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Abstract. We define BACI (Boxed Ambients with Communication In-
terfaces), an ambient calculus allowing a liberal communication policy.
Each ambient carries its local view of the topic of conversation (the type
of the information being exchanged) with parents and children that will
condition where it is allowed to stay or migrate to and which ambients
may be allowed to enter it. The topic of conversation view of ambients can
dynamically change during migration. BACI is flexible enough to allow
different topics of conversation between an ambient and different par-
ents, without compromising type-safety: it uses port names for commu-
nication and ambient names for mobility. Capabilities and co-capabilities
exchange port names and run-time typing information to control mobil-
ity. We show the type-soundness of BACI proving that it satisfies the
subject reduction property. Moreover we study its behavioural semantics
by means of a labelled transition system.

1 Introduction

In an ambient calculus one can distinguish two forms of dynamic behavior: com-
munication and migration [10]. By communication we mean the exchange of
information between processes possibly located in different ambients. By migra-
tion, we mean the ability of an ambient to relocate itself by entering or exiting
other ambients. Communication and migration are deeply related, since migra-
tion may enable or disable communication and vice-versa.

In calculi such as BA and NBA, and those in [6,23,7,11], an ambient can
communicate with its parent ambient (the host ambient) or with a child ambient
(an ambient it contains), and there may also be local communication among
the processes within an ambient. In typed ambient calculi, communication is
controlled by types, and the type of information being exchanged is often called
topic of conversation (TOC). For example, if an ambient sends the number 3 to
its parent, we can say that the TOC is Int.
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Fig. 1. Example of an ambient using different TOCs with different parents

Furthermore, notice that migration (entering or exiting an ambient) changes
the parent of an ambient. The existing typed mobile ambient calculi fix a TOC for
communication with the parent for each ambient, and even if migrating changes
the parent the TOC remains fixed.

In this paper we introduce BACI, a new mobile ambient calculus where
each ambient carries a communication interface specifying how an ambient may
interact with the environment. The design of BACI was driven by the desire to
lift the fixed-TOC-with-parent restriction allowing an ambient to change TOC
when changing parents and enabling straightforward design of ambients that
need to exchange information of different types with different ambients.

Consider the example in Figure 1, where host 1 needs to send data to host
2, but host 1 does not know where host 2 is located. However, host 1 knows
the location (addr) of a router that can forward to host 2 the packet (pkg)
containing the data. Assuming this, host 1 spawns the packet and forwards the
data to be transported along with the location of the router. Next, the packet
moves inside the router where it obtains the route to host 2. Finally, using
that route the packet reaches host 2 and delivers the data.

Notice that the pkg ambient uses three different communication types with
its three different parents (i.e. host 1, router and host 2). In order to im-
plement this example in calculi where each ambient has a fixed type for parent
communication, additional messenger ambients are needed to encode the com-
munication with the different parents, using an auxiliary messenger ambient for
each communication type. BACI’s new features offer more flexibility to the
designer to deliver more natural specifications.

Ports and Names. The communication with a child ambient is often labeled
with the ambient’s name (named communication):

n[[[〈3〉↓m|m[[[ · · · ]]] | · · · ]]] (ambient n wants to send 3 to its child m)

However, in communication with a parent the name is often left implicit, since
the parent can be uniquely determined by the location of an ambient.

n[[[m[[[〈3〉↑ | · · · ]]] | · · · ]]] (ambient m wants to send 3 to its parent n)
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In order to allow different TOCs with different parents, BACI introduces named
communication with parents.

As we mentioned earlier, we can distinguish between two forms of dynamic
behavior: communication and mobility. Previous calculi used ambient names
to specify both communication and mobility. However, adding the possibility
to communicate with different parents in different types stressed the difference
between them. Our calculus, BACI, induces the separation of concerns by using
names only for mobility and introducing the concept of ports for communication.
Therefore to migrate to an ambient we use its name, but to exchange information
with it we use its port. In this framework, an ambient n with communication
port c is written n[[[c‖ · · · ]]], so for example:

n[[[cn‖ · · · | m[[[cm‖〈3〉↑cn]]] | · · · ]]] (ambient m wants to send 3 to parent port cn)

The introduction of communication ports naturally leads to associate TOCs
to ports, instead of associating TOCs to ambient names as usual. There is no
global knowledge on this association: each ambient has its local view which can
dynamically increase with relocation. An ambient n with port c and local view
Γ is written n[[[Γ‖c‖ · · · ]]]. Then our last example becomes:

n[[[· · · Int↓cm‖cn‖ · · · | m[[[· · · Int↑cn‖cm‖〈3〉↑cn | · · · ]]]]]]
To sum up, in BACI each ambient comes equipped with its own local commu-
nication interface. A communication interface consists of

– a communication port used by the other ambients to communicate with the
current one and

– a local view associating topics of conversation to parent and child ports.

Communication interfaces are required for communication across ambient
boundaries. In order for communication across ambient boundaries to take place
a pair of communication ports must be coupled: a sending communication port
(provided by the sending ambient) and a receiving communication port (provided
by the receiving ambient). The following (input ↓-↑) reduction rule models one
form of communication across ambient boundaries (the other one consists in
reversing the roles of sending ambient and receiving ambient)

m[[[Γm‖cm‖(x̃ : ϕ̃)↓cn .P
∣
∣ n[[[Γn‖cn‖〈M̃〉↑cm .Q | R]]] | S]]]
−→

m[[[Γm‖cm‖P{x̃ := M̃} ∣
∣ n[[[Γn‖cn‖Q | R]]] | S]]]

The sending ambient is n and the receiving ambient is m. The communication
interface of m consists of the communication port cm and the local view Γm.
Likewise, the communication interface of n consists of the communication port
cn and the local view Γn. In order for communication to succeed, the type of
the information sent through the sending communication port (cn) must coincide
with the one expected by the receiving communication port (cm). More precisely,
the message M̃ in n should have some type ϕ̃ that coincides with the one that
the ambient m is expecting.
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Non-determinism. The same port name may be used by different ambients.
For example, in

n[[[Γn‖c‖〈q〉↑cp | P ]]] | m[[[Γm‖c‖〈in〉↑cp | Q]]]

both ambients use the same port name c as part of their communication inter-
faces. Moreover, both ambients intend to communicate with a parent port cp,
but in different ways: ambient n wants to send the name q while ambient m
wants to send the capability in (which is used to allow an ambient to enter). In
other words, for n, cp is a parent port for exchanging ambient names, and Γn

contains amb↑cp , and for m, cp is a parent port for exchanging capabilities and
Γm contains cap↑cp . As a consequence, only one of these ambients would be able
to enter a host ambient p with communication port cp willing to communicate
with them. For example, in

p[[[Γp‖cp‖(x : ϕ)↓c.R | in.0]]] | n[[[Γn‖c‖〈q〉↑cp | in p.0]]] | m[[[Γm‖c‖〈in〉↑cp | in p.0]]]

if ϕ = ↓ c(Γp) = amb, then n is allowed to enter and if ϕ = ↓ c(Γp) = cap then
m is allowed to enter. Both of the above examples are typable in our system
assuming that the port of the host ambient is different from cp.

Related Work. Modeling the word wide web requires the space and the
mobility in space as new dimensions of computing. In the first proposals, i.e. in
the Dπ-calculus [18] and in the language Klaim [14], the structure of locations
is flat. Instead the Mobile Ambient (MA) calculus [10] deals with a hierarchical
structure of locations (called ambients). An interesting core model generalising
many of the available calculi and languages has been developed inside the Mikado
project [4].

Many variants of MA have been designed: for a tutorial see [15]. A crucial
choice in all these calculi is the form of interaction between processes in different
ambients. In the original calculus [10] interaction is only local to an ambient, and
in order for processes in different ambients to communicate, at least one of the
ambients’ boundaries have to be dissolved. In [10,20,5,22,1], the open capability
dissolves the ambient boundary. The calculus M3 [13,12], allows general process
mobility. In Boxed Ambients (BA) [6,23,7], parents and children can communi-
cate as in the Seal calculus [11]. Our calculus, BACI, follows this last protocol.
The co-actions (first introduced in [20], and then used with modifications in [5,
22,23,7]) require also the agreement of the “passive” ambients involved in mobil-
ity. The co-actions of BACI in which port names are communicated are inspired
by those of [7]: there the communication involves only the name of the entering
ambient.

