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Abstract

We derive an abstract machine from the Curry-Howard correspondence with a sequent calculus
presentation of Intuitionistic Propositional Linear Logic. The states of the register based abstract
machine comprise a low-level code block, a register bank and a dump holding suspended procedure
activations. Transformation of natural deduction proofs into our sequent calculus yields a type-
preserving compilation function from the Linear Lambda Calculus to the abstract machine. We
prove correctness of the abstract machine with respect to the standard call-by-value evaluation
semantics of the Linear Lambda Calculus.

Keywords: Linear Logic, Curry-Howard Isomorphism, Abstract Machine, Linear Lambda
Calculus, Compilation

1 Introduction

Principally motivated by security concerns, logical and type theoretic founda-
tions of low-level code (eg. typed assembly language [16] and bytecode [15])
and abstract machines (such as SECD-style machines [13] and the Java Vir-
tual Machine [15]) have received considerable attention recently. Our interest
is in the logical foundations of abstract machines: This paper presents a proof
theoretic account for an abstract machine in the setting of Linear Logic [10]
and establishes its correctness. The contributions of this work may be summed
up as follows:

(i) We introduce a sequent calculus for intuitionistic propositional linear
logic, the linear sequential sequent calculus (SS), and we show that the
term assignment for SS is low-level code in which terms encoding lazy
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connectives introduce appropriate closures. SS is sequential [17,18] in the
following sense: the succedent of each sequent which is the conclusion of
an inference scheme is identical to the succedent of its major premise.
For example, the inference schemes for tensor and with are:

Γ, A, B � C

(⊗L)

Γ, A ⊗ B � C

Γ, A ⊗ B � C

(⊗R)

Γ, A, B � C

Γ, A � C

(&L1)

Γ, A&B � C

Γ, B � C

(&L2)

Γ, A&B � C

Γ, A&B � C Δ � A Δ � B

(&R)

Γ, Δ � C

Consequently, proofs in SS have a “principal” branch and inference
schemes may be seen to operate on the antecedent of the sequents in
this branch. This is reflected in the term assignment for these inference
schemes (here x, y, z stand for registers):

Γ, y : A, z : B �c B : C

(⊗L)

Γ, x : A ⊗ B �c (y,z)=unpair(x);B : C

Γ, z : A ⊗ B �c B : C

(⊗R)

Γ, x : A, y : B �c z=pair(x,y);B : C

Γ, x : A �c B : C

(&L1)

Γ, y : A&B �c x=fst(y);B : C

Γ, x : B �c B : C

(&L2)

Γ, y : A&B �c x=snd(y);B : C

Γ, x : A&B �c B : C Δ �c B1 : A Δ �c B2 : B

(&R)

�y : Δ, Γ �c x=makeLPClos(B1,B2,�y);B : C

For example, x=makeLPClos(B1,B2,�y);B is a code block whose first in-
struction creates a closure associated to the lazy pair constructor “&” and
deposits it in register x. The full set of instructions is described in Sec. 3.
In formulating SS by following this pattern for the other connectives we
note that all those whose computational interpretation is eager [2] such
as the tensor, yield inference schemes with one hypothesis. However, all
lazy connectives such as the of course modality “!” and with “&” require
one or more additional hypothesis which represent additional code blocks
with which appropriate closures are constructed.

(ii) From cut-elimination in SS we derive a register based abstract machine
(the Linear Logical Abstract Machine or LLAM) whose states comprise
a code block, a register bank and a dump holding suspended procedure
activations. Each step in the cut-elimination proof corresponds to a re-
duction step in the LLAM. The LLAM includes instructions for creating
functional, with and of course closures, executing closures, constructing
and destructing eager pairs, duplicating and erasing registers, and re-
turning from a call. Each machine state has a register bank, a code block
and a dump, the latter of which encodes the application of the Induction
Hypothesis in the proof of cut-elimination.

E. Bonelli / Electronic Notes in Theoretical Computer Science 158 (2006) 99–121100



(iii) We show that the transformation of Natural Deduction proofs into SS
yields a type-preserving compilation function from the Linear Lambda
Calculus or λl (as presented by Wadler [24]) to our low-level code.

(iv) We prove the correctness of the LLAM with respect to evaluation in λl :
If a term in λl evaluates to some canonical form, then its compilation
reduces in the abstract machine to the corresponding compiled canonical
form. The proof is rather standard in SECD-style 2 machines in which
lambda terms themselves are executed (eg. [19]). In our case, however, in
which low-level code different from lambda terms are executed, we need to
introduce some additional machinery for the proof to go through, includ-
ing an intermediate notion of evaluation (which we call lifted evaluation)
where substitutions are managed explicitly.

Structure of the paper. We formulate SS in Section 2 and also
address cut-elimination and the relation between SS and natural deduction.
The syntax, type system and operational semantics of the LLAM is presented
next. Section 4 briefly recalls λl and defines a compilation function from λl to
the low-level code of the LLAM based on the proof transformation developed
in the preceding section. This section ends with the proof of correctness of
the LLAM. Finally, we conclude and suggest further research directions.

1.1 Related Work

The first abstract machines related to linear logic were introduced by La-
font [12] and Abramsky [2] (the “Linear SECD Machine” - LSECD). The
Linear Abstract Machine (LAM) of Lafont is inspired by the categorical com-
binators of the theory of symmetric monoidal closed categories (modal types
are encoded using the standard recursive encoding). Our LLAM is derived
from cut-elimination in a sequent calculus. Moreover, in LAM there is no
sharing and hence cells may be reclaimed immediately by the instructions of
the machine. This is not favourable if sequential implementations are desired.
The LLAM does allow sharing for exponential types. However, this must be
achieved by introducing locations and tailored reduction schemes [2] which are
not mirrored by our cut-elimination analysis. Regarding the LSECD Machine
it is simply presented as a variant of Landin’s SECD machine [13] without
supplying further details on its foundations. Lincoln and Mitchell [14] sketch
an abstract machine but do not define it precisely nor give any proofs for its
properties. The work of Raffalli [20] and Ariola et al [3] is also relevant, how-

