case with partial
orders—fails to properly capture indirect action. Indeed, even if
two minimal redexes A and B are necessarily disjoint, A may
create a redex which will nest (a residual of) B.

We illustrate this situation in the simpler setting of the A-
calculus using the box order (called argument order by Mellies
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in [30]). Let I stand for Axz“.z and A, for I* I (and similarly for
Bg). Consider the derivation:

1enIfn Ly (qonr 2

Note that both A, and Bg are minimal in the initial term, and
the derivation picks at every step a minimal redex. However, the
derivation d is not standard. This can be seen by permuting A,, and
Bg, which yields the following (-equivalent derivation, where the
two last steps form an inversion for the box order:

IT —5 I

(I*T)(I°1) Ss1(I°1) Zs11 —5 1

A standardizing permutation swapping them produces the follow-
ing standard derivation:

(I*D(IP1) S5I1I°1I) —s(I°1)

This example shows that selecting mimimal redexes does not nec-
essarily give standard derivations when the order is partial. A sim-
ilar example in A;sup is obtained by considering the derivations of
2%z /My yl (AP .2)u).

The solution to this problem is to select an external redex [8, 10,
19, 21, 28, 32, 38, 39], i.e. a minimal one on which no other redex
can indirectly act. The definition of external redex for a derivation
in GLM’s theory is given via an extraction process. In particular,
the definition mentions the nesting order only indirectly. Alterna-
tively, external redexes can be defined coinductively as persistently
minimal redexes, as hinted in [38], i.e. the minimal redexes whose
(unique) residual after any other redex is still persistently minimal.

We first recall the definition of external redex from [32], that re-
quires two preliminary definitions. A redex A traverses a coinitial

A §

derivation d becoming B, written A NN B, iff:
e Ford =¢, A= Biff B= A.
eFord = Cie, A% Biff C £ Aand A’ %> B, where
A(CYA".
A redex A in t can be extracted from a derivation d : t — u,
written A ~ d, if there exist di,d2 st. d = di;A’;d2 and

A v A’ A redex A in t is external for d :
A€ Ert4(d) :={B|Ve=<d.B e}
The following result corresponds to Lemma 4.36 in [32].

t —» wuif

LEMMA 5 (External Gives Standard). Consider any ARS equipped
with a partial order < that enjoys the basic and the standardization
axioms. If d = A1;...;An and A; € Ext<(Ai;...; An) (1 <
1 < n), then d is <-standard.

External redexes generalize leftmost redexes in A-calculus,
whose key properties are 1) no other redex can act on it, and 2)
its unique residual after any other redex is still the leftmost redex.
This suggests to define external redexes coinductively as follows.

Let d : t — wu be a derivation. The set of starting redexes of
disd' := {B|3Jes.t.d =< B;e}. Aredex Aintis <-external
for d if d is not empty and:

1. Minimality: A is minimal in d*, and
2. Persistency: whenever d =~ B;e and A(B)A’ (A’ is unique
by minimality), then A" is <-external in e.
The next two technical lemmas are used to relate the two notions
of externality. Their proofs are easy:
LEMMA 6. Let A be <-external for d. Then:

1. A ~d and
2. Ife =~ d then e

d" and A is <-external for e.

LEMMA 7. Let A~nd ie.d=e; A f and A —— A’. Then:



1. There exists g s.t. d =< A; g.
2. Ifd = B;d' (with B # A) then B £ A and if A(B)A" then
A" A d.

We conclude the section with the equivalence of the two notions
of external redex.

PROPOSITION 7. A is <-external for d iff A € Ext(d).

Proof. =) Let e =< d. Lemma 6.2 implies that A is <-external
for e, and Lemma 6.1 gives A e, i.e. A € Ext<(d). <) By
coinduction on the definition of <-external. A € Ext(d) implies
A ~ d so that Lemma 7.1 gives A € d'. Let B € d' so that
d =< Bjeand A ~ Bje.If B # A then Lemma 7.2 gives
B £ A, that implies A minimal in d', and A” ~ e if A(B)A”".
Thus, A” € Ext<(e). By the coinductive hypothesis A” is <-
external for e, and thus A is <-external for d.

11. Applications

In this section we apply the new characterization of external re-
dexes to obtain a normalization theorem, and to prove that (weak)
linear head reduction is standard.

A Normalizing Strategy for \isu and \i,,. Using the coinduc-
tive reformulation of external redexes, we can now provide an easy
proof that the leftmost strategy, which always reduces the leftmost
redex, is normalizing for A\jsyp and Ajgu, i.e. it reaches a normal
form, if any. Let us say that a redex A is universally <-external,
i.e. external with respect to any reduction step (and thus wrt any
derivation), when the following holds:

1. Universal minimality: A is <-minimal in Red(t).

2. Universal persistency: for any B € Red(t), if A(B)A’ then A’
is universally <-external.

THEOREM 6 (Normalization).

1. The leftmost redex is universally <i-external A1sup.
2. The leftmost strategy is normalizing for Aisuw and Aiqup-

Proof. 1) By coinduction. Left-to-right order: the leftmost redex
is <r-minimum and by the Enclave axiom for < (Proposition 6)
its residual after any other redex is still minimum and thus leftmost.
We conclude using the coinductive hypothesis. 2) For Ajsuwp it
follows by Theorem 5.2 in Mellies’ thesis [32] (p. 137, formulating
abstractly an argument by Huet and Lévy [22]), stating that any
strategy reducing <i-external redexes is normalizing. For Alqy,
let ¢ be a term having an Aj,,-normal form. Since ~ can be
postponed (¢fr: Lemma 3) and it is the identity on normal forms,
then ¢ has also a normal form in A1su. The leftmost strategy A1sun-
normalizes ¢. Since Aisun C Ajau then the leftmost strategy also
Alzup-normalizes t.