Ambient calculi are often typed: the types assure behavioural properties con-
cerning communication, mobility, resource access, security, etc. [8,20,9,5,1,6,22,
23,7,21]. To our knowledge before BACI only the calculi of [5] and [12] consider
type information local to ambients, while in the other proposals there is a global
environment containing all typing assumptions. When dealing with computing
in wide area “open” systems it is sensible to assume the existence of different
local environments. The price to pay is that static checks are no longer enough
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to assure correctness: we now need to carry typing information at run time. Fol-
lowing ideas from [16] we define an operational semantics with types, which is
simpler that a fully-fledged typed operational semantics in the sense that we only
need to check agreement between the local views upon mobility. In some sense it
can be seen as special case of proof carrying code [24]. The local type information
in BACI can dynamically increase with ambient movements: something similar
happens in the version of Dπ-calculus considered in [19].

Behavioural types [1,2] look mainly as computational traces: they allow poly-
morphic communications. BACI’s communication interfaces also are a permis-
sive tool for typing non local communications. In [2] the type of communication
with the parent changes when communication takes place. However, they do not
have named communication with the parent, and cannot express the fact that
communication with different parents has different types as in our last example.

Paper Plan. The rest of this paper is structured as follows. Section 2 intro-
duces the syntax of the calculus and its operational semantics. Section 3 presents
the type system. Section 4 studies a reduction barbed congruence and a labeled
transition system (LTS). The bisimilarity induced by the LTS is shown to be
sound with respect to the congruence. Some congruence laws are also identified.
Section 5 discusses two extended examples highlighting the features of BACI.
Finally, we conclude and suggest further research.

2 The Calculus

2.1 Terms and Types

The syntax for types and terms in BACI is given in Table 1. Notice that BACI
is a typed calculus and as such by process we always mean a well-formed process
according to the rules of Table 6.We assume two disjoint denumerable sets of
variables one for name, capability and message variables, and the other for port
variables. We use m, n, o, p, q . . . for ambient name constants and x, y, z, . . . for
ambient name variables, while α, β range over both ambient constants and am-
bient variables. Communication port constants are written c, cn, . . . and v, v′, . . .
are used for communication port variables, while γ is either a communication
port constant or variable. The expressions inC(v : ρ) α , outC(v : ρ) α , inC(v :
ρ), outC(v : ρ) are binders for v in prefixes and processes.

The process 0 is the null process; P1 | P2 denotes the parallel composition of
processes P1 and P2; (νννn)P is the usual restriction operator that binds all free
occurrences of n in P ; ! is the replication operator. The expression π.P denotes
the process that performs an action (or a co-action) π and then continues with
P . The π actions includes input/output (I/O) actions and mobility actions. The
I/O exchanges are directed upwards to the parent ambient, downwards to a
child ambient or locally to other processes at the same level. The direction of
each communication is determined by η. The location η is the location of the
communication exchange: ↑ γ denotes communication with a parent having the
port γ, ↓ γ denotes communication with a child with port γ, and 
 denotes local
communication.
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Table 1. Syntax of BACI

Basic types
ϕ::=amb ambient

| cap capability

Located types
τ ::=(ϕ1, . . . , ϕk)η

Names:
α, β::=n name constant

| x name variable

(Co)-Capabilities:
C, D::=in α enter

| out α exit
| in allow enter
| out allow exit
| C.D path
| x capability variable

Prefixes:
π::=C capabilities

| (x1 : ϕ1, . . . , xk : ϕk)η input
| 〈M1, . . . , Mk〉η output
| inC(v : ρ) α port enter
| outC(v : ρ) α port exit
| inC(v : ρ) allow port enter
| outC(v : ρ) allow port exit

Communication types
ρ::=shh no exchange

| ϕ1, . . . , ϕk exchange tuple

Local view
Γ ::=∅ empty

| Γ, τ interface

Ports:
γ::=c port constant

| v port variable

Locations:
η::=↑ γ parent port γ

| ↓ γ child port γ
| 
 local

Messages:
M, N ::=α name

| C capability
| x message variable

Processes:
P ::=0 nil process

| P1 | P2 composition
| (νννn)P restriction
| !P replication
| π.P prefixing
| α[[[Γ‖c‖P ]]] ambient

The information exchanged in input/output are tuples of messages. Each
message can be either an ambient name, or a (co)-capability1. The ambient
names received as messages, can substitute a variable ambient name in an am-
bient constructor or in a capability. Capabilities and co-capabilities constitute
the mobility actions and co-actions: the capabilities allow an ambient to enter
another ambient α, using in α; or to exit an ambient α, using out α. In order to
be executed, each capability must be matched with its respective co-capability:
in with in and out with out. Both capabilities and co-capabilities can be sent
as messages. A single (co)-capability or several (co)-capabilities forming a path
may be sent.

Beside these standard mobility actions and co-actions, BACI introduces the
inC and outC actions and their corresponding co-actions inC and outC. These
actions and co-actions are similar to the enter and exit (co)-capabilities. However,
they also have a port variable that is bound at execution time with the port of
the counterpart ambient involved in the mobility action. Because BACI uses

1 The types of messages can be easily extended to handle basic types such as integer
or boolean without any technical problems, but that is omitted here for the sake of
simplicity.
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Table 2. Structural Congruence

!P ≡ P | !P (Struct Rep Par)
(νννn)(νννm)P ≡ (νννm)(νννn)P (Struct Res Res)
(νννn)(P | Q) ≡ P | (νννn)Q, if n /∈ fn(P ) (Struct Res Par)
(νννn)m[[[Γm‖cm‖P ]]] ≡ m[[[Γm‖cm‖(νννn)P ]]], if n 	= m (Struct Res Amb)

in n.P ≡ inC(v : shh) n .P, if v /∈ fv(P ) (Struct In InC)
out n.P ≡ outC(v : shh) n .P, if v /∈ fv(P ) (Struct Out OutC)
in.P ≡ inC(v : shh).P, if v /∈ fv(P ) (Struct Co-in Co-inC)
out.P ≡ outC(v : shh).P, if v /∈ fv(P ) (Struct Co-Out Co-OutC)

(C.D).P ≡ C.D.P (Struct .)

port names exclusively for communication and ambient names only for mobility,
knowing the name of an ambient is not enough to establish a communication,
the port associated with that ambient must be known as well.

Port names cannot be sent as messages; therefore, the only way of learning
a port name is by using the inC and outC actions with their co-actions. In their
execution, the ambients affected by this action exchange port names using the
binders in these special (co)-actions. Additionally, in order to retain typability,
port variables have an associated communication type ρ. If the communication
type is shh, there is no exchange of information, otherwise an exchange tuple of
basic types is used to indicate exchange of information of that type. The types
used on these actions and co-actions must be compatible, their relation will be
established by the operational semantics rules.

An ambient is written α[[[Γ‖c‖P ]]] where α is an ambient name constant or an
ambient name variable and P the enclosed process. The local view Γ is a finite set
of located types, i.e. of exchange tuple types decorated with a location. The local
view is used to specify the communication type of the enclosed process P . The
local view together with the communication port c constitute the communication
interface of the ambient.

Terms differing only in the names of their bound variables are considered
equal. Furthermore, Barendregt’s convention [3] is assumed: all variables are
pairwise distinct and distinct from all free variables. This avoids cluttering the
presentation with conditions on the names of variables in order to prevent vari-
able clash and variable capture.

2.2 Operational Semantics

The operational semantics is defined in terms of structural congruence and re-
duction rules.

Structural congruence is the least congruence such that ( | ,0) is a commuta-
tive monoid and the axioms of Table 2 are satisfied. The definition is standard
except for the rules in the second group (where fv(P ) is the set of free vari-
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Table 3. Operations on Locations and Local Views

Join of communication types

ρ 
 ρ′ =






ρ if ρ = ρ′ or ρ′ = shh,

ρ′ if ρ = shh,

⊥ otherwise.

Preorder on communication types

ρ � ρ′ iff ρ 
 ρ′ = ρ′

Addition of located types to local views

Γ ⊕ ρη =

{
Γ if ρ = shh,

Γ, ρη otherwise.

Application of locations

– to located types

η(τ) =

{
ρ if τ = ρη,

shh otherwise.

– to local views
η(∅) = shh

η(Γ ) =
⊔

τ∈Γ η(τ)

Location substitution

– for prefixes

π{{η := η′}} =






(x1 : ϕ1, . . . , xk : ϕk)η′
if π = (x1 : ϕ1, . . . , xk : ϕk)η,

〈M1, . . . , Mk〉η′
if π = 〈M1, . . . , Mk〉η,

π otherwise.