2 In the light of the distinction proposed by Ager at al [1] one might call our machine a
virtual machine since it has its own instruction set. This is in contrast to abstract machines
which operate directly on λ-terms and which we refer to as “SECD-style” machines.
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ever none of them address Linear Logic. Mackie investigates the use of the
Linear Term Calculus [2] as the basis for a functional programming language
by extending it with natural numbers, booleans, lists, iterators and recursion.
The abstract machine he considers is an extension of the LSECD machine
to cope with these new constructs. In a similar line of research, Wakeling
and Runciman [25] also study functional programming based on a linear term
calculus introduced by Wadler [23]. Danos et al [7] introduce two abstract
machines in order to relate Hyland-Ong and Abramsky-Jagadeesan-Malacaria
game semantics. The relation between these semantics is established by re-
lating the machines: both implement linear head reduction in the lambda
calculus. Alberti and Ritter [4] introduce a linear abstract machine with the
aim of allowing sharing of non-linear types while ensuring the single-pointer
property. However the logical foundations of the machine and its correctness is
not studied. The approach to machine derivation by means of a Curry-Howard
isomorphism on sequential sequent calculi introduced by Ohori [17,18] is the
closest to this paper. However, it does not deal with Linear Logic and no
proof of correctness for the abstract machine is provided. Further relevant
work (although not dealing with abstract machines) is developed by Wadler
et al [24,22] and Bierman et al [5] among others. An annotated bibliography
on abstract machines is provided by Diehl et al [8].

2 Sequential Sequent Calculus

A proposition of ILL is either a propositional constant N, a linear implication
A � B, a tensor product (or multiplicative conjunction) A⊗B, a direct prod-
uct (or additive conjunction) A&B, or an exponential (“!” is called “bang”
or “of course”) !A. The standard computational interpretation [12,2] of these
propositions as types may be informally described as follows. N is the type
of the natural numbers. A � B is the type of functions which use their
argument exactly once. A ⊗ B is the type of pairs in which, on its unique
consumption, both components are used exactly once. A&B is the type of
the pairs in which we must choose whether to use the first component or the
second one, the other component is no longer available for selection once our
choice is made. !A is the type of values of type A that may be used as many
times as we wish (possibly none).

A context Γ is a multiset of propositions and ∅ is the empty context. SS
comprises four logical judgements (sequents for short):

Γ �c A Code block judgement �v A Value judgement

�e Γ Environment judgement � A Top-level judgement

E. Bonelli / Electronic Notes in Theoretical Computer Science 158 (2006) 99–121102



The axiom and inference schemes defining these judgements are given in Fig. 1.
We write SSc for the schemes defining the code block judgement (the reason
for the qualifier “code block” is explained in Sec. 3). A proof of a code block
judgement is called a code block proof (and likewise for the remaining judge-
ments). The major premise of an inference scheme is the leftmost premise,
the others (if present) are the minor premises. In a sequent Γ �c A, we call Γ
the antecedent and A the succedent of the sequent. A sample proof in SSc (of
!(A&B) �!A⊗!B) is

!A⊗!B �c!A⊗!B

(⊗L)

!A, !B �c!A⊗!B

A �c A

(&L1)

A&B �c A

(!L)

!(A&B) �c A

(!R)

!B, !(A&B) �c!A⊗!B

B �c B

(&L2)

A&B �c B

(!L)

!(A&B) �c B

(!R)

!(A&B), !(A&B) �c!A⊗!B

(C)

!(A&B) �c!A⊗!B

We now briefly describe these judgements. First we point out that SSc is
sequential in the sense discussed in the introduction. The major premise path
of a proof is the path of sequents obtained by traversing the major premise of
each inference step in the proof, from the end sequent to the initial sequent.
Second, SSc is equivalent to the standard sequent calculus presentation of
ILL as may be verified by a straightforward induction on the proofs of the
judgements in question.

Lemma 2.1 Γ �c A is provable in SSc iff Γ � A is provable in the standard
sequent calculus presentation of ILL.

Regarding the axioms and inference schemes for the value judgement there
is one inference scheme per connective. Note that lazy type constructors,
namely with and of course, have an environment judgement and a code block
judgement as hypothesis. These are used for constructing the appropriate
closures. An environment is either an empty environment (written ∅) or a
multiset of propositions each of which is provable using the value judgements.

In SS only a top-level cut rule, called multicut 3 (cf. Fig. 1), is available.
Multicut is applied at the top-level and simultaneously cuts all the formulas in
the antecedent of Γ �c A. Furthermore, the sequential nature of SSc allows the
cut-elimination process to always replace a multicut with another multicut.
This induces two desired properties of the abstract machine resulting from
cut-elimination: reduction is on closed machine states and always takes place
at the root. Regarding cut-elimination we have:

3 In the sequel we shall speak of “cut-elimination” instead of “multicut-elimination”.
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Inference Schemes for Code Blocks

(axiom)

A �c A

Γ,N �c A

(nat)

Γ �c A

Γ, B �c C

(� L)

Γ, A, A � B �c C

Γ, A � B �c C Δ, A �c B

(� R)

Γ, Δ �c C

Γ, A, B �c C

(⊗L)

Γ, A ⊗ B �c C

Γ, A ⊗ B �c C

(⊗R)

Γ, A, B �c C

Γ, A �c C

(&L1)

Γ, A&B �c C

Γ, B �c C

(&L2)

Γ, A&B �c C

Γ, A&B �c C Δ �c A Δ �c B

(&R)

Γ, Δ �c C

Γ, !B �c C !Δ �c B

(!R)

Γ, !Δ �c C

Γ, A �c C

(!L)

Γ, !A �c C

Γ, !A, !A �c C

(C)

Γ, !A �c C

Γ �c C

(W )

Γ, !A �c C

Inference Schemes for Value Judgements

(natV )

�v N

�v A �v B

(⊗V )

�v A ⊗ B

�e Δ Δ, A �c B

(� V )

�v A � B

�e Δ Δ �c A Δ �c B

(&V )

�v A&B

�e!Δ !Δ �c B

(!V )

�v!B

Inference Schemes for Env. Judgements Top-Level Judgement

(nilE)

�e ∅

�e Γ �v A

(consE)

�e Γ, A

�e Γ Γ �c A

(mcut)

� A

Fig. 1. Schemes for values and environments, and multicut

Proposition 2.2 (Cut-elimination) Cut-elimination is strongly normaliz-
ing (SN) and confluent.

Confluence is trivial since the cut-elimination process introduces at most
one application of multicut at each step. SN, which we address below, can
be proved using standard reducibility arguments [9,18]. Define (recursively)
a family of reducible code block (value, environment) proofs indexed by a se-
quent (proposition, context, resp): Red c(Γ �c A) is the set of reducible code
block proofs with endsequent Γ �c A, Redv(A) is the set of reducible value
proofs of �v A and Red e(Γ) is the set of reducible environment proofs of �e Γ.
Intuitively, a value proof V is reducible if all the code block and environment

E. Bonelli / Electronic Notes in Theoretical Computer Science 158 (2006) 99–121104



proofs of V are reducible; in turn, an environment proof is reducible if each
value subproof in it is reducible; finally a code block proof C is reducible if all
multicuts

E C
(mcut)

� A
(1)

with reducible environment proofs E can be transformed to a reducible value
proof of A.