Weak Linear Head Reduction is Standard. The leftmost strategy
captures a relevant strategy in the theory of linear logic, the weak
(i.e. not under abstractions) variant of linear head reduction.

To introduce such a notion let us first define weak head contexts
by the grammar W := O | Wt | W][z/t]. Weak linear head
reduction (WLHR) —y is defined as the closure under weak head
contexts of the rewriting rules {—av,—w1s}, Where 15 is the
following variation on +—15:

Wzllz/u] s Wu][z/u]

Alternatively, —w can be defined as the rewriting relation reducing
only the {dB, 1s}-redexes whose anchor is in a weak head context.

This notion of reduction is deterministic and tightly related to
the 7-calculus [3] and Krivine Abstract Machine [7, 14].
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PROPOSITION 8 (Weak Linear Head Reduction is Standard).

1. Every term t € T has at most one —w redex, and if it does
then it is the leftmost redex of t.
2. —w-derivations are <-standard (and thus also <g-standard).

Proof. 1) By induction on ¢. 2) By Lemma 5 and Theorem 6.

Linear Head Reduction is Standard. The head strategy for
Aisws historically arose as a special proof-nets strategy® [29].
Given the behavioral equivalence between A\i1swp and proof-nets,
it can be easily expressed in our setting. For that, let us intro-
duce the set of head contexts, that are generated by the grammar
H := O|Xx.H|Ht|H[z/t]. Linear head reduction (LHR)
— g 1s defined as the closure under head contexts of the rewriting
rules {+—av, —ms}, Where —ms is the following variation of the
rewriting rule —15:

Hlz][z/u] —ms H[u][z/u]

Alternatively, — g can be defined as the rewriting relation reducing
only the {dB, 1s}-redexes whose anchor is inside a head context.

Historically, linear head reduction has been defined on ordi-
nary A-terms (i.e. without explicit substitutions) [14, 29] by us-
ing a notion of virtual redex (equivalent to a head-redex up to
o-equivalence [36]). The alternative approach used here, already
in use in [2, 3, 5], improves the original presentation in several
aspects: there is no need to work with virtual redexes, there is a
one-to-one correspondence between LHR in proof-nets and LHR
in A1suwp, and LHR can be seen as a strategy of A\isy although it is
not a strategy of -reduction. Moreover, this presentation of LHR
admits a factorization theorem, and can be easily generalized to
take place inside arguments of terms [2].

Linear head reduction is another motivation for considering
the partial box order on redexes, as we now explain. A crucial
point of our definition is that that — g—in contrast to —yw—is
nondeterministic, for instance we have both (Az.y[y/w])z —u
(Az.wly/w])z and (Az.y[y/w])z —u yly/w][z/z]. This fact is
not a drawback, rather a plus, as it faithfully mimicks the par-
allelism of cut-elimination in proof-nets. A simple case analysis
shows that LHR enjoys the diamond property, i.e. any two steps
commute and no duplication/erasure is involved. Therefore, the
nondeterminism is harmless. In particular, all maximal LHR deriva-
tions (if any) have the same length. Concerning standardization,
however, not all LHR derivations are standard with respect to the
left-to-right order <, consider:

(Azyly/w))z —u Az-wly/w))z —m wly/w]z/?]

This fact is disappointing because the nondeterminism of LHR
is only apparent, and so one would like to consider LHR sequences
as standard, without having to re-organize them. The box order
turns LHR into a standard strategy, giving to the presentation of
LHR with explicit substitutions a solid status.

THEOREM 7 (Linear Head Reduction is Standard).

1. Linear head redexes are universally <g-external.
2. Linear head reduction is <g-standard.

Proof. 1) By coinduction on the definition of universally <-
external. Universal minimality: the anchor of — g-redexes is out of
all boxes, so they can never be nested by another redex. Universal
persistency: it is easily seen that no redex can move the anchor
of a — p-redex inside a box. So the residual of a — -redex is a
— m-redex and we conclude by the coinductive hypothesis. 2) A

8 The one reducing only cuts out of all !-boxes that do not involve the
auxiliary conclusion of any box.



universally external redex is easily seen to be external for every
coinitial derivation. Then we conclude applying Lemma 5.

12. Conclusions

We study standardization for the linear substitution calculus, a cal-
culus with explicit substitutions, that is not syntactically orthogo-
nal and that it is equipped with an equational theory that makes it
isomorphic to linear logic proof-nets. Our main result is a standard-
ization theorem, nonstandard because it is based on a partial rather
than a total order, it lifts to equivalence classes (i.e. proof-nets),
and it provides a notion of standard derivation which departs from
the one by levels in the linear logic literature.

Along the way, we provided other results: 1) a theory of residu-
als lifting to equivalence classes; 2) a simple left-to-right standard-
ization theorem; 3) a coinductive characterization of the notion of
external redex; 4) a normalization theorem; 5) a simple proof that
(weak) linear head reduction is standard.

Last, we believe that a further contribution of this paper is the
fine analysis of Gonthier, Lévy, and Mellies’ axiomatic framework,
which gives new intuitions on their complex notions.
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