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Abstract. The logic of proofs is a refinement of modal logic introduced by
Artemov in 1995 in which the modality �A is revisited as [[t]]A where t is
an expression that bears witness to the validity of A. It enjoys arithmetical
soundness and completeness and is capable of reflecting its own proofs
(� A implies � [[t]]A, for some t). We develop the Hypothetical Logic of
Proofs, a reformulation of LP based on judgemental reasoning.
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1. Introduction

We propose a presentation of LP based on hypothetical reasoning with the
aim of contributing towards a novel reading of this logic in relation to pro-
gramming languages and type theory. We begin by explaining: (1) what LP is
(Sect. 1.1); (2) why it is worthwhile to explore its applications to programming
languages and type theory (Sect. 1.2); and (3) what we mean by a hypothetical
presentation (Sect. 1.3).

1.1. LP

The logic of proofs LP [5,6] is a logic in which the usual propositional connec-
tives are augmented by a new one: given a proof polynomial s and a proposi-
tion A, build [[s]]A. The intended reading is: “s is a proof of A”. A proof s is
represented as combinatory term (proof polynomial), constructed from proof
variables and constants using the operations: application “·”, proof-checker “!”
and plus “+”. More precisely, formulae and proof polynomials are given by the
following grammar:

A,B ::= P | ⊥ |A⊃B | [[s]]A
s, t ::= xA | c | s · t | !s | s+ t

A formula (A,B, . . .) is either a propositional variable (P,Q, . . .), the constant
for falsehood (⊥), an implication (A⊃B) or a modality ([[s]]A). The axioms
are specified by means of the following axiom schemes:

A0. Axioms of classical propositional logic in the language of LP
A1. [[s]]A⊃A (“verification”)
A2. [[s]](A⊃B) ⊃ ([[t]]A ⊃ [[s · t]]B) (“application”)
A3. [[s]]A ⊃ [[!s]][[s]]A (“proof checker”)
A4. [[s]]A ⊃ [[s+ t]]A (“plus”)
A5. [[t]]A ⊃ [[s+ t]]A

For verification one reads:“if s is a proof of A, then A holds”. For appli-
cation one reads: “if s is a proof of A⊃B and t is a proof of A, then s · t is
a proof of B”. Thus “·” represents composition of proofs. For proof checking
one reads: “if s is a proof of A, then !s is a proof of the sentence ‘s is a proof
of A’ ”. Thus !s is seen as a computation that verifies [[s]]A. For plus one reads:
“if s is a proof of A, then so is s+ t, regardless of the form of t”. The inference
schemes of LP are:
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R1. If � A⊃B and � A then � B (modus ponens).
R2. If A is an axiom A0-A5, and c is a proof constant, then � [[c]]A (necessi-

tation).

A constant specification (CS) is a finite set of formulas [[c1]]A1, . . . , [[cn]]An such
that ci is a constant, and Ai an axiom A0–A5. Each derivation in LP naturally
generates the CS consisting of all formulas introduced in this derivation by the
necessitation rule.

Among the notable properties of LP we find that of arithmetical sound-
ness and completeness [5,6]. This result was later extended to a fragment of
LP capturing provability in HA [4,10].

1.2. LP and Programming Languages

The fact that proof polynomials and formulae coexist suggest that there may
be computational interpretations of LP in which type derivations (certificates,
computation trails, etc.) may be combined with programs that manipulate
them in a uniform setting. Some steps in exploring this idea have already been
taken.

In [2] proof polynomials are seen to encode intentional information stating
how a result is obtained. A lambda calculus is synthesized from the Curry–
Howard isomorphism applied to a hypothetical presentation of an intuitionistic
fragment of LP (this paper, in contrast, studies classical LP and also deals
with the plus, thus encompassing full LP). Each reduction step in this lambda
calculus generates a trail. Confluence for this enriched lambda calculus then
not only states that computation is deterministic in terms of the standard
joinability condition, but also that joinability may be reached by means of
essentially performing the same amount of work. Indeed, if these trails are seen
as Lévy labels, then we obtain a fresh view on the standard strong confluence
result of the lambda calculus [14].

A different proposal is developed in [8] where proof polynomials are inter-
preted as certificates of typability for mobile code. Essentially, the well-known
Curry-Howard correspondence between IS4 and mobile computation (see [8]
for references) is extended to an intuitionistic fragment of LP obtaining a
lambda calculus that operates over certified mobile units, pairs consisting of
mobile code accompanied with a certificate. The type system also guarantees
well-formedness of certificate construction (see Sect. 8).

Another property of LP worthy of mention is that it is capable of internal-
ising its own proofs: � A implies there exists a proof polynomial s s.t. � [[s]]A.
Here s essentially reifies the derivation of � A into the object-logic. This sug-
gests that proof polynomials may be interpreted as the computation history.
The reason is that when such proof polynomials are internalized in our hypo-
thetical presentation, proof normalisation steps must also be reflected in order
to preserve subject reduction. If we additionally empower the programmer
to have access to these proof polynomials, then we can model history-based
access control, history-based information flow analysis and other security for-
malisms [7].
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Finally, an intuitionistic fragment of LP with disjunction and plus is
studied in [20] in terms of the Curry–Howard isomorphism. From that work
we draw our analysis of the typing schemes for the plus. That work, however,
does not address classical LP.

1.3. Hypothetical Reasoning for LP

Following [18] we distinguish the following judgements: “A is a proposition”
(“A proposition” for short), “s is a proof witness”, “A is true” and “A is valid”.
We also add the judgements “A is false” and “A is true with proof witness s”.
In the case of the last three judgements we assume that it is already known
that “A proposition”; likewise, in the last judgement, we assume that it is
already known that “s is a proof witness”. The inference schemes defining
the meaning of “A proposition” are the usual well-formedness conditions and
hence are omitted. For example, in the case of “A⊃B proposition” we have
the inference scheme:

A proposition B proposition

A⊃B proposition

Our interest lies in providing meaning to the following hypothetical judgements
with proof witnesses:

v1 : A1 valid , . . . , vn : An valid ;
x1 : B1 true , . . . , xm : Bm true; � A true with proof witness s
α1 : C1 false , . . . , αp : Cp false

by a set of axiom and inference schemes, where vi (for i ∈ 1..n), xj (for
j ∈ 1..m) and αk (for k ∈ 1..p) range over some given some set of validity,
truth and falsehood variables, resp. For the sake of readability, we drop the
qualifiers “valid”, “true” , “false” and “true with proof witness”. Consequently,
these judgements take the form:

v1 : A1, . . . , vn : An; a1 : B1, . . . , am : Bm; α1 : C1, . . . , αp : Cp � A | s
Section 2 gives meaning to these judgements by introducing appropriate axiom
and inference schemes. This will provide a natural deduction presentation,
whose fundamental properties we study in this paper.

Structure of the paper. Section 2 introduces the Hypothetical Logic of Proofs
or HLP. We then establish the precise correspondence between LP and HLP.
A term assignment for HLP is presented in Sect. 4. This is followed by a study
of the fundamental properties of reduction for that term assignment, namely
strong normalisation (Sect. 5) and confluence (Sect. 6). Section 7 considers
additional permutative rules. After a brief overview of related work (Sect. 8)
we conclude in Sect. 9. In the sequel, unless otherwise stated, LP will refer to
the presentation based on classical logic, as given above.