– for processes

• 0{{η := η′}} = 0
• (P1 | P2){{η := η′}} = P1{{η := η′}} | P2{{η := η′}}
• ((νννn)P ){{η := η′}} = (νννn)P{{η := η′}}
• (!P ){{η := η′}} =!P{{η := η′}}
• (α[[[Γα‖cα‖P ]]]){{η := η′}} = α[[[Γα‖cα‖P ]]]
• (π.P ){{η := η′}} = π{{η := η′}}.P{{η := η′}}

ables occurring in P ). They state that the (co-)capabilities in n, out n, in, out
may be identified with particular instances of the prefixes “port enter/exit” and
“allow port enter/exit”. The rationale here is that these prefixes behave as the
corresponding (co-)capabilities when they cancel the communicated port name
(condition v �∈ fv(P )) and no topic of conversation is communicated (i.e. the
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Table 4. Operational Semantics

Mobility

(enter)

n[[[Γn‖cn‖inC(v : ρ) m .P1 | P2]]]
∣
∣ m[[[Γm‖cm‖inC(v′ : ρ′).Q1 | Q2]]]

−→
m[[[Γm ⊕ ρ′↓cn‖cm‖n[[[Γn ⊕ ρ↑cm‖cn‖P1{{↑ v := ↑ cm}} | P2]]] | Q1{{↓ v′ := ↓ cn}} | Q2]]]

if ↑ cm(Γn) 
 ρ � ↓ cn(Γm) 
 ρ′

(exit)

p[[[Γp‖cp‖n[[[Γn‖cn‖m[[[Γm‖cm‖outC(v : ρ) n .P1 | P2]]] | Q]]] | outC(v′ : ρ′).R1 | R2]]]
−→

p[[[Γp ⊕ ρ′↓cm ‖cp‖m[[[Γm ⊕ ρ↑cp‖cm‖P1{{↑ v := ↑ cp}} | P2]]] | n[[[Γn‖cn‖Q]]] | R1{{↓ v′ := ↓ cm}} | R2]]]

if ↑ cp(Γm) 
 ρ � ↓ cm(Γp) 
 ρ′

Communication

(Local)
(x̃ : ϕ̃)�.P

∣
∣ 〈M̃〉�.Q −→ P{x̃ := M̃} | Q

(input ↓-↑)

m[[[Γm‖cm‖(x̃ : ϕ̃)↓cn .P
∣
∣ n[[[Γn‖cn‖〈M̃〉↑cm .Q | R]]] | S]]]
−→

m[[[Γm‖cm‖P{x̃ := M̃} ∣
∣ n[[[Γn‖cn‖Q | R]]] | S]]]

(output ↓-↑)

m[[[Γm‖cm‖〈M̃〉↓cn .P
∣
∣ n[[[Γn‖cn‖(x̃ : ϕ̃)↑cm .Q | R]]] | S]]]

−→
m[[[Γm‖cm‖P

∣
∣ n[[[Γ‖cn‖Q{x̃ := M̃} | R]]] | S]]]

Structural Rules

(struct)
P ≡ P ′, P ′ −→ Q′, Q′ ≡ Q

P −→ Q

(context)
P −→ Q

E{P} −→ E{Q}
Evaluation Contexts

E ::= {·} | E|P | P |E | (νννn)E | α[[[Γ‖c‖E]]]



128 E. Bonelli et al.

communication type is shh). We cannot, however, do away completely with the
(co-)capabilities since, in contrast to the aforementioned port prefixes, they may
be sent as messages.

The reduction relation is given by three groups of rules: mobility, communica-
tion and structural. The structural rules are standard. Before describing mobility
and communication, we need some definitions given in Table 3.

The join of communication types (ρ 	 ρ′) and the preorder on them (ρ 
 ρ′)
simply state that shh is smaller than any other communication type.

The addition of an expression ρη to a local view Γ (Γ ⊕ ρη) changes Γ only
if ρ is a tuple of basic types, i.e. if ρ �= shh. Notice that only in this last case ρη

is a located type.
The application of a location η to a located type τ (η(τ)) returns either the

communication type of τ or shh according to whether the location of τ is η or
not. The application of a location η to a local view Γ (η(Γ )) is the join of the
applications of η to the located types in Γ . So η(Γ ) is different from ⊥ only if
Γ contains at most one located type whose location is η; η(Γ ) is shh when Γ
contains no located type whose location is η.

The location substitution ({η := η′}) replaces locations as superscripts of
input and output prefixes. They propagate on processes in the standard way but
they never cross ambient boundaries.

The mobility rules consist of (Enter) and (exit). Since they may both
be explained along similar lines, we discuss only the former. The (Enter) rule
allows an ambient n to enter a sibling ambient m. Once n has entered m, com-
munication may take place. However, this requires that n directs its messages
through m’s communication port (namely cm) and, likewise, that m directs its
messages through n’s communication port (namely cn). Since n may not know
the name of m’s communication port, the capability inC(v : ρ) m and the co-
capability inC(v′ : ρ′) provide port variables v and v′ for such communication
ports to be made available to the interested parties.

Note that the type of the information that may be exchanged on the port
is also provided at run-time so that n and m may use compatible topics of
conversation. Indeed, as a consequence of n entering m, the local views of both
ambients are updated. Since this takes place at run-time, appropriate checks are
required in order to guarantee that such extensions are sound. This is the role
of the condition ↑ cm(Γn) 	 ρ 
 ↓ cn(Γm) 	 ρ′. This condition may be explained
as follows:

1. First notice that ↑ cm(Γn) 	 ρ must be defined, since 
 is a partial relation
between communication types. This implies that the new communication
type ρ with location ↑ cm to be added to the local view Γn is compatible with
any existing located type in Γn. A similar comment applies to ↓ cn(Γm)	ρ′.

2. Assuming ρ1 = ↑ cm(Γn) 	 ρ and ρ2 = ↓ cn(Γm) 	 ρ′, the condition ρ1 
 ρ2
checks to see whether n and m agree on a topic of conversation. Note that
n may safely avoid listening to m but not vice-versa.

The following example shows why children can safely avoid to listen to par-
ents but not vice-versa, i.e. why the condition ρ2 
 ρ1 is unsafe.
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Take the process

p[[[∅‖c‖inC(v1 : shh) | inC(v2 : amb).〈q〉↓v2]]]
| m[[[cap↑c‖c′‖inC(v : cap) p | (x : cap)↑c.P ]]] | n[[[∅‖c′‖inC(v′ : amb) p ]]]

Using rule (enter) with the pre-order condition reversed this process might
reduce first to

p[[[∅‖c‖inC(v2 : amb).〈q〉↓v2 | m[[[cap↑c‖c′‖(x : cap)↑c.P ]]]]]] | n[[[∅‖c′‖inC(v′ : amb) p ]]]

and then to

p[[[amb↓c′‖c‖〈q〉↓c′ | m[[[cap↑c‖c′‖(x : cap)↑c.P ]]] | n[[[amb↑c‖c′‖ ]]]]]]

and in this last process a wrong communication of an ambient name when a
capability is expected could occur.

Notice that with the sound rule (enter) the initial process only reduces to

p[[[amb↓c′‖c‖inC(v1 : shh) | 〈q〉↓c′ | n[[[amb↑c‖c′‖]]]]]] | m[[[cap↑c‖c′‖inC(v : cap) p | (x : cap)↑c.P ]]]

i.e. only ambient n is allowed to go inside ambient p.
Thanks to the structural congruence between prefixes and (co-)capabilities,

the standard enter and exit rules are mimicked by (enter) and (exit), respec-
tively. For example, the following (standard enter) rule:

n[[[Γn‖cn‖in m.P1 | P2]]]
∣
∣ m[[[Γm‖cm‖in.Q1 | Q2]]]

−→
m[[[Γm‖cm‖n[[[Γn‖cn‖P1 | P2]]] | Q1 | Q2]]]

if ↑ cm(Γn) 
 ↓ cn(Γm)

may be simulated by (enter). Indeed, if v, v′ are any port variables such that
v /∈ fv(P1) and v /∈ fv(Q1), then since in m.P1 ≡ inC(v : shh) m .P1 and
in.Q1 ≡ inC(v : shh).Q1, by applying (enter) we obtain

m[[[Γm ⊕ shh↓cn‖cm‖n[[[Γn ⊕ shh↑cm‖cn‖P1{{↑ v := ↑ cm}} | P2]]] | Q1{{↓ v′ := ↓ cn}} | Q2]]]

Note that P1{{↑ v := ↑ cm}} = P1 and Q1{{↓ v′ := ↓ cn}} = Q1. Also, Γm⊕shh↓cn =
Γm and Γn ⊕ shh↑cm = Γn (cf. Table 3).

As for the communication rules, the local communications are standard, while
the parent-child communications require the knowledge of the partner commu-
nication port, as already discussed in the introduction.

3 Typing Rules

The typing environment is very simple: it says if a variable stands for an ambient
name or a capability.