Definition 2.3 (Families of reducible proofs) The family of sets of re-
ducible proofs Redv(A), Red e(Γ) and Red c(Γ �c A) is defined recursively:

• Value proofs

· (natV )
�v N

∈ Redv(N)

·
V1(�v A) V2(�v B)

(⊗V )
�v A ⊗ B

∈ Redv(A ⊗ B) if V1 ∈ Redv(A) and V2 ∈ Redv(B)

·
E(�e Δ) C(Δ,A �c B)

(� V )
�v A � B

∈ Redv(A � B) if E ∈ Rede(Δ) and C ∈ Redc(Δ, A �c B)

·
E(�e Δ) C1(Δ �c A) C2(Δ �c B)

(&V )
�v A&B

∈ Redv(A&B) if E ∈ Rede(Δ), C1 ∈ Redc(Δ �c A)

and C2 ∈ Redc(Δ �c B)

·
E(�e!Δ) C(!Δ �c B)

(!V )
�v!B

∈ Redv(!B) if E ∈ Rede(!Δ) and C ∈ Red c(!Δ �c B)

• Environment proofs

· (nilE)
�e ∅ ∈ Rede(∅)

·
E(�e Γ) V(�v A)

(consE)
�e Γ, A

∈ Rede(Γ, A) if E ∈ Rede(Γ) and V ∈ Redv(A)

• Code block proofs
· C(Γ �c A) ∈ Redc(Γ �c A) if for every E ∈ Rede(Γ), the top-level proof (1) is transformed to

a value proof in Redv(A).

We now consider the proof of SN of Cut-Elimination by showing that if
C(Γ �c A) is a code block proof, then C ∈ Red c(Γ �c A). It makes use of the
fact that if E ∈ Red e(Γ, Δ), then there exist environment proofs E1 and E2

such that E1 ∈ Red e(Γ) and E2 ∈ Red e(Δ).

Proof. By induction on the proof of C(Γ �c A). Case analysis is performed
on the last inference scheme used to prove C in (1). We give two sample cases.

• A right introduction rules introduces a new value proof which is used to
extend the environment proof E of (1). A new multicut is then introduced
using the extended environment proof and the subproof just above the con-
clusion of C. As an example, here is the case of (&R). The proof ends
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in:

E1(�e Γ, Δ)

C3(Γ, A&B �c C) C1(Δ �c A) C2(Δ �c B)

(&R)

Γ, Δ �c C

(mcut)

� C

This may be transformed into

E1(�e Γ)

E2(�e Δ) C1(Δ �c A) C2(Δ �c B)

(&V )

�v A&B

(consE)

�e Γ, A&B Γ, A&B �c C

(mcut)

� C

to whom we may apply the IH and conclude.

• A left introduction rule resorts to an existing value proof in E , a subproof of
C and a new multicut to compute a new value proof (representing an inter-
mediate result). While this intermediate result is computed the elimination
of the original multicut is suspended (this is to be encoded in the dump
of our upcoming abstract machine). Once the new value proof is obtained,
a new environment proof is constructed using it, and a new multicut with
a subproof of C is introduced. We illustrate this with the case of (&L1).
Suppose the proof ends in

E1(�e Γ, A&B)

C1(Γ, A �c C)

(&L1)

Γ, A&B �c C

(mcut)

� C

From E1(�e Γ, A&B) we know that there exists E2 such that E2(�e Γ) ∈
Red e(Γ) and that there must be a value proof of �v A&B. Moreover, this
proof must have the form

E2(�e Δ) C1(Δ �c A) C2(Δ �c B)

(&V )

�v A&B

for some Δ and E2 ∈ Red e(Δ). Therefore the following top-level proof
E1(�e Δ) Δ �c A

(mcut)

� A

may be transformed into a proof V1 ∈ Red v(A). This computes our inter-
mediate result. Using the resulting value proof, the following environment
proof E3

E2(�e Γ) V1(�v A)

(consE)

�e Γ, A

is seen to be in Red e(Γ, A). As a consequence we may apply the IH to
the proof

E1(�e Γ, A) C1(Γ, A �c C)

(mcut)

� C
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(axiom)

A � A

(nat)

� N

Γ, A � B

(� I)

Γ � A � B

Γ � A � B Γ′ � A

(� E)

Γ, Γ′ � B

Γ � A Γ′ � B

(⊗I)

Γ, Γ′ � A ⊗ B

Γ � A ⊗ B Γ′, A, B � C

(⊗E)

Γ, Γ′ � C

Γ � A&B

(&E1)

Γ � A

Γ � A&B

(&E2)

Γ � B

Γ � A Γ � B

(&I)

Γ � A&B

!Γ � A

(!I)

!Γ �!A

Γ �!B Γ′, B � A

(!E)

Γ, Γ′ � A

Γ �!A Γ′, !A, !A � C

(C)

Γ, Γ′ � C

Γ �!A Γ′ � C

(W )

Γ, Γ′ � C

Fig. 2. Natural Deduction for ILL

and conclude.

We now address the relation between SS and Natural Deduction for ILL
(ND, cf. Fig.2). The standard approach transforming ND proofs into Sequent
Calculus proofs is to map inference schemes in ND that introduce a connective
in the former system to right introduction schemes in the latter, and those
that eliminate a connective to left introduction schemes plus possible appli-
cations of (the standard rule) cut . We follow the same approach except that
since standard cut-elimination in SSc is straightforward due to its sequential
nature 4 , all cuts are eliminated directly by means of a proof transformer.

A proof transformer P from Γ to Δ in SS, written P[] : Δ ⇒ Γ, is a code
block proof with a hole �Γ subscripted with a context at the initial sequent on
the major premise path and whose end sequent has Δ as context. We write
P[C] for the proof obtained by filling the hole in P with the code block proof
C. We view P[] : Δ ⇒ Γ as a proof transformer in the sense that it takes
a proof C(Γ �c A) and transforms it to a proof of Δ �c A. The following
result relates provability in ND and existence of proof transformers (its proof
proceeds by induction on proof of Γ � A).