2. HLP

This section introduces the syntax and inference schemes of HLP.
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2.1. Formulae and Proof Witnesses

A formula in HLP is the same as in LP, except that r, s, . . . range over proof
witnesses rather than proof polynomials.

r, s, t ::= xA | vA |λxA.s | s · t | !s | t〈vA:=r, s〉 | s+ t | [αA]s |μαA.s

A proof witness is either a truth hypothesis (xA); a validity hypothesis (vA);
an abstraction (λxA.s); an application (s · t); a “bang” (!s); an “unbox”
(t〈vA:=r, s〉); a “plus” (s+ t); a name application ([αA]s); or a name abstrac-
tion (μαA.s). In λxA.s, the scope of the bound variable xA is s; in t〈vA:=r, s〉
the scope of the bound variable vA is t and in μαA.s the scope of the bound
variable αA is s. Also, !s binds all free occurrences of truth and falsehood vari-
ables in s; likewise t〈vA:=r, s〉 binds all free occurrences of truth and falsehood
variables in r. A truth context (Γ) is a set of truth hypotheses {xA1

1 , . . . , xAn
n };

a validity context (Θ) is a set of validity variables {vA1
1 , . . . , vAm

m }; a falsehood
context (Δ) is a set of falsehood variables {αA1

1 , . . . , αAk

k }. We write · for the
empty context. A judgement is an expression of the form Θ;Γ;Δ � A | s.

We assume the following variable convention: all bound variable names
are different from each other, and different from all free variables. We also
assume that application “·” and sum “+” are left-associative, and implica-
tion “⊃” is right-associative. We use ¬A as an abbreviation for A⊃⊥. The
operators !, ¬ and [[ ]] have precedence over ·, + and ⊃, which in turn have
precedence over λ, μ and [ ]. For example, [α([[r]]A)⊃((¬B)⊃C)]((!s) + t) may be
written [α[[r]]A⊃¬B⊃C ]!s+ t.

The set of free variables of validity, truth and falsehood in a formula A are
denoted FVT(A), FVV(A) and FVF(A), resp. The definition of FVT(A) is as
follows (FVV(A) and FVF(A) are similar and hence omitted), where FVT(A,B)
abbreviates FVT(A) ∪ FVT(B):

FVT(P ) � ∅
FVT(⊥) � ∅

FVT(A⊃B) � FVT(A,B)
FVT([[t]]A) � FVT(t, A)

The set of free variables of validity, truth and falsehood in a proof witness s,
denoted FVT(s), FVV(s) and FVF(s), resp., are defined as follows:

FVT(xA) � {xA}
FVT(vA) � ∅

FVT(λxA.s) � FVT(s)\{xA}
FVT(s · t) � FVT(s, t)

FVT(!s) � ∅
FVT(t〈vA:=r, s〉) � FVT(t, s)

FVT(s+ t) � FVT(s, t)
FVT([αA]sA) � FVT(sA)
FVT(μαA.s) � FVT(sA)

FVV(xA) � ∅
FVV(vA) � {vA}

FVV(λxA.s) � FVV(s)
FVV(s · t) � FVV(s, t)

FVV(!s) � FVV(s)
FVV(t〈vA:=r, s〉) � (FVV(t)\{vA})

∪ FVV(r, s)
FVV(s+ t) � FVV(s, t)

FVV([αA]sA) � FVV(sA)
FVV(μαA.s) � FVV(sA)
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FVF(xA) � ∅
FVF(vA) � ∅

FVF(λxA.s) � FVF(s)
FVF(s · t) � FVF(s, t)

FVF(!s) � ∅
FVF(t〈vA:=r, s〉) � FVF(t, s)

FVF(s+ t) � FVF(s, t)
FVF([αA]sA) � FVF(sA) ∪ {αA}
FVF(μαA.s) � FVF(sA)\{αA}

Remark 2.1. In a judgement Θ; Γ;Δ � A | s we shall assume the following
freshness condition: all vi with i ∈ 1..m, xi with i ∈ 1..n and αi with i ∈ 1..k
are assumed distinct and moreover fresh (i.e. that they do not occur in the
Ai, Bi and Ci). More precisely, for every pair of formulas A, B such that
xA ∈ Γ, vA ∈ Θ or αA ∈ Δ:

• if yB ∈ Γ, then yB 
∈ FVT(A);
• if wB ∈ Θ, then wB 
∈ FVV(A); and
• if βB ∈ Δ, then βB 
∈ FVF(A).

2.2. Axiom and Inference Schemes

The axiom and inference schemes of HLP are depicted in Fig. 1. We write
�HLP Θ;Γ;Δ � A | s to indicate that the judgement Θ; Γ;Δ � A | s is derivable
using these schemes. A brief informal explanation of some of these schemes
follows. The axiom scheme Var states that the judgement Θ; Γ, xA;Δ � A |xA

is evident in itself. Indeed, if we assume that xA is a witness that proposition
A is true, then we immediately conclude that A is true with proof witness xA.
The introduction scheme for the [[t]] modality internalises metalevel evidence
into the object logic. It states that if s is unconditional evidence that A is
true, then A is in fact valid with proof witness s, or more generally, any proof
term t equivalent to s (in a sense to be made precise shortly, cf. Sect. 2.3).
Evidence for the truth of [[t]]A is constructed from the (verified) evidence that
A is unconditionally true by prefixing it with a bang constructor. Finally,
�E allows the discharging of validity hypotheses. In order to discharge the
validity hypothesis vA, a proof of the validity of A is required. In this system,
this requires proving that [[r]]A is true with proof witness s, for some proof
witness r and s. Note that r is a witness that A is unconditionally true (i.e.
valid) whereas s is witness to the truth of [[r]]A. The former is then substituted
in the place of all free occurrences of v in the proposition C. This construction
is recorded with proof witness t〈vA:=r, s〉 in the conclusion. The expression
C{vA← r} denotes the substitution of vA by r in C. This and other forms
of substitution will be explained in detail in Sect. 4.1. A final remark on �E,
its witness includes r since this is required for the proof that derivable HLP
formulae are also derivable in LP (Sect. 3.2) and also for Subject Reduction (see
validity variable substitution and its use in the reduction rule γ in Sect. 4.3).

Regarding the schemes for plus we comment on PlusL, the case of PlusR
being similar. Informally, the proof witness s + t testifies that either s or t is
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Figure 1. Axiom and inference schemes of HLP

witness to the truth of A without supplying details on which of the two. Note
that t is any proof witness whatsoever. Indeed, it may even contain variables
not included in Θ, Γ nor Δ (see also Example 2.4). The reason is that we seek
to preserve the theorems of LP in HLP, in particular [[s]]A ⊃ [[s + t]]A, which
places no restriction on t. An alternative scheme requiring that the variables
in t occur in the respective contexts:

Θ; Γ;Δ � A | s FVV(t) ⊆ Θ FVT(t) ⊆ Γ FVF(t) ⊆ Δ
PlusL′

Θ;Γ;Δ � A | s+ t

would not allow this preservation to hold.
Finally, the schemes Name and NAbs were introduced by Parigot [16,17].

The intuition behind them is that hypotheses in Δ must be considered negated.
Under this reading, the scheme Name states that from ¬A and A we may
deduce ⊥. Likewise, the scheme NAbs is the classical negation rule stating
that if we arrive at a contradiction from the hypothesis ¬A, then we may
discharge this hypothesis and obtain A.

Some sample derivations follow.