Environments
Σ ::= ∅ empty environment

| Σ, x : ϕ environment

In the sequel, we only consider typing environments that assign a unique type
to each name in its domain. The typing rules define two judgements:
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Table 5. Well-formed Messages

(amb)
n ∈ N

Σ � n : amb

(axiom)

Σ, x : ϕ � x : ϕ

(cap-in -out)

C ∈ {in, out}

Σ � C : cap

(cap-in -out )
Σ � α : amb C ∈ {in α, out α}

Σ � C : cap

(cap-comp)
Σ � C : cap Σ � D : cap

Σ � C.D : cap

– Σ � M : ϕ, read “M is a well-formed message of type ϕ”.
– Σ �c P : Γ , read “P is a well-formed process assuming the local commu-

nication interface of its host consists of the communication port c and the
local view Γ”.

The typing rules for the first judgements appear in Table 5.
In contrast to other systems, the (amb) rule assigns an ambient name the con-

stant type amb rather than a more informative type as in the majority of systems
[15]. Indeed, more informative types presuppose the availability of (global) in-
formation on the type of ambients. In our setting based on local views the only
assumption we make is that we can identify an ambient name when we see one.

The (cap-in -out ) and (cap-in -out) rules are also simpler than in formulations
based on global knowledge of the communication types of ambients, since the
corresponding control is delegated to run-time.

The (axiom) and (cap-comp) rules are standard.
The rules defining the judgement Σ �c P : Γ are given in Table 6.

Regarding the typing rule (0), since 0 does not interact with its host it may
be typed under a communication interface consisting of any port name c and
interface view Γ proviso Γ is ok , i.e. η(Γ ) �= ⊥ for all η, and each port variable
occurs at most once in Γ .

The rule for replication (proc-rep) is standard, however (proc-res) is not.
Usually, the name n together with its type is assumed to belong to the global
environment Σ. However, in our local setting all we know is that n is an ambient
name.

The rule for parallel composition (proc-comp) is also standard.
The typing rule (proc-cap) reveals that all what is known about a capability

is that it is just a capability. Since we rely only on local information we shall
relegate the correct use of capabilities at run-time.

A process of the form inC(v : ρ) α .P is well-formed under the assumption
that the host ambient has local view Γ , if P is well-formed under the assumption
that the host ambient has local view Γ ⊕ ρ↑v. Thus, the prefix inC(v : ρ) α
allows its host ambient to extend its local knowledge and hence be ready to
communicate with arbitrary ambients willing to enter. Note that this prefix binds
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Table 6. Well-formed Processes

(0)
Γ ok

Σ �c 0 : Γ

(proc-rep)
Σ �c P : Γ

Σ �c!P : Γ

(proc-res)
Σ �c P : Γ

Σ �c (νννn)P : Γ

(proc-comp)
Σ �c P1 : Γ Σ �c P2 : Γ

Σ �c P1 | P2 : Γ

(proc-cap)
Σ � C : cap Σ �c P : Γ

Σ �c C.P : Γ

(proc-inC-outC)

Σ �c P : Γ ⊕ ρ↑v π ∈ {inC(v : ρ) α , outC(v : ρ) α }

Σ �c π.P : Γ

(proc-coinC-cooutC)

Σ �c P : Γ ⊕ ρ↓v π ∈ {inC(v : ρ), outC(v : ρ)}

Σ �c π.P : Γ

(proc-input)
Σ, x1 : ϕ1, . . . , xk : ϕk �c P : Γ (ϕ1 × . . . × ϕk)η ∈ Γ

Σ �c (x1 : ϕ1, . . . , xk : ϕk)η.P : Γ

(proc-output)
Σ �c P : Γ Σ � Mi : ϕi (1 ≤ i ≤ k) (ϕ1 × . . . × ϕk)η ∈ Γ

Σ �c 〈M1, . . . , Mk〉η.P : Γ

(proc-amb)

Σ �c′ P : Γ ′ Σ � β : amb ↑ c(Γ ′) � ↓ c′(Γ ) Γ ′ is closed Γ is ok

Σ �c β[[[Γ ′‖c′‖P ]]] : Γ

the free occurrences of the port variable v in P . The typing of the other prefixes
mentioned in rules (proc-inC-outC) and (proc-coinC-cooutC) is similar.
The difference between these two rules is that in the first one the process shall
communicate with a new host ambient, whereas in the second one the process
shall communicate with a newly entering child ambient.

The (proc-input) and (proc-output) request that the type of the infor-
mation that is exchanged together with its location must belong to the local
view of the host ambient.



132 E. Bonelli et al.

The (proc-amb) rule may be interpreted as follows. In order for β[[[Γ ′‖c′‖P ]]]
to be considered a well-formed process under a host ambient whose communi-
cation interface consists of a port c and a local view Γ , it must be satisfied
that:

1. process P is well-formed under a host ambient whose communication inter-
face consists of port c′ and local view Γ ′, where β must be an ambient name
or an ambient variable;

2. either β[[[Γ ′‖c′‖P ]]] does not communicate with its host ambient or the type of
the information exchange between it and its host ambient must be the same
(condition ↑ c(Γ ′) 
 ↓ c′(Γ ));

3. no free port variables should occur in Γ ′, i.e. Γ ′ should be closed;
4. the local view Γ of the host ambient must be ok .

The example considered on page 129 shows why we do not allow β[[[Γ ′‖c′‖P ]]]
to offer a communication to its host ambient when the host ambient does not
communicate along the port c′. In fact, the process

p[[[∅‖c‖inC(v : amb).〈q〉↓v | m[[[cap↑c‖c′‖(x : cap)↑c.P ]]]]]] | n[[[∅‖c′‖inC(v′ : amb) p ]]]

is typable by replacing the condition ↑ c′(Γ ) 
 ↓ c(Γ ′) to ↑ c(Γ ′) 
 ↓ c′(Γ ) in
rule (proc-amb).

The type system guarantees that communication inside ambients and across
ambient boundaries never leads to type mismatches. This is formalized as:

Theorem 1 (Subject Reduction). If Σ �c P : Γ and P −→ Q, then Σ �c

Q : Γ .

4 Behavioral Semantics

In order to study the behavioral semantics of BACI we define an intuitive notion
of barbed congruence [25,17] based on the unlabelled reduction semantics given
in Table 4. We then introduce a labelled transition semantics inspired by [20,
22,7] and state that it coincides with unlabelled reduction. Finally, we define a
notion of labelled bisimilarity and show that it is sound with respect to barbed
congruence. The immediate benefit is that the co-inductive nature of bisimilarity
can be exploited by putting the vast body of proof techniques to work in order
to reason about barbed congruence. Note that in this short presentation we omit
the global environment Σ, the host port c and the local view Γ over which the
relations on well-formed processes are indexed by.

Since BACI has co-capabilities and allows parent-child communications
there are several reasonable choices of barbs, among which we have:

P ↓1
n � P ≡ (νννm̃)(n[[[Γ‖c‖in.Q | R]]] | S) (1)

P ↓2
n � P ≡ (νννm̃)(n[[[Γ‖c‖inC(v : ρ).Q | R]]] | S) (2)

P ↓3
〈c,c′〉 � P ≡ (νννm̃)(n[[[Γ‖c‖(x1 : ϕ1, . . . , xk : ϕk)↑c′

.Q | R]]] | S) (3)

P ↓4
〈c,c′〉 � P ≡ (νννm̃)(n[[[Γ‖c‖〈M1, . . . , Mk〉↑c′

.Q | R]]] | S) (4)
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provided that n �∈ m̃ in (1) and (2). In order to observe whether a process P
may interact with the environment via some ambient name n or via a pair of
port names 〈c, c′〉, it must be placed in a context that presents an ambient that
attempts to enter it or to communicate with it.

We write P ⇓n (P ⇓〈c,c′〉) if P =⇒ P ′ and P ′ ↓n (P ↓〈c,c′〉), where =⇒ is the
reflexive and transitive closure of −→.

The notions of observational congruence induced by the above definitions of
barb are standard in ambient calculi.

Definition 1. A relation R is reduction closed if PRQ and P −→ P ′ imply the
existence of some Q′ such that Q =⇒ Q′ and P ′RQ′. R is barb preserving if
PRQ and P ↓n (P ↓〈c,c′〉) imply Q⇓n (Q⇓〈c,c′〉).

Definition 2 (Reduction Barbed Congruence). Reduction barbed congru-
ence is the largest equivalence relation that is preserved by contexts and, when
restricted to closed processes, is reduction closed and barb preserving. Let then
∼=i be the reduction barbed congruence relation from choosing the notion of ob-
servation as in (i) above (with i ∈ [1..4]).

Notice that since we only consider processes which are well-formed, a relation
R is preserved by contexts if PRQ and C[P ] well-formed imply C[Q] well-formed
and C[P ]RC[Q], for all processes P , Q and contexts C[·].

As expected the above congruencies coincide, so we can denote barbed con-
gruence for BACI simply by ∼=.