Lemma 2.4 If Γ � A is provable in ND, then there exists a proof transformer
P[] : Γ′, Γ ⇒ Γ′, A, for all Γ′.

Proposition 2.5 If Γ � A is provable in ND, then Γ � A is provable in SSc.

4 The cut formula may be seen never to change: occurrences of the cut inference scheme
are pushed downwards towards the root of the proof and then eliminated once they reach
the axioms.
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Proof. If Γ � A is provable in ND, then by Lemma 2.4 there exists a proof
transformer P[] : Γ ⇒ A. Hence P[A � A](Γ � A) is a proof of Γ � A in SSc.

3 The Linear Logical Abstract Machine

3.1 The Code Language and Type System

A code block is a sequence of instructions. We let B range over code blocks, ι
over instructions and x, y, z over a countable infinite set R of registers. The
grammar defining code blocks and instructions is:

B ::= ι;B | Return(x)

ι ::= x=n | x=makeClos(B, y, �z) | x=call y with z

| x=pair(y,z) | (x,y)=unpair(z)

| x=makeLPClos(B,B,�y) | x=fst(y) | x=snd(y)

| x=makeOCClos(B,�y) | x=read(y) | (x,y)=copy z | kill(x)

The code language of the LLAM is a register transfer language with an
unbounded number of registers. A typical instruction has the form x=op(�y)
where op is the operation code, x is the destination register and �y are the
argument registers. A brief description of (some of) the instructions follows.

Return(x) returns to the caller with the contents of register x. x=n assigns
the numeral n to register x. (x,y)=unpair(z) destructs the eager pair resid-
ing in register z: the first component is placed in register x while the second
component is placed in register y. Note that, in accordance with the eager
nature of the ⊗ connective in ILL, it is not possible to project only the first
(or only the second) component of an eager pair. x=makeLPClos(B1,B2,�y)
creates a lazy pair. Such pairs are represented as lazy pair closures which con-
sist of a pair of code blocks B1 and B2 together with the current register bank
restricted to the registers in �y. This closure is placed in register x and registers
�y are no longer available since they were consumed in order to construct the
closure. The remaining instructions may be understood along similar lines.

The code language is typed. A typing judgement for code blocks is an ex-
pression of the form Γ �c B : A, where Γ (the typing context) is a multiset
of expressions of the form xi : Ai, 1 ≤ i ≤ n, where xi is a register, Ai is a
proposition in ILL and the xi are all distinct, B is a code block and A is a
proposition in ILL. The typing schemes (samples of which were given in the
introduction) are the logical schemes that define the code block judgement
described in Sec. 2 decorated with typing information (cf. Fig. 3). We some-
times write �x : Γ when Γ = {x1 : A1, . . . , xn : An} and �x = x1, . . . , xn. Also,
Γ, x : A is shorthand for Γ ∪ {x : A} assuming x /∈ Dom(Γ).
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Typing Schemes for Code Blocks

(axiom)

x : A �c Return(x) : A

Γ, x : N �c B : C

(nat)

Γ �c x=n;B : C

Γ, z : B �c B : C

(� L)

Γ, y : A, x : A � B �c z=call x with y;B : C

Γ, x : A � B �c B : C Δ, z : A �c C : B

(� R)

Γ, �y : Δ �c x=makeClos(C, z, �y);B : C

Γ, y : A, z : B �c B : C

(⊗L)

Γ, x : A ⊗ B �c (y,z)=unpair(x);B : C

Γ, z : A ⊗ B �c B : C

(⊗R)

Γ, x : A, y : B �c z=pair(x,y);B : C

Γ, x : A �c B : C

(&L1)

Γ, y : A&B �c x=fst(y);B : C

Γ, x : B �c B : C

(&L2)

Γ, y : A&B �c x=snd(y);B : C

Γ, A&B �c B : C Δ �c B1 : A Δ �c B2 : B

(&R)

�y : Δ, Γ �c x=makeLPClos(B1,B2,�y);B : C

Γ, y : A �c B : C

(!L)

Γ, x :!A �c y=read(x);B : C

Γ, x :!B �c B : C !Δ �c C : B

(!R)

�y :!Δ, Γ �c x=makeOCClos(C,�y);B : C

Γ, x :!A, y :!A �c B : C

(C)

Γ, z :!A �c (x,y)=copy z;B : C

Γ �c B : C

(W )

Γ, x :!A �c kill(x);B : C

Typing Schemes for Values, Dumps and Machine States

(natV )

�v n : N

�v v1 : A �v v2 : B

(⊗V )

�v 〈v1, v2〉 : A ⊗ B

�e R : Δ Δ, x : A �c B : B

(� V )

�v Clos(B, x, R) : A � B

�e R : Δ Δ �c B1 : A Δ �c B2 : B

(&V )

�v LPClos(B1,B2, R) : A&B

�e R :!Δ !Δ �c B : B

(!V )

�v OCClos(B, R) :!B

(nilE)

�e ∅ : ∅

�e R : Γ �v v : A

(consE)

�e R[x := v] : Γ, x : A

(nilD)

�d ∅ : ∅

�e R : Γ Γ, x : A �v B : C �d D

(consD)

�d [B, R, x] · D

�e R : Δ Δ �c B : C �d D

(MS)

�ms 〈B, R, D〉

Fig. 3. Typing schemes for LLAM code blocks, values, dumps and machine states
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3.2 Machine Architecture

A register bank R, R′, . . . is a mapping with finite domain that associates
values to registers. A value is one of the following: a numeral n, an eager
pair of values 〈v1, v2〉, a function closure Clos(B, x, R), an of course closure
OCClos(B, R) or a lazy pair closure LPClos(B1,B2, R). Just like code blocks,
values are also typed (bottom of Fig. 3). A typing judgement for values is an
expression of the form �v v : A where v is a value and A is a proposition in
ILL.

A dump is a stack of suspended procedure activations: [B1, R1, x1] · . . . ·
[Bn, Rn, xn]. Each procedure activation consists of a code block, a register
bank and a register that shall hold the return value of the computation that
caused suspension of execution. A machine state is a triple 〈B, R, D〉 where
B is a code block, R is a register bank and D is a dump. In LLAM machine
states are typed (Fig. 3). A machine state 〈B, R, D〉 is well-typed if the dump
D is well-typed and there exists a typing context Δ and a type C such that
the register bank is well-typed with type Δ and the code block is well-typed
under typing context Δ with type C. The typing schemes for environments
are self explanatory. Regarding those for dumps, each suspended procedure
activation should be well-typed. If Dom(R) denotes the domain of R, then we
write R[x := v] for the register bank R ∪ {x = v}, if x /∈ Dom(R), otherwise
R[x := v] is undefined.