Example 2.2. We prove ·; ·; · � [[s]]A⊃ [[!s]][[s]]A |λx[[s]]A.!!vA〈vA:=s, x[[s]]A〉.

Var
·; x[[s]]A; · � [[s]]A |x[[s]]A

VarM
vA; ·; · � A | vA

�I
vA; ·; · � [[vA]]A | !vA

�I
vA; x[[s]]A; · � [[!vA]][[vA]]A | !!vA

�E
·; x[[s]]A; · � [[!s]][[s]]A | !!vA〈vA:=s, x[[s]]A〉

⊃ I
·; ·; · � [[s]]A⊃ [[!s]][[s]]A |λx[[s]]A.!!vA〈vA:=s, x[[s]]A〉
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110 E. Bonelli and G. Steren Log. Univers.

Example 2.3. The following judgement is easily seen to be derivable: ·; ·; · �
[[xA · xA]]B ⊃ [[xA · xA]]B |λy[[xA·xA]]B.y. Note that the proof witness xA · xA

does not denote any valid derivation in HLP. In fact, for any proof witness s,
�HLP ·; ·; · � [[s]]B ⊃ [[s]]B |λy[[s]]B.y.

Example 2.4. The following example illustrates the + operator, for which it is
convenient to extend HLP with conjunction and disjunction [20]. We seek to
prove the formula [[s]]A∨[[t]]B⊃ [[inl(s) + inr(t)]](A∨B).

Θ; Γ; Δ �A | s Θ; Γ; Δ �B | t
∧I

Θ; Γ; Δ �A∧B | pair(s, t)

Θ; Γ; Δ �A∧B | s
∧E1

Θ; Γ; Δ �A | fst(s)
Θ; Γ; Δ �A∧B | s

∧E2
Θ; Γ; Δ �B | snd(s)

Θ; Γ; Δ � A | s
∨I1

Θ; Γ; Δ � A∨B | inl(s)

Θ; Γ; Δ � B | s
∨I2

Θ; Γ; Δ � A∨B | inr(s)

Θ; Γ; Δ � A∨B | r Θ; Γ, xA; Δ � C | s Θ; Γ, yB ; Δ � C | t
∨E

Θ; Γ; Δ � C | case r xA.s yB .t

Let Θ1 � vA, Θ2 � uB , Γ � z[[s]]A∨[[t]]B Γ1 � Γ, x[[s]]A and Γ2 � Γ, y[[t]]B in
the following two derivations π1,2:

·; Γ1; · � [[s]]A |x[[s]]A

Θ1; ·; · � A | vA

∨I1
Θ1; ·; · � A∨B | inl(vA)

PlusL
Θ1; ·; · � A∨B | inl(vA) + inr(t)

�I
Θ1; Γ1; · � [[inl(vA) + inr(t)]](A∨B) | !(inl(vA) + inr(t))

�E
·; Γ1; · � [[inl(s) + inr(t)]](A∨B) | !(inl(vA) + inr(t))〈vA:=s, x[[s]]A〉

·; Γ2; · � [[t]]B | y[[s]]B

Θ2; ·; · � B |uB

∨I2
Θ2; ·; · � A∨B | inr(uB)

PlusR
Θ2; ·; · � A∨B | inl(s) + inr(uB)

�I
Θ2; Γ2; · � [[inl(s) + inr(uB)]](A∨B) | !(inl(s) + inr(uB))

�E
·; Γ2; · � [[inl(s) + inr(t)]](A∨B) | !(inl(s) + inr(uB))〈uB :=t, y[[s]]B〉

Finally, for π3 below consider the definitions:

r1 �!(inl(vA) + inr(t))〈vA:=s, x[[s]]A〉
r2 �!(inl(s) + inr(uB))〈uB :=t, y[[t]]B〉
r3 � case z[[s]]A∨[[t]]B xA.r1 y

B.r2

·; Γ; ·�[[s]]A∨[[t]]B

| z[[s]]A∨[[t]]B

π1

·; Γ1; ·�[[inl(s)+inr(t)]](A∨B)
| r1

π2

·; Γ2; ·�[[inl(s)+inr(t)]](A∨B)
| r2 ∨E·; Γ; · � [[inl(s) + inr(t)]](A∨B) | r3

Note that the use of PlusL in π1 and PlusR in π2 is required in order to
concatenate the two alternative proofs of A∨B into a unique proof, and allow
the application of∨E in π3.
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Remark 2.5. One may wonder whether, for the implicative fragment, the plus
may be dispensed with while still maintaining realization of all S4 theorems.
This is the case if, in the terminology of LP, so called non-injective constant
specification sets1 and non-normal realizations are allowed (see [13] and also [1,
Sect. 11.2]).

We end the section with a basic metatheoretic result which may be proved
by induction on the derivation of Θ; Γ;Δ � A | s.
Lemma 2.6 (Weakening, Strengthening). If �HLP Θ;Γ;Δ � A | s, then
1. �HLP Θ ∪Θ′; Γ ∪ Γ′;Δ ∪Δ′ � A | s; and
2. �HLP Θ ∩ FVV(s); Γ ∩ FVT(s);Δ ∩ FVF(s) � A | s.
2.3. Proof Witness Equivalence

The �I inference we have presented resorts to a notion of proof witness equiv-
alence in order to derive the corresponding formula. It would be tempting to
use a simpler approach:

Θ; ·; · � B | s
�I′

Θ;Γ;Δ � [[s]]B | !s
However, if we were to replace �I with �I′, proof normalization (studied in
detail in Sect. 4) would yield invalid proofs. For instance:

π1

Θ; xA; · � B | s ⊃ I
Θ; ·; · � A⊃B |λxA.s

π2

Θ; ·; · � A | t ⊃E
Θ; ·; · � B |Θ; ·; · � B | (λxA.s) · t

�I′
Θ; Γ; Δ � [[(λxA.s) · t]]B | !((λxA.s) · t)

would be normalised to:
π3

Θ; ·; · � B | s{xA← t}
�I′

Θ; Γ; Δ � [[(λxA.s) · t]]B | !((λxA.s)· t)
by resorting to an appropriate substitution principle for truth variables. The
derivation which results from the reduction in the above example is invalid,
since the witnesses (λxA.s) · t and s{xA← t} are not the same. This shows
that a näıve approach to Subject Reduction is doomed to fail. The current
formulation of �I allows us to regain this property. It relies on proof witness
equivalence judgements, which take the form Θ;Γ;Δ � s≡ t : A, meaning that
s and t are equivalent witnesses for A under the hypotheses from the contexts
Θ, Γ, Δ. The meaning of this judgement is given by the congruence closure
(i.e. the compatible, reflexive, symmetric, transitive closure) of the schemes in
Figs. 2 and 3. The schemes defining proof witness equivalence arise from an
analysis of all cases of proof normalisation.

1 A constant specification CS is injective if for each constant c there is at most one formula
[[c]]A ∈ CS (each constant denotes a proof of not more than one axiom) [6].
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112 E. Bonelli and G. Steren Log. Univers.

Figure 2. Proof witness equivalence (1/2)

Remark 2.7. If �HLP Θ;Γ;Δ � A | s, then there is a derivation of Θ; Γ;Δ � A | s
which does not make use of the equivalence rules. That is, there is a derivation
which uses �I′ instead of �I. This follows from Lemma 2.8(1), below (whose
proof does not introduce applications of �I). However, this derivation may not
be in normal form.