Lemma 1 (Independence from barbs). ∼=i = ∼=j for all i, j ∈ [1..4].

Proof. We need to show that all barbs imply each other. This can be accom-
plished, as usual, by exhibiting a corresponding context. For instance, to see
that ∼=2 implies ∼=3 use the context C[·] = m[[[Γ‖c′‖[·] | 〈M̃〉↓c.inC(v : ρ)]]],
and note that for all P such that m is fresh in P one has P ⇓3

〈c,c′〉 if and
only if C[P ] ⇓2

m. A suitable context to show that ∼=4 implies ∼=1 is C[·] =
p[[[Γ‖c‖(νννq)(q[[[∅‖cq‖[·] | m[[[∅‖cm‖in n.out n.out q]]] | out]]]) | out.〈M̃〉↑c′

]]], and similarly
for the other cases.

Notice that processes with different types can be distinguished irrespective
of their purely behavioural properties. This means that if two processes P and
Q cannot be typed with the same Γ (w.r.t. a given c), they cannot be congruent.
In fact, if Σ �c P : Γ but Σ �c Q : Γ does not hold we can find a context C[·]
such that C[P ] is a (well-formed) process while C[Q] is not. A suitable context
is simply n[[[Γ ′‖c‖π.[·]]]], where Γ ′ is the maximum subset of Γ which is closed,
and π contains (in any order) exactly the set of actions {inC(v : ρ) m | ρ↑v}
and the set of co-actions {inC(v : ρ) | ρ↓v}. For that reason, type equality is not
required per se for the definition of barbed congruence.



134 E. Bonelli et al.

4.1 Algebraic Laws

This section presents some algebraic laws that better portray the semantics of
processes in BACI. These and other laws can be proved by means of the labelled
bisimilarity developed in the next section.

The laws holding in BACI which deal with mobility are very similar to those
true for the NBA calculus [7], so we will not discuss them.

Instead BACI’s refined treatment of communication using port names allows
to get quite interesting laws concerning input-output. For example, an ambient
only willing to communicate with its father but using a “wrong” port name is
dead, i.e. we have the following garbage collection laws:

n[[[Γn‖cn‖m[[[Γm‖cm‖(x̃ : ϕ̃)↑c.P ]]] | Q]]] ∼= n[[[Γn‖cn‖Q]]]

n[[[Γn‖cn‖m[[[Γm‖cm‖〈M̃〉↑c.P ]]] | Q]]] ∼= n[[[Γn‖cn‖Q]]]

In NBA a communication parent-child can be forced only if it is the only
active process inside both ambients. In BACI instead there can be other active
processes provided that they do not know the port name of the communication
partner and some ambient names do not occur in some processes and/or they are
restricted. The conditions on port names avoid interfering communications and
the conditions on ambient names avoid interfering movements. In particular in
the third group of equivalencies R cannot contain m since otherwise an ambient
inside R could exit m and communicate the port cm to process S. More precisely
we have:
if cm does not occur in R

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖〈M̃〉↑cn .P ]]] | (x̃ : ϕ̃)↓cm .Q | R]]])
∼=

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖P ]]] | Q{x̃ := M̃} | R]]])

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖(x̃ : ϕ̃)↑cn .P ]]] | 〈M̃〉↓cm .Q | R]]])
∼=

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖P{x̃ := M̃}]]] | Q | R]]])

if cn and n do not occur in R

n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖〈M̃〉↑cn .P | R]]]) | (x̃ : ϕ̃)↓cm .Q]]]
∼=

(νννm)(n[[[Γn‖cn‖m[[[Γm‖cm‖P | R]]]) | Q{x̃ := M̃}]]]
n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖(x̃ : ϕ̃)↑cn .P | R]]]) | 〈M̃〉↓cm .Q]]]

∼=
n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖P{x̃ := M̃} | R]]]) | Q]]]
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Table 7. Labels and Outcomes

Pre-prefixes κ ::= in n | out n | in | inC(c : ρ) n | outC(c : ρ) n | inC(c : ρ)
Prefixes µ ::= κ | 〈M̃〉η | outC(c : ρ) | out
Labels ξ ::= τ | µ | 〈−̃〉η | n[[[Γn‖cn‖κ]]] | M̃ get (cm, cn) | put (cm, cn)
Concretions K ::= (νννp̃)〈〈P 〉〉Q | (νννp̃)〈〈M̃〉〉P
Outcomes O ::= P | K

if cm, m do not occur in S and cn, n, m do not occur in R

(νννn)(n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖〈M̃〉↑cn .P | R]]]) | (x̃ : ϕ̃)↓cm .Q | S]]])
∼=

(νννn)(νννm)(n[[[Γn‖cn‖m[[[Γm‖cm‖P | R]]]) | Q{x̃ := M̃} | S]]])

(νννn)(n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖(x̃ : ϕ̃)↑cn .P | R]]]) | 〈M̃〉↓cm .Q | S]]])
∼=

(νννn)(n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖P{x̃ := M̃} | R]]]) | Q | S]]])

4.2 Labelled Transition Semantics

This section presents a labelled transition semantics (LTS) and proves that it
coincides with reduction. It is the first step towards a characterization of reduc-
tion barbed congruence in terms of labelled bisimulation. The LTS is given in
Tables 8, 9 and 10. These tables define the labelled transition relation

P
ξ−→ O

where P is a process, ξ is a label and O is an “outcome”. Labels and outcomes
are defined in Table 7.

An outcome may be a process or a concretion. Concretions are required for
dealing with transitions of components of the system that interact with the envi-
ronment in order to be completed. Indeed, they prove convenient for formulating
the silent transitions. In the concretion (νννp̃)〈〈P 〉〉Q, the process P is the part of the
system that interacts with the environment. For example, to complete an in n
transition, the sibling ambient which hosts the entering one must be requested
from the context. Likewise, in the concretion (νννp̃)〈〈M̃〉〉Q, the message M̃ is the
part of the system that interacts with the environment. This outcome is required
only for the case of the transition for message output. In both cases, Q represents
the remaining part of the process that is not affected by the transition.
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Table 8. Commitments: Visible transitions

(cap)

M ∈ {in n, out n, in, out}

M.P
M−→ P

(path)

M1.(M2.P )
ξ−→ P ′

(M1.M2).P
ξ−→ P ′

(capC)
ζ ∈ {inC, outC}

ζ(v : ρ) n .P
ζ(c:ρ) n−→ P{{↑ v := ↑ c}}

(co-capC)

ζ ∈ {inC, outC}

ζ(v : ρ).P
ζ(c:ρ)−→ P{{↓ v := ↓ c}}

(in-out)

P
ξ−→ P ′ ξ ∈ {in n, out n}

m[[[Γm‖cm‖P ]]]
m[[[Γm‖cm‖ξ]]]−→ 〈〈m[[[Γm‖cm‖P ′]]]〉〉0

(co-in)

P
ξ−→ P ′ ξ ∈ {in, inC(c : ρ)}

m[[[Γm‖cm‖P ]]]
m[[[Γm‖cm‖ξ]]]−→ 〈〈P ′〉〉0

(inC-outC)

P
ξ−→ P ′ ξ ∈ {inC(c : ρ) n, outC(c : ρ) n} Γm ⊕ ρ↑c ok

m[[[Γm‖cm‖P ]]]
m[[[Γm‖cm‖ξ]]]−→ 〈〈m[[[Γm ⊕ ρ↑c‖cm‖P ′]]]〉〉0

(input)

(x̃ : ϕ̃)η.P
(M̃)η

−→ P{x̃ := M̃}

(output)

〈M̃〉η.P
〈−〉η

−→ 〈〈M̃〉〉P

(get)

P
(M̃)↑c

−→ P1

m[[[Γm‖cm‖P ]]]
M̃ get (cm,c)−→ m[[[Γm‖cm‖P1]]]

(put)

P
〈−〉↑c

−→ (νννp̃)〈〈M̃〉〉P1

m[[[Γm‖cm‖P ]]]
put (cm,c)−→ (νννp̃)〈〈M̃〉〉m[[[Γm‖cm‖P1]]]

The structural congruence relation for concretions is obtained by extending
the homonymous relation for processes with the following axioms and rules:

(νννr)((νννp̃)〈〈P 〉〉Q) ≡ (νννr, p̃)〈〈P 〉〉Q
(νννr)((νννp̃)〈〈M̃〉〉P ) ≡ (νννr, p̃)〈〈M̃〉〉P

P ≡ P ′ and Q ≡ Q′ =⇒ (νννp̃)〈〈P 〉〉Q ≡ (νννp̃)〈〈P ′〉〉Q′

P ≡ P ′ =⇒ (νννp̃)〈〈M̃〉〉P ≡ (νννp̃)〈〈M̃〉〉P ′
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Also, we use the following notational conventions:

– ((νννp̃)〈〈P 〉〉Q) | R = (νννp̃)〈〈P 〉〉(Q | R)
– ((νννp̃)〈〈M̃〉〉P ) | R = (νννp̃)〈〈M̃〉〉(P | R)

The transitions are inspired by those of NBA [7]. The τ transitions for mes-
sage exchanges are (τ-exchange) for local exchange and (τ-put) and (τ-get)
for non-local exchange. For example, in (τ-put) the directed output action to-
wards the child ambient must be met by a corresponding input action from the
child. Rule (get) makes sure that this input action is executed inside some am-
bient whose local communication port coincides with the one specified in the
output action.