Before defining the operational semantics of the LLAM we need some ad-
ditional notions. R(x) denotes the value assigned to register x by R assuming
x ∈ Dom(R). The restriction of R to �y, written R |�y, is defined as R′ if
�y ∈ Dom(R), where R′(x) = R(x) if x ∈ �y; R′(x) is undefined otherwise. The
deletion of �y from R, written R\�y, is defined as R − {y1 := R(y1), . . . , yn :=
R(yn)} if �y = y1, . . . , yn ∈ Dom(R); otherwise it is undefined.

The operational semantics of the LLAM is defined as a binary relation on
states: 〈B, R, D〉 reduces to 〈B′, R′, D′〉 if 〈B, R, D〉 → 〈B′, R′, D′〉 according
to the reduction schemes in Fig. 4. An initial state is of the form 〈B, R, ∅〉
and a final state is one of the form 〈ε, {x = v}, ∅〉, where ε denotes the empty
sequence of instructions. This relation is obtained from the cut-elimination
(Prop. 2.2) and as a consequence the following result holds immediately.

Proposition 3.1 (Type Safety) If �ms 〈B, R, D〉 and 〈B, R, D〉 reduces to
〈B′, R′, D′〉, then �ms 〈B′, R′, D′〉.

Furthermore, a typed machine state that is not a final state can always
progress towards one. Its proof follows from a simple case analysis on the last
typing scheme in the typing proof of B.

Proposition 3.2 (Progress) If �ms 〈B, R, D〉 and 〈B, R, D〉 is not a final
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〈Return(x), {x = v}, ∅〉 → 〈ε, {x = v}, ∅〉
〈x=n;B, R, D〉 → 〈B, R[x := n], D〉
〈x=makeClos(C, w, �y);B, R, D〉 → 〈B, R \�y [x := Clos(C, w, R |�y)], D〉
〈z=callx with y;B, R[x := Clos(C, w, R′)], D〉 → 〈C, R′[w := R(y)], [B, R\x,y , z] · D〉
〈Return(x), {x = v}, [B, R, z] · D〉 → 〈B, R[z := v], D〉

〈x=pair(y,z);B, R, D〉 → 〈B, R \y,z [x := 〈R(y), R(z)〉], D〉
〈(y,z)=unpair(x);B, R[x := 〈v1, v2〉], D〉 → 〈B, R \x [y := v1][z := v2], D〉

〈x=makeLPClos(B1,B2,�y);B, R, D〉 → 〈B, R \�y [x := LPClos(B1,B2, R |�y)], D〉
〈x=fst(y);B, R[y := LPClos(B1,B2, R′)], D〉 → 〈B1, R′, [B, R\y , x] · D〉
〈x=snd(y);B, R[y := LPClos(B1,B2, R′)], D〉 → 〈B2, R′, [B, R\y , x] · D〉

〈x=makeOCClos(C,�y);B, R, D〉 → 〈B, R \�y [x := OCClos(C, R |�y)], D〉
〈x=read(y);B, R[x := OCClos(C, R′)], D〉 → 〈C, R′, [B, R\y , x] · D〉
〈(x,y)=copy z;B, R, D〉 → 〈B, R \z [x := R(z)][y := R(z)], D〉
〈kill(x);B, R, D〉 → 〈B, R\x, D〉

Fig. 4. Operational semantics of the LLAM

state, then there exists 〈B′, R′, D′〉 such that 〈B, R, D〉 → 〈B′, R′, D′〉.

4 Compilation of λl and Correctness of the LLAM

This section introduces λl and a function that compiles a term in λl into code
for the LLAM and then proves correctness of the LLAM. Since the syntax of
terms in λl is not context free, we introduce an auxiliary syntactic category of
preterms [2]. If U, V, W range over finite sets of variables, then we write TU for
the set of preterms with variables in U . The types of λl are the propositions of
ILL. In particular, N is a base type. Γ is a typing context. The (λl -)terms are
those preterms M ∈ TU such that there exists Γ (Dom(Γ) = U) and A such
that Γ � M : A is provable using the standard axiom and inference schemes
obtained from decorating the ND schemes (cf. Fig. 5).

As has been noted elsewhere [20,17,18], the transformation of natural de-
duction proofs to sequent calculus proofs yields a compilation function. In-
deed, the proof of Prop. 2.5 yields the compilation function from λl -terms to
partial code blocks (code blocks without the last Return instruction) shown in
Fig. 6. Given a λl -term M ∈ TU such that Γ � M : A is provable, its com-
pilation is denoted Comp(U | M | z). This shall return a partial code block
which when suffixed with the instruction Return(z) yields a proper code block
that returns the compiled value of M in z. We use the symbol ε to denote
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(axiom)

x : A � x : A

(nat)

� n : N

Γ, x : A � M : B

(� I)

Γ � λx : A.M : A � B

Γ � M : A � B Γ′ � N : A

(� E)

Γ, Γ′ � M N : B

Γ � M : A Γ′ � N : B

(⊗I)

Γ, Γ′ � M ⊗ N : A ⊗ B

Γ � M : A ⊗ B Γ′, x : A, y : B � N : C

(⊗E)

Γ, Γ′ � let M be x ⊗ y in N : C

Γ � M : A&B

(&E1)

Γ � fst(M) : A

Γ � M : A&B

(&E2)

Γ � snd(M) : B

Γ � M : A Γ � N : B

(&I)

Γ � M&N : A&B

!Γ � M : A

(!I)

!Γ �!M :!A

Γ � M :!B Γ′, x : B � N : A

(!E)

Γ, Γ′ � let M be !x in N : A

Γ � M :!A Γ′, x :!A,y :!A � N : C

(C)

Γ, Γ′ � copy M as x@y in N : C

Γ � M :!A Γ′ � N : C

(W )

Γ, Γ′ � kill M in N : C

Fig. 5. Typing schemes for λl

a left identity for instruction composition: ε;B and B are identified in the
metalanguge. A λl variable is just compiled to ε since when suffixed with the
return instruction we shall obtain Return(x). An integer constant is compiled
into a register assignment instruction. The remaining cases are self explana-
tory. Notice that both M&N and !M are compiled into code that generates
appropriate closures. Also, registers appearing on the right-hand side that do
not occur on the left-hand side are assumed to be fresh (for example, as in the
third and fourth clauses).

By construction the following type-preservation result holds immediately.