Some basic metatheoretic results follow, all of which can be proved by
induction on the derivation of Θ; Γ;Δ � s≡ t : A.

Lemma 2.8. If �HLP Θ;Γ;Δ � s≡ t : A, then

1. �HLP Θ;Γ;Δ � A | s and �HLP Θ;Γ;Δ � A | t;
2. �HLP Θ ∪Θ′; Γ ∪ Γ′;Δ ∪Δ′ � s≡ t : A; and
3. �HLP Θ ∩ FVV(s) ∩ FVV(t); Γ ∩ FVT(s) ∩ FVT(t);Δ ∩ FVF(s) ∩ FVF(t) �
s≡ t : A.

3. LP

This section addresses the proof of equivalence, in terms of provability, between
LP and HLP. The LP → HLP direction is quite straightforward, the other
direction requires some more work. The syntax of LP was presented in the
introduction. We assume that C is exactly the set of constants that consists
of one constant for each instance of each axiom. We often distinguish in our
notation the axiom to which a constant refers by putting the name of the
axiom as superindex and the instances of its metavariables as its subindices.
For example, we write cA1

xP ,P for the constant corresponding to the instance
[[xP ]]P ⊃P of axiom A1 (and similarly for the other axioms). Also, We write
�LP Γ � A to indicate that A is provable in LP under hypotheses Γ.
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Figure 3. Proof witness equivalence (2/2)

We occasionally write Γ, A for Γ, xA with x a fresh name, and A ∈ Γ,
means that there is some hypothesis xA in Γ. We will use a, b, c, v, w, x, y, z, α
as names for hypotheses in LP-contexts. Let Γ = {xA1

1 , . . . , xAn
n } be a context,

and �u = u1, . . . , un a list of proof polynomials, we define [[�u]]Γ as {x′1[[u1]]A1 , . . . ,

x′n
[[un]]An} with x′1, . . . , x

′
n fresh names.2

2 Fresh names are required in order to avoid collisions. Note that the variables x
Ai
i and

x′i
[[ui]]Ai have different types.

Author's personal copy



114 E. Bonelli and G. Steren Log. Univers.

3.1. From LP to HLP

The translation • is a function from LP formulae and proof polynomials to
HLP formulae and proof witnesses, resp., that consists in simply replacing
each constant in a formula with an appropriate proof witness. In the case of
a context, Γ is just {xA | xA ∈ Γ}. The clauses associating proof witnesses
to constants are as follows, where the first three correspond to the axioms of
classical propositional logic (for readability these have been decorated with
their corresponding propositions, for the remaining ones the reader is referred
to Sect. 1.1):

cA0
A,B � (λxA.λyB .x)A⊃B⊃A

cA0
A,B,C � (λxA⊃B⊃C .λyA⊃B.λzA.x · z · (y · z))(A⊃B⊃C)⊃(A⊃B)⊃A⊃C

cA0
A � (λy¬¬A.μαA.y · λxA.[αA]x)¬¬A⊃A

cA1
t,A � λx[[t]]A.v〈vA:=t, x〉

cA2
s,t,A,B � λx[[s]]A⊃B.λy[[t]]A.!(w · v)〈wA⊃B:=s, x〉〈vA:=t, y〉
cA3
s,A � λx[[s]]A.!!vA〈vA:=s, x[[s]]A〉

cA4
s,t,A � λx[[s]]A.!(v + t)〈vA:=s, x〉
cA5
s,t,A � λx[[t]]A.!(s+ v)〈vA:=t, x〉

Proposition 3.1. If �LP Γ � A, then �HLP ·; Γ; · � A | s, for some s.

The proof proceeds by induction on the derivation of Γ � A. We exhibit
a sample case for an axiom and for an inference rule. In the case of the axiom
A4 we prove it in HLP as follows:.

Var
·; x[[s]]A; · � [[s]]A |x[[s]]A

VarM
vA; ·; · � A | vA

PlusL
vA; ·; · � A | vA + t

�I
vA; x[[s]]A; · � [[vA + t]]A | !(vA + t)

�E
·; x[[s]]A; · � [[s + t]]A | !(vA + t)〈vA:=s, x[[s]]A〉

⊃ I
·; ·; · � [[s]]A⊃ [[s + t]]A |λx[[s]]A.!(vA + t)〈vA:=s, x[[s]]A〉

Remark 3.2. This proof is invalid were we to adopt PlusL′ rather than PlusL.

In the case of R2, it is easy to verify that for each instance of each axiom
scheme Ai(· · · ) (the dots indicate the formulae parameters instantiating the
axiom scheme) with i ∈ 0..5, the judgement ·; ·;· � Ai(· · · ) | cAi

··· can be derived.
Therefore,

·; ·;· � Ai(· · · ) | cAi
···

�I·; ·;· � [[cAi
···]]Ai(· · · ) | !cAi

···

3.2. From HLP to LP

This section addresses the reverse direction, namely that all theorems of HLP
are theorems of LP. More precisely, we seek to prove the following result for a
suitable translation from proof witnesses and formulae in HLP to proof poly-
nomials and formulae in LP.
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Figure 4. Translating HLP formulae and contexts

Corollary 3.3. If �HLP ·; ·; · � A | s, then both �LP · � [[s�]]A� and �LP · � A�.

It turns out the translation is unproblematic for formulae and hypotheses
(Fig. 4), however, special care must be taken when defining the translation on
proof witnesses. The following cases are straightforward:

(xA)
� � xA�

(vA)
� � vA�

(s+t)� � s�+t�

(s · t)� � s� · t�

([αA]s)
� � α¬A�· s�

(!s)� �!(s�)

(t〈vA:=r, s〉)� � t�{vA�←r�}

The more delicate cases are: (λxA.s)� and (μαA.s)�. We briefly explain
the case of the abstraction since that of name abstraction is similar. Bear in
mind that the translation of an HLP-judgement Θ; Γ;Δ � A | s is defined as:
(Θ; Γ;Δ � A | s)� � Θ�,Γ�,Δ� � [[s�]]A�. Suppose that the last scheme applied
in the derivation of a judgement Θ; Γ;Δ � C | s is:

Θ; Γ, xA;Δ � B | s ⊃ I
Θ;Γ;Δ � A⊃B |λxA.s

The I.H. will yield derivability in LP of:

Θ�,Γ�, [[xA�

]]A�,Δ� � [[s�]]B� (3.1)

However, we are after derivability of Θ�,Γ�,Δ� � [[t]](A�⊃B�), for an appro-
priate proof polynomial t. Building a derivation of this judgement requires
three steps (which conform the content of the Abstraction Lemma 3.7):

1. We first need to “drop” the outermost modalities of [[xA�

]]A� and [[s�]]B�

from (3.1). This is achieved via the Stripping Lemma (3.6).
2. This allows us then to resort to the standard Deduction Theorem to deduce
A�⊃B�.

3. Finally, we resort to the reflective capabilities of LP in order to deduce
the appropriate proof polynomial t. This is achieved via the Internalisation
Lemma (3.5).

Note that t is thus a function of the original LP derivation of (3.1). Since
there may be multiple LP derivations of an LP judgement we shall assume in
our proof of Corollary 3.3 that all derivable occurrences of (3.1) use the same
derivation.
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3.2.1. Abstraction in LP. This subsection develops the results involved in the
three steps of the abstraction lemma. We begin with a definition.