The τ transitions for mobility are (τ-enter), (τ-enterC), (τ-exit), (τ-
exitC). Since these are similar in spirit we shall discuss only (τ-enterC). Rule
(τ -enterC) is in charge of synchronizing two actions, namely the request of
an ambient to enter a host ambient with the action witnessing the approval
(by means of an appropriate co-capability) on the part of the host ambient.
Therefore, the label of the first action is n[[[Γn‖cn‖inC(cm : ρ) m ]]] while that
of the second is m[[[Γm‖cm‖inC(cn : ρ′)]]]. The former tells of the name and local
interface information of the moving ambient and the latter does the same for
the host ambient. The process that actually moves is represented by P1 in the
concretion resulting from the first action while Q1 represents the process that
shall run alongside the visiting ambient. The processes P2 and Q2 are the sub-
components of P and Q, respectively, that do not participate in the movement.
Note that the third premise of the rule (τ-enterC) corresponds to the dynamic
type checking that we discussed for reduction.

As expected, unlabelled reduction and labelled reduction coincide. Both items
of Theorem 2 are proved by induction on the derivation of the antecedent. More-
over, item 2 requires the following lemma that relates labelled reduction and
structural congruence, for the case when the derivation is obtained using the
rule (struct).

Lemma 2. If P
ξ−→ O and P ≡ Q, then there exists O′ such that Q

ξ−→ O′

and O ≡ O′.

Theorem 2.

1. If P
τ−→ P ′, then P −→ P ′.

2. If P −→ P ′, then P
τ−→≡ P ′, where τ−→≡ denotes the composition of the

relations τ−→ and ≡.

By comparing the notion of observability (cf. the definition of barbs) with the
rules of Table 8 and in particular with rule (co-in) one can easily see that a name
is observable iff at least one of the two actions n[[[Γ‖c‖in]]] or n[[[Γ‖c‖inC(c′ : ρ)]]]
can be performed. In particular,

Lemma 3. P ↓1
n iff P

n[[[Γ‖c‖in]]]−→ (νννp̃)〈〈Q〉〉R for some Γ , c, p̃, Q, R.

A similar observation applies to rules (get), (put) and the observability of
pairs of port names (cf. barbs (3) and (4) above). Thanks to Lemma 1 we only
need to consider one notion of barb.
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Table 9. Commitments: τ transitions

(τ -enter)

P
n[[[Γn‖cn‖in m]]]−→ (νννp̃)〈〈P1〉〉P2 Q

m[[[Γm‖cm‖in]]]−→ (νννq̃)〈〈Q1〉〉Q2 ↑ cm(Γn) � ↓ cn(Γm)

P | Q
τ−→ (νννp̃, q̃)(m[[[Γm‖cm‖Q1 | P1]]] | P2 | Q2)

(τ -enterC)

P
n[[[Γn‖cn‖inC(cm:ρ) m ]]]−→ (νννp̃)〈〈P1〉〉P2 Q

m[[[Γm‖cm‖inC(cn:ρ′)]]]−→ (νννq̃)〈〈Q1〉〉Q2

↑ cm(Γn) 
 ρ � ↓ cn(Γm) 
 ρ′

P | Q
τ−→ (νννp̃, q̃)(m[[[Γm ⊕ ρ′↓cn‖cm‖Q1 | P1]]] | P2 | Q2)

(τ -exit)

P
n[[[Γn‖cn‖out m]]]−→ (νννp̃)〈〈P1〉〉P2 Q

out−→ Q1 ↑ cq(Γn) � ↓ cn(Γq)

q[[[Γq‖cq‖m[[[Γm‖cm‖P ]]] | Q]]] τ−→ (νννp̃)(q[[[Γq‖cq‖m[[[Γm‖cm‖P2]]] | P1 | Q1]]])

(τ -exitC)

P
n[[[Γn‖cn‖outC(cq :ρ) m ]]]−→ (νννp̃)〈〈P1〉〉P2 Q

outC(cn:ρ′)−→ Q1 ↑ cq(Γn) 
 ρ � ↓ cn(Γq) 
 ρ′

q[[[Γq‖cq‖m[[[Γm‖cm‖P ]]] | Q]]] τ−→ (νννp̃)(q[[[Γq ⊕ ρ′↓cn‖cq‖m[[[Γm‖cm‖P2]]] | P1 | Q1]]])

(τ -exchange)

P
(M̃)�

−→ P1 Q
〈−〉�

−→ (νννq̃)〈〈M̃〉〉Q1

P | Q
τ−→ (νννq̃)(P1 | Q1)

(τ -put)

P
〈−〉↓cm−→ (νννp̃)〈〈M̃〉〉P1 Q

M̃ get (cn,cm)−→ Q1

n[[[Γn‖cn‖P | Q]]] τ−→ (νννp̃)n[[[Γn‖cn‖P1 | Q1]]]

(τ -get)

P
(M̃)↓cm−→ P1 Q

put (cm,cn)−→ (νννq̃)〈〈M̃〉〉Q1

n[[[Γn‖cn‖P | Q]]] τ−→ (νννq̃)(n[[[Γn‖cn‖P1 | Q1]]])

4.3 Full Bismilarity and Its Soundness

This section defines a notion of labelled bisimilarity and shows that it is sound
with respect to reduction barbed congruence. Labelled bisimilarity requires
checking when two processes produce equal observable actions. The problem
is that the current definition of labelled reduction may produce a concretion in-
stead of a process. This situation is remedied by introducing higher-order (HO)
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Table 10. Commitments: Structural transitions

(par)

P
ξ−→ O

P | Q
ξ−→ O | Q

(res)

P
ξ−→ O n /∈ fn(ξ)

(νννn)P
ξ−→ (νννn)O

(τ -amb)

P
τ−→ P ′

n[[[Γ‖c‖P ]]] τ−→ n[[[Γ‖c‖P ′]]]

(Repl)

π.P
ξ−→ O

!π.P
ξ−→!π.P | O

transitions [22] for those labelled transitions of Table 8 that produce a concretion
as an outcome.

The HO-transitions are given in Table 11. In these transitions we use richer
labels obtained by adding to the previous labels ξ a new component which can
be of one of the following five shapes:

– P ;
– [[[Γ‖c‖P ]]];
– n[[[Γ‖c‖P ]]];
– [[[Γ‖c‖P ]]]n[[[Γ ′‖c′‖Q]]];
– n[[[Γ‖c‖P ]]] | Q.

This component describes the minimum contribution of the context necessary
to fire the transition. For example in rule (HO Out) the context must provide
both the 3 components (local view, port and process) of the ambient n from
which the process P1 exits and in which the process P2 remains and the whole
ambient q in which the process P1 enters.

For HO transitions we get the following version of Lemma 3:

Lemma 4. P ↓1
n iff P

n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]−→ (νννp̃)(n[[[Γ‖c‖Q | m[[[∅‖c′‖0]]]]]] | R) for all
m, c′ and for some Γ , c, p̃, Q, R.

As last step towards defining labelled bisimilarity, let Λ denote the set of
labels that includes both the first order labels defined in Tables 8 and 10 and
the HO ones of Table 11. In the following notational convention we let λ range
over Λ. Let =⇒ denote the reflexive and transitive closure of τ−→.

1. λ=⇒ denotes =⇒ λ−→=⇒.
2. λ̂=⇒ denotes =⇒ if λ = τ and λ=⇒ otherwise.