Lemma 4.1 If Γ � M : A is provable for some typing context Γ, preterm
M ∈ TU and type A, then the sequent Γ � Comp(U | M | z);Return(z) : A is
provable in SSc.

We now address correctness of the LLAM. Evaluation in λl is defined by
the standard call-by-value evaluation schemes (cf. Fig. 7). We say a closed
λl -term M evaluates to a canonical form F if M ⇓ F , where canonical forms
are given by the grammar

F, G, H ::= n | λx : A.M | !M | M&N | F ⊗ G

The main obstacle towards a proof of correctness (cf. Thm 4.11) is that
evaluation relies on substitution over λl -terms, whereas there is no such notion
of substitution in the abstract machine. Moreover, in contrast to SECD-style
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Comp({x} | x | x)
def
= ε

Comp(∅ | n | z)
def
= z=n

Comp(U | λx : A.M | z)
def
= z=makeClos(Comp(U, x | M | y);Return(y), x, U)

Comp(U, V | M N | z)
def
= Comp(V | N | y1);Comp(U | M | y2);z=call y2 with y1

Comp(U, V | M ⊗ N | z)
def
= Comp(U | M | y1);Comp(V | N | y2);z=pair(y1,y2)

Comp(U, V | let M be x ⊗ y in N | z)
def
= Comp(U | M | w);(x,y)=unpair(w);Comp(V, x, y | N | z)

Comp(U | M&N | z)
def
= z=makeClos(Comp(U | M | y1);Return(y1),

Comp(U | N | y2);Return(y2),U)

Comp(U | fst(M) | z)
def
= Comp(U | M | y);z=fst(y)

Comp(U | snd(M) | z)
def
= Comp(U | M | y);z=snd(y)

Comp(U |!M | z)
def
= z=makeOCClos(Comp(U | M | y);Return(y),U)

Comp(U, V | let M be !x in N | z)
def
= Comp(U | M | y);x=read(y);Comp(V, x | N | z)

Comp(U, V | copy M as x@y in N | z)
def
= Comp(U | M | w);(x,y)=copyw;Comp(V, x, y | N | z)

Comp(U, V | kill M in N | z)
def
= Comp(U | M | w);kill(w);Comp(V | N | z)

Fig. 6. Compilation function

λx : A.M ⇓ λx : A.M

N ⇓ F M ⇓ λx : A.P P{x ← F} ⇓ G

M N ⇓ G

M ⇓ F N ⇓ G

M ⊗ N ⇓ F ⊗ G

M ⇓ F ⊗ G N{x, y ← F, G} ⇓ H

let M be x ⊗ y in N ⇓ H

M&N ⇓ M&N

M ⇓ P&Q P ⇓ F

fst(M) ⇓ F

M ⇓ P&Q Q ⇓ F

snd(M) ⇓ F

!M ⇓!M

M ⇓ !P P ⇓ F N{x ← F} ⇓ G

let M be !x in N ⇓ G

M ⇓!P N{x, y ←!P, !P} ⇓ F

copy M as x@y in N ⇓ F

M ⇓!P N ⇓ F

kill M in N ⇓ F n ⇓ n

Fig. 7. Evaluation for λl

abstract machines, the LLAM executes low-level code and this adds further
complications. Indeed, in SECD-style machines the code executed by the ma-
chine is a lambda expression itself and this makes the task of establishing
correctness results easier. Thus we define an intermediate (big-step) opera-
tional semantics, called lifted evaluation, in which the use of substitution is
replaced in favor of an assignment with which evaluation schemes are deco-
rated. In turn this requires adapting the notions of canonical form. Essentially,
we obtain a weak linear calculus with explicit substitutions.
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(λx : A.M)[σ] ⇓ (λx : A.M)[σ]

N [σN ] ⇓ C M [σM ] ⇓ (λx : A.P )[τ ] P [τ ⊕ {x := C}] ⇓ D

(M N)[σ] ⇓ D

M [σM ] ⇓ C N [σN ] ⇓ D

(M ⊗ N)[σ] ⇓ C ⊗ D

M [σM ] ⇓ C ⊗ D N [σN ⊕ {x := C, y := D}] ⇓ E

(let M be x ⊗ y in N)[σ] ⇓ E

(M&N)[σ] ⇓ (M&N)[σ]

M [σ] ⇓ (P&Q)[τ ] P [τ ] ⇓ C

fst(M)[σ] ⇓ C

M [σ] ⇓ (P&Q)[τ ] Q[τ ] ⇓ C

snd(M)[σ] ⇓ C

(!M)[σ] ⇓ (!M)[σ]

M [σM ] ⇓ (!P )[τ ] P [τ ] ⇓ C N [σN ⊕ {x := C}] ⇓ D

(let M be !x in N)[σ] ⇓ D

M [σM ] ⇓ (!P )[τ ] N [σN ⊕ {x := (!P )[τ ], y := (!P )[τ ]}] ⇓ C

(copy M as x@y in N)[σ] ⇓ C

M [σM ] ⇓ (!P )[τ ] N [σN ] ⇓ C

(kill M in N)[σ] ⇓ C

x[{x := C}] ⇓ C n[∅] ⇓ n

Fig. 8. Lifted Evaluation for λl

Assignments and lifted canonical forms are defined as follows

σ, τ ::= {x1 := C1, . . . , xn := Cn}
C, D ::= n | (λx : A.M)[σ] | (!M)[σ] | (M&N)[σ] | C ⊗ D

We write Dom(σ) for the domain of σ. We write σ ⊕ {x := C} for the
extension of σ with x := C under the assumption that x /∈ Dom(σ). If M
is a λl -term and FV(M) ⊆ Dom(σ), then σM is the restriction of σ to the
free variables of M . Lifted evaluation of λl -terms is defined by the evaluation
schemes of Fig. 8. Given a preterm M ∈ TV and an assignment σ such
that Dom(σ) = V , if the relation (M)[σ] ⇓ C holds, then we say that M
l-evaluates to C under σ. The expression M [σ] may be interpreted as term M
with pending assignment σ. In contrast to evaluation, lifted evaluation does
not rely on applying substitution but rather records the substitution until
it is required. This is witnessed, for example, by comparing the evaluation
scheme for application with the corresponding lifted one. This is also reflected
in canonical forms: lifted canonical forms include, for all canonical forms
corresponding to lazy types and to the function type, a suspended substitution.
All in all, the resulting evaluation mechanism is closer to the abstract machine.