Definition 3.4 (Extracted proof polynomial). Suppose �LP [[�u]]Γ � D, then r
is an extracted proof polynomial of D in [[�u]]Γ if at least one of the following
conditions holds:

• D is of the form A⊃B⊃A, (A⊃B⊃C)⊃(A⊃B)⊃A⊃C or ¬¬A⊃A and
r = cA0

A,B , cA0
A,B,C or cA0

A respectively.
• D is of the form [[t]]A⊃A and r = cA1

t,A.
• D is of the form [[s]](A⊃B)⊃([[t]]A⊃[[s · t]]B) and r = cA2

s,t,A,B .
• D is of the form [[t]]A⊃[[!t]][[t]]A and r = cA3

t,A.
• D is of the form [[s]]A⊃[[s+ t]]A and r = cA4

s,t,A.
• D is of the form [[t]]A⊃[[s+ t]]A and r = cA5

s,t,A.
• D is of the form [[s]]A and r = !s.
• There is some A s.t. [[�u]]Γ � A⊃D and [[�u]]Γ � A are both derivable, and
r = s · t where s and t are extracted proof polynomials of A⊃D and A in
[[�u]]Γ respectively.

Note that for a given D there may be multiple proof polynomials that
qualify as extracted. For example if D = A ⊃ A, then r1 = IA and r2 =
cA1
IA,A⊃A·!IA are both extracted proof polynomials of D, where IA = cA0

A,A⊃A,A ·
cA0
A,A⊃A · cA0

A,A

Lemma 3.5 (Internalization). If �LP [[�u]]Γ � D, then:

1. There exists at least one extracted proof polynomial of D in [[�u]]Γ.
2. If r is an extracted proof polynomial of D in [[�u]]Γ, then �LP [[�u]]Γ � [[r]]D.

Proof. Part 2 follows directly from the axioms and inference rules of LP. Part
1 is by induction on the derivation of [[�u]]Γ � D, finding an extracted proof
polynomial r for each case:

• If there is some hypothesis x[[u]]A ∈ [[�u]]Γ and the derivation is obtained by
using this hypothesis, then D = [[u]]A and r =!u (note that [[�u]]Γ can only
contain hypotheses of the form x[[u]]A for some u and A).

• If the derivation is an instance of an axiom Ai with i ∈ {0, · · · , 5}, then
r = cAi

... (with the corresponding arguments for D).
• If the derivation is obtained by using R2, then D is of the form [[cAi

···]]A and
r =!cAi

···.
• If the derivation is obtained by using R1 from [[�u]]Γ � A⊃D and [[�u]]Γ � A,

then by I.H. there exist s and t extracted proof polynomial of A⊃D and A
respectively. Take r = s · t.

�

Lemma 3.6 (Stripping). Suppose �LP Γ, x[[yA]]A � B with derivation π and yA /∈
Γ. Then there is a derivation of Γ, yA � B′, where B′ results from B, by
replacing all occurrences of [[t]]A by A for every proof polynomial t containing
yA (including constants for instances of axioms containing yA).

Author's personal copy



Vol. 8 (2014) Hypothetical Logic of Proofs 117

Proof. By induction on π.

• If B = [[yA]]A and π is obtained by using the hypothesis x[[yA]]A, then B′ = A
and π′ is the derivation of Γ, yA � A obtained by using the hypothesis yA.
• If π is obtained by using a hypothesis yB ∈ Γ, then there is a derivation of

Γ � B which uses neither x[[yA]]A nor yA. We obtain π′ from this derivation
by Weakening, and B′ = B.
• If π is obtained by using an axiom A0-A5, there are three possibilities:

– B has no proof polynomial containing yA: then B′ = B, and the
derivation of Γ � B can be obtained by Weakening of the axiom.

– B has one or more proof polynomials containing yA, but B′ is still
an instance of the same axiom. Since axioms can be derived in any
context, then Γ, yA � B′ is derivable.

– B has at least one proof polynomial containing yA in a way that B′

is no longer an instance of the same axiom as B: in this case, B′ is
an instance of one of the following schemes:

1. A ⊃ A from axioms A1, A3, A4, A5.
2. (A⊃B) ⊃ ([[t]]A ⊃ B), 3. [[s]](A⊃B) ⊃ (A ⊃ B) or 4. (A⊃B) ⊃

(A ⊃ B) from axiom A2.
All these can be derived in LP in any context.

• If π is obtained by applying R1: then Γ, x[[yA]]A � B is deduced from Γ,
x[[yA]]A � C ⊃B and Γ, x[[yA]]A � C. By I.H. we have derivations of Γ, yA �
C ′⊃B′ and Γ, yA � C ′. Therefore, by R1, we obtain a derivation of Γ, yA �
B′.
• If π is obtained by applying R2, then B is of the form [[c]]D with c a proof

constant and D an instance of an axiom. If yA ∈ D, then B′ = D′ and we
resort to the third item of the proof above. Otherwise, B′ = B. Finally, we
conclude with necessitation.

�

Below we shall write tAλ (Γ) to emphasize that the proof polynomial is
associated to λ-abstraction, that the formula that it proves is A and that it
depends on hypothesis in Γ.

Lemma 3.7 (λ-Abstraction). If �LP [[�u]]Γ, y[[xA]]A � [[s(�u, xA)]]B and xA /∈ Γ, B,
then there exists tA⊃Bλ ([[�u]]Γ) such that �LP [[�u]]Γ � [[tA⊃Bλ ([[�u]]Γ)]](A⊃B), and
tA⊃Bλ ([[�u]]Γ) is an extracted proof polynomial of A⊃B in [[�u]]Γ.

Proof. W.l.o.g. we may assume that xA ∈ s(�u, xA). Indeed, if this were not
the case, then we could add it as follows:

(a) [[�u]]Γ, y[[xA]]A � [[cA0
B,A]](B⊃A⊃B)

(b) [[�u]]Γ, y[[xA]]A � [[s(�u, xA)]]B
(c) [[�u]]Γ, y[[xA]]A � [[cA0

B,A · s(�u, xA)]](A⊃B)
(d) [[�u]]Γ, y[[xA]]A � [[xA]]A
(e) [[�u]]Γ, y[[xA]]A � [[cA0

B,A · s(�u, xA) · xA]]B
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We reason as follows:

[[�u]]Γ, y[[xA]]A � [[s(�u, xA)]]B (Hypothesis)
[[�u]]Γ, xA � B (Stripping and x ∈ s(�u, x))
[[�u]]Γ � A⊃B (Deduction for LP)
[[�u]]Γ � [[tA⊃Bλ ([[�u]]Γ)]](A⊃B) (Internalization for LP)

�
Corollary 3.8 (μ-Abstraction). If �LP [[�u]]Γ, y[[α¬A]]¬A � [[s(�u, α¬A)]]⊥ and α¬A

/∈ Γ, let tAμ ([[�u]]Γ) = cA0
A · t¬¬A

λ ([[�u]]Γ), then �LP [[�u]]Γ � [[tAμ ([[�u]]Γ)]]A (where cA0
A

is a constant corresponding to the classical logic axiom ¬¬A⊃A).