Definition 3 (Bisimulation). A symmetric relation R over closed processes
is a bisimulation if PRQ and P

λ−→ P ′ imply there exists Q′ such that
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Table 11. Commitments: Higher-Order transitions

(HO In)

P
m[[[Γm‖cm‖in n]]]−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) � ↓ cm(Γn)

P
m[[[Γm‖cm‖in n]]][[[Γn‖cn‖Q]]]−→ (νννp̃)(n[[[Γn‖cn‖P1 | Q]]] | P2)

(HO InC)

P
m[[[Γm‖cm‖inC(cn:ρ) n ]]]−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) 
 ρ � ↓ cm(Γn)

P
m[[[Γm‖cm‖inC(cn:ρ) n ]]][[[Γn‖cn‖Q]]]−→ (νννp̃)(n[[[Γn‖cn‖P1 | Q]]] | P2)

(HO Co-In)

P
n[[[Γn‖cn‖in]]]−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) � ↓ cm(Γn)

P
n[[[Γn‖cn‖in]]]m[[[Γm‖cm‖Q]]]−→ (νννp̃)(n[[[Γn‖cn‖P1 | m[[[Γm‖cm‖Q]]]]]] | P2)

(HO Co-InC)

P
n[[[Γn‖cn‖inC(cm:ρ)]]]−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) � ↓ cm(Γn) 
 ρ

P
n[[[Γn‖cn‖inC(cm:ρ)]]]m[[[Γm‖cm‖Q]]]−→ (νννp̃)(n[[[Γn‖cn‖P1 | m[[[Γm‖cm‖Q]]]]]] | P2)

(HO Out)

P
m[[[Γm‖cm‖out n]]]−→ (νννp̃)〈〈P1〉〉P2 ↑ cq(Γm) � ↓ cm(Γq)

P
m[[[Γm‖cm‖out n]]][[[Γn‖cn‖Q]]]q[[[Γq‖cq‖R]]]−→ (νννp̃)(q[[[Γq‖cq‖P1 | n[[[Γn‖cn‖P2 | Q]]] | R]]])

(HO OutC)

P
m[[[Γm‖cm‖outC(cn:ρ) n ]]]−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) 
 ρ � ↓ cm(Γn)

P
m[[[Γm‖cm‖outC(cn:ρ) n ]]][[[Γn‖cn‖Q]]]q[[[Γq‖cq‖R]]]−→ (νννp̃)(q[[[Γq‖cq‖P1 | n[[[Γn‖cn‖P2 | Q]]] | R]]])

(HO Output)

P
〈−〉η

−→ (νννp̃)〈〈M̃〉〉P ′ η ∈ {
, ↓ c}

P
〈−〉ηQ−→ (νννp̃)(P ′ | Q{x̃ := M̃})

(HO Put)

P
put (cm,cn)−→ (νννq̃)〈〈M̃〉〉P ′

P
put (cm,cn)Q−→ (νννq̃)(P ′ | Q{x̃ := M̃})

(HO Output↑)

P
〈−〉↑c

−→ (νννp̃)〈〈M̃〉〉P ′

P
〈−〉↑cm[[[Γm‖cm‖R]]] | Q−→ (νννp̃)(m[[[Γm‖cm‖P ′ | R]]] | Q{x̃ := M̃})
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– Q
λ=⇒ Q′ and

– P ′RQ′.

Two closed processes P and Q are bisimilar, written P ≈c Q, if PRQ for some
bisimulation R.

The definition of bisimulation is extended to arbitrary processes as usual:

Definition 4 (Full Bisimilarity). Two processes P and Q are fully bisimilar,
written P ≈ Q, if P s ≈c Qs for every closing substitution s that respects types.

Following the proof scheme of [22,7] we can show that full bisimilarity is
preserved by context.

Theorem 3. Full bisimilarity is a congruence.

Moreover from Lemma 4 it follows that:

Lemma 5. Full bisimilarity is barb preserving over closed processes.

Proof. Suppose P, Q are closed processes, P ≈c Q and P ↓1
n.

By Lemma 4 P
n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]−→ P ′ for all m, c′ and some Γ, c, P ′. As a conse-

quence Q
n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]

=⇒ Q′ for some Q′. In particular, there is a Q′′ such that

Q =⇒ Q′′ n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]−→ Q′. From Lemma 4 we deduce Q′′ ↓1
n and hence Q⇓1

n,
as required.

Finally, we prove the desired result that ≈ is contained in ∼=.

Theorem 4 (Soundness of Full Bisimilarity). If P ≈ Q then P ∼= Q.

Proof. It suffices to show that ≈ is a barbed bisimulation up to ≡ (since then it
follows that ≡≈≡ - ie. the composition of the relations ≡, ≈ and ≡ - is also a
barbed bisimulation and P ≈ Q and ≡≈≡⊆∼= imply P ∼= Q). This follows from
the fact that ≈:

1. is a congruence: Theorem 3.
2. is reduction closed on closed processes: Suppose P, Q are closed processes,

P ≈ Q and P −→ P ′. By Theorem 2, P
τ−→≡ P ′. Since P ≈ Q, there exists

Q′ such that Q =⇒ Q′ and P ′ ≡≈≡ Q′.
3. is barb preserving on closed processes: Lemma 5.

We conjecture incompleteness of ≈ for the same reason the authors of [7]
conjecture incompleteness of the full bisimilarity arising from a similar LTS
for NBA, namely the difficulty of finding a context which discriminates the
label 〈M̃〉↑c. We conjecture also that a LTS for BACI inducing a complete full
bisimilarity could be developed in the style of [7].
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5 Examples

In this section we sketch some examples in order to show the expressiveness of
BACI. Before doing so, we define the following auxiliary notation to make the
examples easier to read.

α�[[[Γ‖c‖P ]]] � α[[[Γ‖c‖!in | !out | P ]]]

This allows sibling and nested ambients of α to freely enter and exit. Note that
α� allows to enter either ambients which do not communicate with α or ambients
whose communication port name is already known by α�.

We convene not to write the types of the input variables since they are always
clear from the context.

5.1 Remote Printer

For this example we consider two networks (represented as ambients) called n1
and n2. Ambient n1 is the network where a client is located and n2 the one
where a printer is located. Although the client ignores the path to the printer
network, in n1 there is also a router, called r1to2, that knows the path to n2. For
simplicity, we place n1 and n2 at the same nesting level inside a larger ambient,
called inter . However, in general, n1 and n2 can be far from each other within
the nesting hierarchies.

INTERNET � inter�[[[∅‖c‖N1 | N2 ]]]

N1 � n1�[[[∅‖c1‖CLIENT | ROUTER]]]

N2 � n2�[[[∅‖c2‖PRINTER]]]

The idea is that the client sends a print job to PRINTER via ROUTER. A job
ambient should receive two parameters (data and printer name) from CLIENT
after releasing the job. After receiving the parameters, the job exits the client
and enter ROUTER. There, it shall receive the path to n2, where the printer is
located. After reaching n2, the job enters the printer and communicate the data
to be printed.

JOBcl � job[[[Γjob‖cj‖(d, p)↑ccl .out cl.in r1to2.(route)↑cr .route.in p.〈d〉↑cpr]]]
where Γjob � {(data × amb)↑ccl , cap↑cr , data↑cpr}

Notice that the job ambient is able to communicate with different parent ports
in different TOCs. Here, cj is the port of the job, ccl is the port of the client, cr

is the port of the router and cpr is the port of the printer.
CLIENT spawns the job and sends the data to be printed using the job

ambient. Then, the job is received by ROUTER which gives the job the route
to n2. Finally, the job enters PRINTER and delivers its data.

CLIENT � client1�[[[Γclient1‖ccl‖〈(d1, printer1)〉↓cj | ! JOBclient1]]]
where Γclient1 � {(data × amb)↓cj }
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ROUTER � r1to2�[[[cap↓cj ‖cr‖!〈(out r1to2.out n1.in n2)〉↓cj ]]]

PRINTER � printer1�[[[data↓cj ‖cpr‖! (d)↓cj ]]]

After delivering its data the job ambient becomes inactive and useless. Using
the algebraic properties we can show that job[[[Γjob‖cj‖0]]] ∼= 0 and therefore

printer1�[[[data↓cj ‖cpr‖! (d)↓cj | job[[[Γjob‖cj‖0]]]]]] ∼=
printer1�[[[data↓cj ‖cpr‖! (d)↓cj ]]]

All these garbage ambients that accumulate inside the printer ambient can be
safely discarded.

Since different ambients can have the same port name, more than one client
can have port name ccl and more than one server the port name cpr, even if the
ambients have different names. Moreover, we can add more clients and printers
without changing JOB or ROUTER.