The proof of correctness proceeds in three steps. First we establish the
correspondence between evaluation and lifted evaluation (Prop. 4.3). Then we
prove a correctness result for lifted evaluation (Prop. 4.7). Finally, appealing
to the result of the first step we prove correctness for evaluation (Thm 4.11).
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4.1 Relating Evaluation and Lifted Evaluation

We begin by relating canonical forms and lifted canonical forms. The idea is
that C is a lifting of F if F results from “flattening” C by applying all pending
assignments.

Definition 4.2 We say C is a lifting of F if C = F , where

n
def
= n

(λx : A.M)[σ]
def
= λx : A.M

σ⊕{x:=x}
(!M)[σ]

def
= !Mσ

(M&N)[σ]
def
= Mσ&Nσ

C ⊗ D
def
= C ⊗ D

The notation Mσ (defined simultaneously with C) denotes the term resulting
from M by applying (the flattening of) σ and has the following defining clauses:

x{x:=C}
def
= C

x{x:=x}
def
= x

n∅
def
= n

(λx : A.M)σ
def
= λx : A.M

σ⊕{x:=x}
(M N)σ

def
= MσM

NσN

(M ⊗ N)σ
def
= MσM

⊗ NσN

fst(M)σ
def
= fst(Mσ)

snd(M)σ
def
= snd(Mσ)

(M&N)σ
def
= Mσ&Nσ

(!M)σ
def
= !Mσ

(let M be !x in N)σ
def
= let MσM

be !x in N
σN⊕{x:=x}

(copy M as x@y in N)σ
def
= copy MσM

as x@y in N
σN⊕{x,y:=x,y}

(kill M in N)σ
def
= kill MσM

in NσN

(let M be x ⊗ y in N)σ
def
= let MσM

be x ⊗ y in N
σN⊕{x,y:=x,y}

Here σ is, in fact, an extended assignment in that components of the form
xi := xi are admitted.

Lifted evaluation preserves evaluation. Its proof relies on the fact that if C
is a lifting of a closed canonical form F , then Pσ⊕{x:=x}{x ← F} = Pσ⊕{x:=C};
it proceeds by induction on M ⇓ F .

Proposition 4.3 M ⇓ F , for M a closed term, implies for all assignments σ
and preterms O such that FV(O) = Dom(σ) and Oσ = M there exists a lifted
canonical form C such that C = F and O[σ] ⇓ C.

Taking O to be M and σ to be ∅ (the identity substitution) in Prop. 4.3
we deduce:

Corollary 4.4 If M ⇓ F , for M a closed term, then there exists a lifting C
of F such that M [∅] ⇓ C.

Remark 4.5 The converse also holds (if M [σ] ⇓ C, then Mσ ⇓ C) however
we do not make use of it in this work.

4.2 Correctness for Lifted Evaluation

Before stating the main result of this section we introduce a definition.
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nComp def
= n

((λx : A.M)[σ])Comp def
= Clos(Comp(Dom(σ), x | M | z);Return(z), x, σComp)

(!M)[σ])Comp def
= OCClos(Comp(Dom(σ) | M | z);Return(z), σComp)

(M&N)[σ])Comp def
= LPCLos(Comp(Dom(σ) | M | z);Return(z),

Comp(Dom(σ) | N | z);Return(z), σComp)

(C ⊗ D)Comp def
= 〈CComp, DComp〉

{x1 := C1, . . . , xn := Cn}Comp def
= {x1 := CComp

1 , . . . , xn := CComp
n }

Fig. 9. Compilation of canonical forms

Definition 4.6 The compilation of a lifted canonical form C, denoted CComp,
is the value (cf. Sec. 3.2) defined by the clauses given in Fig. 9 5 :

The main result of this section reads as follows:

Proposition 4.7 If M [σ] ⇓ C, then for any fresh register z and code block
variable X, 〈Comp(Dom(σ) | M | z);X, σComp, D〉 � 〈X, {z := CComp}, D〉.

The rest of this section introduces the notions and results required to prove
Prop. 4.7. We begin by introducing partial machine states and then present
the Instantiation Lemma, crucial to the proof of Prop. 4.7.

Let X, Y, Z stand for code block variables. An open code block is one that
has the form ι1; . . . ;ιn;X (by abuse of notation we write B;X and let B stand
for ι1; . . . ;ιn).

Definition 4.8 (Partial state) A partial state (for (X, D)) is a machine
state S of one of two forms:

• 〈B;X, R, D〉, for some code block B and register bank R, or

• 〈B1, R1, [B2, R2, x2] · . . . · [Bn, Rn, xn] · [B;X, R, x] · D〉 for some code blocks
B,Bi (1 ≤ i ≤ n), register banks R, Ri (1 ≤ i ≤ n) and registers x, xi

(2 ≤ i ≤ n).

where the sole occurrence of X is the indicated one (other open code blocks
may occur in D though). In both cases we say R is the register bank of S.

Computation commencing at a partial state for (X, D) is seen never to
access or modify D and, if well-typed 6 , proceeds until it blocks at X. Indeed,
one may verify the following by case analysis on the reduction schemes of the
LLAM.

Lemma 4.9 If S is a partial state for (X, D) and S → S ′, then S ′ is a partial

5 Strictly speaking, the compilation of a lifted canonical form is parameterized over some
variable z. We pick such a variable according to the context of application.
6 In which case the occurrences of code block variables, representing an “incomplete” proof
in SS, are given appropriate types.
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state for (X, D) (ie. for the same X and D).

Given a partial state S we may instantiate the code block variable with a
proper code block. The following instantiation function does just that and,
moreover, extends the register bank of S with additional mappings. Below
we write R ⊕ R′ for the union of the register banks R, R′ which we assume
to have disjoint domains. Let Di stand for a suspended procedure activation
[Bi, Ri, xi], i ∈ 2..n.

IB′,R′(〈B;X, R, D〉) def
= 〈B;B′, R ⊕ R′, D〉

IB′,R′(〈B1, R1,D2 · . . . · Dn · [B;X, R, x] · D〉) def
= 〈B1, R1,D2 · . . . · Dn·

·[B;B′, R ⊕ R′, x] · D〉
Let Reg(B) denote the set of registers occurring in code block B. We say

a register bank R′ is compatible with S, a partial machine state for (X, D), if
the following holds:

• If S = 〈B;X, R, D〉, then Reg(B)∩Dom(R′) = ∅ and Dom(R)∩Dom(R′) = ∅.
• If S = 〈B1, R1, [B2, R2, x2] · . . . · [Bn, Rn, xn] · [B;X, R, x] ·D〉, then (Reg(B)∪
{x}) ∩ Dom(R′) = ∅ and Dom(R) ∩ Dom(R′) = ∅.