Proof. We reason as follows:

[[�u]]Γ � [[t¬¬A
λ ([[�u]]Γ)]](¬¬A) (λ-Abstraction)

[[�u]]Γ � [[cA0
A ]](¬¬A⊃A) (A0 and R2)

[[�u]]Γ � [[cA0
A · t¬¬A

λ ([[�u]]Γ)]]A (A2, and R1 twice)

�
Lemma 3.9 (Substitution). Γ � [[s]]A and Γ, y[[xA]]A � B and xA /∈ Γ implies
Γ � B{xA ← s}.
3.2.2. Completing the Definition of the Translation. Returning to our trans-
lation described at the beginning of Sect. 3.2, we now address the defining
clauses for (λxA.s)� and (μαA.s)�. Let us say a proof witness s is inhabited
if for some Θ, Γ, Δ and A, �HLP Θ;Γ;Δ � A | s. Also, let cA1 be the proof
constant denoting any instance of A1.

(λxA.s)� � any tA
�⊃B�

λ (Θ�,Γ�,Δ�) for any Θ, Γ, Δ, B s.t.
Θ; Γ;Δ � A⊃B |λxA.s is derivable, if λxA.s is inhabited.

(λxA.s)� � cA1 · cA1, otherwise.
(μαA.s)� � any tAμ (Θ�,Γ�,Δ�) for any Θ, Γ, Δ s.t.

Θ; Γ;Δ � A |μαA.s is derivable, if μαA.s is inhabited.
(μαA.s)� � cA1 · cA1, otherwise.

In our use of this translation (Proposition 3.10) the conditions of the
first clause and third clauses shall be met when dealing with modalities that
are introduced using �I; the other cases are used when uninhabited proof
witnesses occur inside boxes that are not introduced. In the former cases, note
that there may be more than one possible proof polynomial (for instance,
λxA.(yB + zB) and [[λxA.(yB + zB)]]A⊃B). Any of these may be resorted to
since they are all extracted proof polynomials of the same formula under the
same context, provided that the proof witnesses to be translated can verify
some formula (i.e. they are the s in some derivable judgment Θ; Γ;Δ � A | s).
Otherwise, if the proof witness is not inhabited (for example λxA.xA ·xA), then
its content is unimportant and any translation will yield the same results. For
each inhabited proof witness, we shall assume that we use one and the same
proof of the corresponding judgement.

Proposition 3.10. If �HLP Θ;Γ;Δ � D | s without resorting to proof witness
equivalence, then �LP Θ� ∪ Γ� ∪Δ� � [[s�]]D�.
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Proof. Since Θ; Γ;Δ � D | s is derivable in HLP, let π be a such a derivation.
We will prove by induction on π that �LP Θ�,Γ�,Δ� � [[s�]]D�.
1. Case Var (VarM is similar and hence omitted): Θ; Γ;Δ � D | s is of the form

Θ;Γ′, xA;Δ � A |xA. Trivially we have �LP [[xA�

]]A� � [[xA�

]]A� and hence
�LP Θ�,Γ�,Δ� � [[xA�

]]A� by Weakening.

2. Case ⊃ I: the derivation ends in
Θ; Γ, xA;Δ � B | s ⊃ I

Θ;Γ;Δ � A⊃B |λxA.s
:

we will use the contexts Θ�, Γ� and Δ� for the translation of λxA.s. We
want to see that �LP Θ�,Γ�,Δ� � [[tA

�⊃B�

λ (Θ�,Γ�,Δ�)]](A�⊃B�). (We know
[[tA

�⊃B�

λ (Θ�,Γ�,Δ�)]](A�⊃B�) is a correct translation of [[s]]D, since Θ; Γ;Δ �
A⊃B |λxA.s is derivable by hypothesis).

By the I.H. �LP Θ�,Γ�, [[xA�

]]A�,Δ� � [[s�]]B�. Therefore, from the λ-
Abstraction Lemma (3.7), we obtain tA

�⊃B�

λ (Θ�,Γ�,Δ�) extracted proof
polynomial of A�⊃B� in Θ�,Γ�,Δ�. This proof polynomial moreover veri-
fies �LP Θ�,Γ�,Δ� � [[tA

�⊃B�

λ (Θ�,Γ�,Δ�)]](A�⊃B�). Note that, by Internal-
ization, any extracted proof polynomial of A� ⊃ B� in Θ�,Γ�,Δ� can be
used in place of tA

�⊃B�

λ (Θ�,Γ�,Δ�). This means that, whenever ⊃ I is used
within a derivation, we may choose whatever extracted proof polynomial
works best in order to translate the derivation as a whole.

3. Case ⊃E: the derivation ends in
Θ; Γ;Δ � A⊃B | s Θ;Γ;Δ � A | t ⊃E

Θ;Γ;Δ � B | s · t
By the I.H. both of the following judgements are derivable in LP:

(a) Θ�,Γ�,Δ� � [[s�]](A⊃B)� and
(b) Θ�,Γ�,Δ� � [[t�]]A�

From these, using A2 and R1 twice, we derive Θ�,Γ�,Δ� � [[s� · t�]]B� in
LP.

Note that we can always choose the same A� as the translation of A
on both sides regardless of how each premise was derived.

4. Case �I: the derivation ends in
Θ; ·; · � B | s

�I
Θ;Γ;Δ � [[s]]B | !s

We reason as follows:
(a) Θ� � [[s�]]B� (I.H.)
(b) Θ� � [[s�]]B�⊃ [[!s�]][[s�]]B� (A3)
(c) Θ� � [[!s�]][[s�]]B� (R1 from (b) and (a))
(d) Θ�,Γ�,Δ� � [[!s�]][[s�]]B� (Weakening)

5. Case �E: the derivation ends in
Θ; Γ;Δ � [[r]]A | s Θ, vA; Γ;Δ � C | t

�E
Θ;Γ;Δ � C{vA←r} |t〈vA:=r, s〉

By the I.H. both of the following judgements are derivable in LP:
(a) Θ�,Γ�,Δ� � [[s�]][[r�]]A� and
(b) Θ�, [[vA�

]]A�,Γ�,Δ� � [[t�]]C�

We now reason as follows:
(1) Θ�,Γ�,Δ� � [[s�]][[r�]]A�⊃ [[r�]]A� (A1)
(2) Θ�,Γ�,Δ� � [[r�]]A� ((a) and R1)
(3) Θ�,Γ�,Δ� � [[t�{vA�← r�}]]C�{vA�← r�} (Lemma 3.9)
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6. Case Name: the derivation ends in
Θ; Γ;Δ, αA � A | s

Name
Θ;Γ;Δ, αA � ⊥ | [αA]s

By I.H., Θ�,Γ�,Δ�, x[[α¬A�
]]¬A� � [[s�]]A� is derivable in LP.

We reason as follows:
(1) Θ�,Γ�,Δ�, x[[α¬A�

]]¬A� � [[α¬A�

]]¬A� (hypothesis x[[α¬A�
]]¬A�

)
(2) Θ�,Γ�,Δ�, x[[α¬A�

]]¬A� � [[s�]]A� (I.H.)
(3) Θ�,Γ�,Δ�, x[[α¬A�

]]¬A� � [[α¬A�· s�]]⊥ (A2 and R1 twice)

7. Case NAbs: the derivation ends in
Θ; Γ;Δ, αA � ⊥ | s

NAbs
Θ;Γ;Δ � A |μαA.s

By I.H. �LP Θ�,Γ�,Δ�, [[α¬A�

]]A� � [[s�]]⊥. From the μ-Abstraction
Corollary (3.8), �LP Θ�,Γ�,Δ� � [[tA

�

μ (Θ�,Γ�,Δ�)]]A�, where the proof poly-
nomial tA

�

μ (Θ�,Γ�,Δ�) = cA0
A� · t¬¬A

λ (Θ�,Γ�,Δ�). Again, by Internalization,
if this rule is applied within a larger derivation, we can choose
t¬¬A
λ (Θ�,Γ�,Δ�) freely among all possible extracted proof polynomials of
¬¬A in Θ�,Γ�,Δ�.