N1’ � n1�[[[∅‖c1‖CLIENT | CLIENT’ | ROUTER]]]

N2’ � n2�[[[∅‖c2‖PRINTER | PRINTER’]]]

CLIENT’ � client2�[[[Γclient2‖ccl‖〈(d2, printer2)〉↓cj | ! JOBclient2]]]
where Γclient2 � {(data × amb)↓cj }

PRINTER’� printer2�[[[data↓cj ‖cpr‖! (d)↓cj ]]]

Having ccl as a port name for all clients and cpr for all servers allows any client to
use any available printer, and not just a particular one as in the previous example.
CLIENT’ can also use PRINTER’ by sending the message 〈(d2, printer2)〉↓cj

to the spawned job.
The routing in the previous example was relatively simple with only one

destination, only one route and only one router. How can we route a job to two
different networks, for instance, n2 and n3? Here, we can get the destination
network parameter from the client and use it to find the corresponding route.
However, we need some mechanism to determine if we choose the route for n2
or the route for n3 depending on that parameter. There are no control flow
primitives in the calculus similar to the test for equality found in π-calculus, for
instance. Nevertheless, we can instruct the client to send the name of the router
serving a given printer network (assuming we have a different router for each
destination network), but the client would need to know the relation between
the destination and the router that serves that destination. That is not very
tidy. Besides, we would need to change the job interface, which seems to be very
“natural” as it is. Another option is to take advantage of the locality of names
and use the same name for both the destination network and the router serving
the route to that destination. We now re-define the components of the system
according to these new requirements:

INTERNET � inter�[[[∅‖ci‖N1” | N2” | N3 ]]]

N1” � n1�[[[∅‖c1‖CLIENT | CLIENT’ | ROUTER | ROUTER’]]]
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N2” � n2�[[[∅‖c2‖PRINTER]]]

N3 � n3�[[[∅‖c3‖PRINTER’]]]

We moved one of the printers to network n3 to make the example more inter-
esting. With this setting, any client located on n1 should be able to send a job
to either the printer on n2 or the printer on n3. For this purpose, we change the
name of the existing router (routing jobs to n2) and also add a new router that
serves jobs heading to n3. Both routers have the same name as the routes they
serve. Using the same names, we don’t need to require the client to know the
name of the routers. This gives us a clean and natural representation. We have
to change the definition of JOB and the CLIENTs since in the previous example
the router name was “hard-coded” and now is a parameter given by the client.

JOBcl � job[[[Γjob‖cj‖(d, p, n)↑ccl .out cl.in n.(route)↑cr .route.in p.〈data〉↑cpr]]]
where Γjob � {(data × amb × amb)↑ccl , cap↑cr , data↑cpr}

CLIENT � client1�[[[Γclient1‖ccl‖〈(d1, printer1, n2)〉↓cj | ! JOBclient1]]]
where Γclient1 � {(data × amb × amb)↓cj }

CLIENT’ � client2�[[[Γclient2‖ccl‖〈(d2, printer2, n3)〉↓cj | ! JOBclient2]]]
where Γclient2 � {(data × amb × amb)↓cj }

Finally, we change the name of the routers and we add the new router which
has the same structure as the old one but with different route, of course.

ROUTER � n2�[[[cap↓cj ‖cr‖!〈(out n2.out n1.in n2)〉↓cj ]]]

ROUTER’ � n3�[[[cap↓cj ‖cr‖!〈(out n3.out n1.in n3)〉↓cj ]]]

The two orthogonal concepts of interfaces and names allow us to separate
the input/output from the mobility concerns. We can use the interfaces to group
several ambients with similar input/output abilities and, at the same time, we
can keep each ambient identity by using different ambient names for each of
them.

5.2 File Servers Cluster

This example represents some free download sites in which the user has a list of
servers to choose for his download. However, for this example, we require that
every time a customer requests a file download, the cluster designates one server
from all the available servers in the cluster (i.e. all the servers that are not serving
other clients) to serve that request. Additionally, we want a cluster administrator
to be able to execute some administrative operations like shutdown or power up
any particular server. For this reason, we assign a unique and distinctive name
to each server. However, we use a common port name and interface for all of
them to allow the cluster to communicate with all of them.

CLUSTER � cluster�[[[Γclu‖cclu‖LOAD BAL | SRV1 | SRV2 ]]]
where Γclu � {amb × Filename↓csrv}
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LOAD BAL �!(inC(vcl : (amb × Filename)).(clname, fn)↓vcl .〈clname, fn〉↓csrv )

The cluster includes all the servers (only two in this example) and the load
balancing mechanism. This mechanism allows a client to enter the cluster: the
cluster receives the client’s request that it forwards to any available server. Notice
that the client’s communication port is not known in advance to the cluster and
vice-versa. They are learned on the enter reduction, where the port names
replace the variables bound by inC and inC. Each server has two main sub-
processes: the service itself and the power management process. The SERVE
process receives the forwarded request from the cluster ambient, and then it
responds spawning a messenger ambient called job. This job reaches the client
and deliver the requested file. The acute reader will notice that, before receiving a
request, SERVE waits for an “on” message from the power management ambient
called pwr. The pwr ambient is used to inform the serving process that the server
is still on. We now show how to use this feature to “shutdown” a server.

SRV i � srvi�[[[Γsrvi‖csrv‖!(on)↓cpwr .SERVE | PWR]]]
where Γsrvi � {onMsg↓cpwr , amb × Filename↑cclu}

SERVE � (clname, fname)↑cclu .JOB

JOB � job[[[∅‖cj‖out srvi.inC(v : data) clname .(file(fname))↑v]]]

PWR � pwr[[[onMsg↑csrv‖cpwr‖!〈on〉↑csrv | in pwroff ]]]

The purpose of pwr is simple. If it is present inside a server, it enables the service
by continuously sending “on” messages. However, if it is not present, the server
is not able to listen (and respond) to a request. Therefore, in order to shut a
server down, the administrator should send a POWER OFF message to that
server.

POWER OFF (s) � pwroff�[[[∅‖cpoff‖in cluster.in s.in]]]

The pwr ambient would be locked inside pwroff after entering that ambient.
Once inside pwroff, pwr is rendered inoperative. In fact, using algebraic properties
we can show that

pwroff�[[[∅‖cpoff‖pwr[[[onMsg↑csrv‖cpwr‖!〈on〉↑csrv]]]]]] ∼= 0

and get rid of these garbage ambients.
Likewise, the administrator can restore the pwr ambient inside the server to
“power on” that server.

POWER ON (s) � pwron�[[[∅‖cpon‖in cluster.in s.TURN ON ]]]

TURN ON � pwr[[[onMsg↑csrv‖cpwr‖out pwron | !〈on〉↑csrv | in poweroff ]]]

Finally, we present a “generic” client. The clients are generic in the sense
that they do not need to know any of the port names in advance, all of them are
learned on execution. The only requirement is that the client is well behaved and
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it sends its own name in the request. A malicious client could send a different
name. However, this can only cause a response to be lost or sent to the wrong
client, which is unlikely since the malicious client needs to guess a correct client
name.

CLIENT � client�[[[Γcl‖cclient‖inC(vclu : (amb × Filename)) cluster .
〈client, afilename〉.inC(cj : data).(file)↓cj .P | Q]]]

This is the basic structure of a client ambient. The port name can be changed
without restrictions. Γcl , P and Q can be anything that does not have conflicting
types with the cluster and job ambients . The whole configuration looks like this:

SYSTEM � ADMIN | CLUSTER | CLIENTS

The ADMIN process could include processes like those in the power man-
agement and the CLIENTS are also placed (initially) outside the cluster. As we
have seen, they need to enter the cluster to get served.

6 Conclusions

We have presented a typed calculus of mobile ambients that features both local
and dynamic typing. Each ambient comes equipped with a local communication
interface consisting of a communication port and a local view indicating the type
of the information that may be exchanged over parent and children ports. Besides
the usual communication within an ambient, messages may be exchanged across
ambient boundaries. The type system guarantees that in this case the types of
the local ports of the sending and receiving ambients agree. Since communication
interfaces are local and ambients may migrate, ambients must be able to increase
their local knowledge of their surroundings. Therefore, the mobility rules allow
an ambient to learn the communication type of the local port which it enters.
Appropriate run-time checks are required so that the entering and the host
ambient agree on a topic of conversation. Among the novel aspects of BACI
are:

– Communicating ports. In contrast with previous ambient calculi, BACI uses
names for mobility and ports for communication.

– Named communication with parents. While in previous calculi communica-
tion with a parent was decided by the location of an ambient, in BACI, the
communication with a parent is indexed by the parent’s port, in a similar
way in which communication with a child is usually indexed. This new named
communication allows an ambient to communicate with different parents in
different types (TOCs).

– Finer control of non-determinism. The division between names and ports
introduces the ability to have non-determinism for mobility and determinism
for communication and vice-versa, while in previous calculi, that was not
possible.
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– Local typing. Having different TOCs with different parents allows control
over which parent can exchange information, while in previous calculi the
type of a communication with the parent remained fixed.

Although communication control is local this is not so for mobility. Mobility is
currently unrestricted and this poses the question if one might also include, in the
local knowledge of an ambient, some indication of whether the ambient is allowed
to move or not. Other items that warrant further work include: considering a
restriction operator on port names, considering multiple ports (possibly taking
dynamic port creation into account), matching and mismatching constructs and
group types in order to impose access control.
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