Lemma 4.10 (Instantiation) If S is a partial state, R′ is compatible with
S and S � S ′, then IB′,R′(S) � IB′,R′(S ′).

Proof. By case analysis for one-step reduction using the fact that compati-
bility is preserved by reduction and then extended by induction to many-step
reduction.

We now address the proof of Prop. 4.7. It proceeds by induction on the
proof of M [σ] ⇓ C. Here we consider a sample case.

Proof. Let us call S the machine state 〈Comp(Dom(σ) | M | z);X, σComp, D〉.
Suppose the proof ends in:

N [σN ] ⇓ C M [σM ] ⇓ (λx : A.P )[τ ] P [τ ⊕ {x := C}] ⇓ E

(M N)[σ] ⇓ E

The idea of the proof is to apply the IH on each of the hypothesis. This
yields isolated reductions in the LLAM for the compilation of N under register
bank σComp

N , M under register bank σComp
M and P under register bank τComp ⊕

{x := CComp}, respectively. The Instantiation Lemma is then resorted to in
order to weave these reductions into a unique reduction of the compilation of
M N under register bank σComp.

Let U stand for Dom(σM) and V for Dom(σN ). S takes the form 〈Comp(V |
N | y1);Comp(U | M | y2);z=call y2 with y1;X, σComp, D〉. By the IH ap-

plied to N [σN ] ⇓ C we deduce 〈Comp(V | N | y1);Y, σComp
N , D〉 � 〈Y, {y1 :=

CComp}, D〉. Therefore, by the Instantiation Lemma (B′ = Comp(U | M |
y2);z=call y2 with y1;X and R′ = σM) and noting that σComp = σComp

M ⊕σComp
N
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S � 〈Comp(U | M | y2);z=call y2 with y1;X, σM ⊕ {y1 := CComp}, D〉(2)

By the IH applied to M [σM ] ⇓ (λx : A.P )[τ ] we have

〈Comp(U | M | y2);Z, σComp
M , D〉 � 〈Z, {y2 := ((λx : A.P )[τ ])Comp}, D〉 =

= 〈Z, {y2 := Clos(Comp(Dom(σ), x | P | w);Return(w), x, τComp)}, D〉

By the Instantiation Lemma (B′ = z=call y2 with y1;X and R′ = {y1 :=
CComp}) and a further reduction step yields

〈Comp(U | M | y2);z=call y2 with y1;X, σComp
M ⊕ {y1 := CComp}, D〉

� 〈z=call y2 with y1;X, ρ, D〉
→ 〈Comp(Dom(σ), x | P | w);Return(w), τComp[x := CComp], [X, ∅, z] · D〉

(3)

where ρ is the register bank {y1 := CComp, y2 := Clos(Comp(Dom(σ), x |
P | w);Return(w), x, τComp)}.

A new application of the IH, this time to P [τ ⊕ {x := C}] ⇓ E, yields

〈Comp(Dom(τ), x | P | w);W, τComp[x := CComp], [X, ∅, z] · D〉 � 〈W, {w := EComp}, [X, ∅, z] · D〉
Again we resort to the Instantiation Lemma (B′ = Return(w) and R′ = ∅)

and an additional reduction step in order to obtain

〈Comp(Dom(τ), x | P | w);Return(w), τComp[x := CComp], [X, ∅, z] · D〉
� 〈Return(w), {w := EComp}, [X, ∅, z] · D〉 → 〈X, {z := EComp}, D〉

(4)

We conclude by juxtaposing reduction sequences (2), (3) and (4).

We now address the main result.

Theorem 4.11 (Correctness) If M ⇓ F , then there exists a lifting C of F
such that 〈Comp(∅ | M | z);Return(z), ∅, ∅〉 � 〈ε, {z := CComp}, ∅〉.

Proof. If M ⇓ F with M closed λl -term, then by Corollary 4.4 there exists a
lifted canonical form C such that M [∅] ⇓ C and C = F . By Prop. 4.7, for any
fresh register z and fresh code block variable X 〈Comp(∅ | M | z);X, ∅, ∅〉 �
〈X, {z := CComp}, ∅〉. Finally, by the Instantiation Lemma and an addi-
tional reduction step 〈Comp(∅ | M | z);Return(z), ∅, ∅〉 � 〈Return(z), {z :=
CComp}, ∅〉 → 〈ε, {z := CComp}, ∅〉.

5 Conclusions

We have presented an abstract machine based on ILL that executes low-level
code. This machine has been derived from cut-elimination of a Sequent Cal-
culus presentation (SS) of ILL. It is a register based abstract machine (a stack
based machine is easily obtainable by treating contexts as sequences rather
than multisets) whose states consist of a low-level code block, a register bank
and a dump containing suspended procedure activations. Translation of Natu-
ral Deduction proofs to SS yields a type-preserving compilation function from
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the Linear Lambda Calculus [24] (λl) to low-level code. We prove that the
LLAM is correct with respect to the standard call-by-value natural semantics
(evaluation) of λl .

An issue that warrants a further look is de-compilation of low-level code
to terms in λl . This should be possible in the same way that it has been ad-
dressed for bytecode and low-level code based on Intuitionistic Propositional
Logic [11]. Also, we have not addressed sharing in our abstract machine. In-
deed, the LLAM trivially satisfies the single-pointer property since all closures
are recomputed. Although our efforts have concentrated on providing a robust
logical foundation for an abstract machine based on linear logic, we are aware
that sharing is an important topic which must be addressed and leave further
investigation on this matter to future work. On a related note, Danvy [6] has
developed a general technique to “mechanically deconstruct” the SECD ma-
chine into an evaluator and to construct a SECD-like abstract machine from
an evaluator. He makes use of well-known implementation techniques: defunc-
tionalization, CPS conversion and closure conversion. It would be interesting
to see if these phases could be recast in proof theoretical terms.

Finally, the there is a striking similarity between the sequential sequent cal-
culus (SS) and Shroeder-Heister’s presentation [21] of intuitionist propositional
logic based on higher-order natural deduction (in addition to the standard no-
tion of assumptions there are assumption rules that may also be discharged).
The natural deduction rule for implication elimination takes the form

A ⊃ B

A

B

C
(⊃ E)

C

Here the assumption rule
A

B
may be used in the upper right hand proof

but is discharged by (⊃ E). The reader is invited to compare (⊃ E) with
(� R). An in-depth analysis is postponed to future work.
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