8. Case PlusL (the case PlusR is similar and hence omitted): the derivation

ends in
Θ; Γ;Δ � A | s

PlusL
Θ;Γ;Δ � A | s+ t

.

By the I.H. �LP Θ�,Γ�,Δ� � [[s�]]A�. Thus, by A4 and R1, also
�LP Θ�,Γ�,Δ� � [[s� + t�]]A�.

�

Finally, note that the proof of the first item of Corollary 3.3 follows from
Proposition 3.10 and that any judgement derivable in HLP may also be derived
in the system in which �I is replaced by �I′ (Remarks 2.7). The latter item of
Corollary 3.3 is obtained by additionally resorting to axiom A1.

4. Term Assignment

This section presents a term assignment for HLP. We seek to encode derivations
in HLP as terms and analyse normalisation of derivations by means of these
terms. Note that proof witnesses do not play the role of terms since they do not
encode derivations in HLP (cf. Fig. 1). For instance, the proof witness vA +wA

ensures that A is true but it does not tell us which hypothesis was used in
order to derive it. In fact, there are two possible derivations, one using vA and
PlusL, and the other using wA and PlusR. Similarly, !vA can be used to verify
that [[vA]]A is true assuming vA as a validity hypothesis, but this may have
been derived in an infinite number of ways, using �I with any witness which
is equivalent to vA (for example, vA itself, (λxA.xA) · vA, μαA.[αA]vA, etc.).
So we introduce a notion of term very similar to that of proof witness, but
which is better suited for studying normalisation of derivations and then focus
on the combinatorial properties of normalisation, namely strong normalisation
and confluence.
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4.1. Terms and Substitution

The set of terms for HLP is defined as follows:

M,N ::= xA | vA | (λxA.MB)A⊃B | (MA⊃BNA)B | (!MA)[[s]]A

| (NB〈vA:=r,M〉)B{vA←r} | ([αA]MA)⊥ | (μαA.M⊥)A

| (MA+Ls)A | (s+RN
B)B

Free variables of validity, truth and falsehood over terms are defined
analogously to those for proof witnesses. Again, decorations may be omit-
ted where it is safe and we will use the letters M, N, L—with or without
superindices—to refer to terms. Also, we assume, in all contexts, that bound
variables are renamed in order to avoid unwanted capture. Returning to the
above-mentioned examples, the term (vA+Lw

A)A encodes a proof of A using
PlusL and vA, and not the alternative (which would be encoded by (vA+Rw

A)A).
Similarly, the term (!((λxA.xA)A⊃AvA)A)[[v

A]]A encodes a proof of [[vA]]A which
uses (λxA.xA) · vA as a witness for the premises, and not vA, μαA.[αA]vA nor
any other equivalent witness. Also, the terms (!vA)[[v

A]]A and (!vA)[[(λxA.xA)·vA]]A

encode different derivations, which are used to prove different formulae. Hence
type annotations over a “!” term constructor are important.

Note, however, that some information is still left out, since our terms do
not encode the proof witness equivalence schemes used to derive the second
premise of �I (nor the contexts used in the derivations). However, these terms
provide us with enough information to reason about the proof normalisation
process and other properties of the metatheory.

Remark 4.1. For term assignments in which the full derivation is encoded,
the reader is referred to [7]. There, an additional syntactic category encod-
ing derivations of equivalence of proof witnesses is introduced and related to
computation traces.

Before presenting the typing rules, we briefly introduce the various notions
of substitution. There are three kinds of substitution following the three kinds
of variable which are substituted: truth variable substitution, validity variable
substitution and structural substitution. Apart from that, for each of these
three notions of substitution, we in turn have three variants depending on the
nature of the expression in which the variable is substituted. For example, in
the case of truth variable substitution we have:

truth variable substitution (over proof witnesses) r{yA ← sA}
truth variable substitution (over terms) M{yA ← NA}

truth variable substitution (over formulae) B{yA ← sA}
For the purposes of easing the presentation we shall present truth variable
substitution in some detail and then only present the more interesting defin-
ing clauses of the remaining notions. Truth variable substitution over proof
witnesses (r{yA ← sA}) is defined recursively as follows:
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yA {yA ← sA} � s

xB {yA ← sA} � xB if xB 	= yA

vB {yA ← sA} � vB

(λyA.t) {yA ← sA} � λyA.t

(λxB .t) {yA ← sA} � λxB .(t{yA ← s}) if xB 	= yA

r · t {yA ← sA} � r{yA ← s} · (t{yA ← s})
!t {yA ← sA} � !t

t〈vB :=u, r〉{yA ← sA} � t{yA ← s}〈vB :=u, r{yA ← s}〉
r + t {yA ← sA} � (r{yA ← s}) + (t{yA ← s})
([αB ]t) {yA ← sA} � [αB ](t{yA ← s})
(μαB.t) {yA ← sA} � μαB .(t{yA ← s})

Truth variable substitution over terms is written M{yA ← NA}. Note
that yA is substituted by a term, namely NA. However, consider the term
M = PA+Ly

A. The variable yA to the right of the plus, must be substituted
by a proof witness associated to NA rather than the term itself. This can be
obtained from NA by computing its associated witness:

w(xA) = xA

w(vA) = vA

w((λxA.MB)A⊃B) = λxA. w(MB)
w((MA⊃BNA)B) = w(MA⊃B) · w(NA)

w((!MA)[[s]]A) = !s

w((NB〈vA:=r, M [[r]]A〉)B{vA←r})= w(NB)〈vA:=r, w(M [[r]]A)〉
w(([αA]MA)⊥) = [αA] w(MA)

w((μαA.M⊥)A) = μαA. w(M⊥)
w((MA+L t)A) = w(MA) + t
w((s+RNB)B) = s + w(NB)

We now provide the definition of truth variable substitution over terms:

yA {yA←NA} � NA

xB {yA←NA} � xB if xB 	= yA

vB {yA←NA} � vB

(λyA.MB)A⊃B {yA←NA} � (λyA.MB)A⊃B

(λxB .MB)A⊃B {yA←NA} � (λxB .(MB{aA←NA}))A⊃B if xB 	= yA

(MC⊃B
1 MC

2 )B {yA←NA} � (MC⊃B
1 {aA←NA}(MC

2 {aA←NA}))B

(!MB)[[s]]B {yA←NA} � (!MB)[[s]]B

(M1〈vB :=u, M2〉)B{vA←u}{yA←NA} � (M1{aA←NA}〈vB :=u, M2{aA←NA}〉)B{vA←u}

(MB+L t)B {yA←NA} � (MB{aA←NA}+L t{aA← w(NA)})B

(s+RMB)B {yA←NA} � (s{aA← w(NA)}+RMB{aA←NA})B

([αB ]MB)⊥ {yA←NA} � ([αB ](MB{aA←NA}))⊥
(μαB.M⊥)B {yA←NA} � (μαB .(M⊥{aA←NA}))B

Note that substitution operates only on the immediate level: it does not
affect superindices (x[[yA]]A{yA ← s} = x[[yA]]A and not x[[s]]A). Finally, truth
variable substitution over formulas (B{yA ← sA}) is defined as:
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P {yA ← s} � P

⊥ {yA ← s} �⊥
B⊃C{yA ← s} � B{yA ← s}⊃C{yA ← s}
[[t]]B {yA ← s} � [[t{yA ← s}]]B{yA ← s}

Validity variable substitution over formulae (B{vA ← sA}) is as expected;
the case over proof witnesses (t{vA ← sA}) deserves mention only with regards
to the following defining clauses:

!t {vA ← s} � !(t{vA ← s})
t〈wB :=u, r〉{vA ← s} � t{vA←s}〈wB :=u{vA←s}, r{vA←s}〉 if wB 	= vA

t〈vA:=u, r〉{vA ← s} � t〈vA:=u, r〉 (vA 	∈ FVV(r))

r + t {vA ← s} � (r{vA ← s}) + (t{vA ← s})
The assumption that vA 
∈ FVV(r) in the definition of t〈vA:=u, r〉{vA ← s} is
based on the already mentioned variable convention. Validity variable substi-
tution over terms (MC{vA←NA, t}) is defined as follows:

xB {vA←NA, t} � xB

vA {vA←NA, t} � NA

wB {vA←NA, t} � wB if wB 	= vA

(λxB .MC)B⊃C {vA←NA, t} � (λxB .(MC{vA←NA, t}))B⊃(C{vA←t})

(MB⊃C
1 MB

2 )C {vA←NA, t} � (MB⊃C
1 {vA←NA, t}(MB

2 {vA←NA, t}))C{vA←t}

(!MB)[[s
B ]]B {vA←NA, t} � !(MB{vA←NA, t})([[sB ]]B){vA←t}

MC
2 〈vA:=r, M1〉 {vA←NA, t} � MC

2 〈vA:=r, M1〉 (because vA 	∈ FVV(M
[[r]]A
1 ))

(MC
2 〈wB :=r, M1〉)D{vA←NA, t} �

(
MC

2 {vA←NA, t}
〈wB :=r{vA ← t}, M1{vA←NA, t}〉

)D{vA←t}

if wB 	= vA (where D = C{wB ← r})
(MB+Ls)B {vA←NA, t} � (MB{vA←NA, t}+Ls{vA ← t})B{vA←t}

(s+RMC
2 )C {vA←NA, t} � (s{vA← t}+RMC

2 {vA←NA, t})C{vA←t}

([αB ]MB)⊥ {vA←NA, t} � ([αB ](MB{vA←NA, t}))⊥
(μαB .M⊥)B {vA←NA, t} � (μαB .M⊥{vA←NA, t})B

Structural substitution is a notion introduced in the work of Parigot
[16]. It is written M{|[αA⊃B ](•)←[βB ](•)NA|} and consists of replacing in M all
occurrences of subexpressions of the form [αA⊃B ]P for some P , with [βB ]PNA.
Structural substitution (M{|[αA⊃B ](•)←[βB ](•)NA|}) is defined as follows:

xD {|[α](•)←[β](•)N|} � xD

vD {|[α](•)←[β](•)N|} � vD

λxD.MC {|[α](•)←[β](•)N|} � λxD.(MC{|[α](•)←[β](•)N|})
MD⊃C

1 MD
2 {|[α](•)←[β](•)N|} � MD⊃C

1 {|[α](•)←[β](•)N|}(MD
2 {|[α](•)←[β](•)N|})

!MD {|[α](•)←[β](•)N|} � !MD

M〈vD:=r,M′〉{|[α](•)←[β](•)N|} � M{|[α](•)←[β](•)N|}〈vD:=r,M′{|[α](•)←[β](•)N|}〉
M+L t {|[α](•)←[β](•)N|} � (M{|[α](•)←[β](•)N|})+L(t{|[α](•)←[β](•) w(N)|})
s+RN {|[α](•)←[β](•)N|} � (s{|[α](•)←[β](•) w(N)|})+R(N{|[α](•)←[β](•)N|})
[αA⊃B ]M {|[α](•)←[β](•)N|} � [βB ]MN

[γD]M {|[α](•)←[β](•)N|} � [γD](M{|[α](•)←[β](•)N|}) if γD 	= αA⊃B

μαA⊃B.M {|[α](•)←[β](•)N|} � μαA⊃B .M

μγD.M {|[α](•)←[β](•)N|} � μγD.(M{|[α](•)←[β](•)N|}) if γD 	= αA⊃B
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Figure 5. Typing rules for λLP

Structural substitution over proof witnesses is defined analogously (ignor-
ing the additional proof witness, replacing M and N by s and t,+L and+R by
+, and term application by ·).
4.2. The Typing Rules

The typing rules (Fig. 5) are derived by assigning terms to the inference rules
of HLP. Additionally, these typing rules are syntactically driven, as the last
symbol used to construct the term in the succedent of each rule is different to
the others. Finally, note that the term in the succedent of each rule contains
(as subterms) all the terms used in the premises of that same rule. As a result,
every well-typed term encodes a derivation in HLP (modulo the equivalence
rules, which are not encoded), and every HLP-derivation can be encoded by a
term.

We now present a series of metatheoretical results of which we shall make
use in our proof of Subject Reduction (Proposition 4.11).

Lemma 4.2 (Inversion). If �HLP Θ;Γ;Δ � NF |u, then:
• if NF = xA, then xA ∈ Γ, u = xA and F = A;
• if NF = vA, then vA ∈ Θ, u = vA and F = A;
• if NF = (λxA.MB)A⊃B, then Θ;Γ, xA;Δ � MB | s is derivable for some
s, and u = λxA.s and F = A⊃B;

• if NF = (MA⊃B
1 MA

2 )B , then both Θ;Γ;Δ �MA⊃B
1 | s and Θ;Γ;Δ �MA

2 | t
are derivable for some s and t, and u = s · t and F = B;
• if NF = (!MA)[[t]]A, then ∃s s.t. Θ; ·; · � MA | s is derivable, and u =

!t, Θ; ·; · � s≡ t : A and F = [[t]]A;
• if NF = (MB

2 〈vA:=r,M1〉)B{vA←rA}, then both Θ;Γ;Δ � M [[r]]A
1 | s and

Θ, vA; Γ;Δ � MB
2 | t are derivable for some s and t, and u = t〈vA:=r, s〉

and F = B{vA ← rA};
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• if NF = ([αA]MA)⊥, then ∃ Δ′, s s.t. Δ = Δ′, αA,
Θ; Γ;Δ′, αA �MA | s is derivable, and u = [αA]s and F = ⊥;
• if NF = (μαA.M⊥)A, then Θ;Γ;Δ, αA �M⊥ | s is derivable for some s,

and u = μαA.s and F = A;
• if NF = (MA+L t)A, then Θ;Γ;Δ � MA | s is derivable for some s, and
u = s+ t and F = A;
• if NF = (s+RM

B)B , then Θ;Γ;Δ � MB | t is derivable for some t, and
u = s+ t and F = B.

Proof. By structural induction on N . One and only one rule applies to each
of the cases, and the only rule which can modify the witness is T-�I, which
replaces it by an equivalent proof witness for the same type under the same
contexts. �
Lemma 4.3 (Truth Variable Substitution). If �HLP Θ;Γ, yA;Δ �MB | s and
�HLP Θ;Γ;Δ � NA | t are derivable, then
�HLP Θ;Γ;Δ �M{yA ← N}B | s{yA ← t}.
Lemma 4.4 (Validity Variable Substitution). 1. If �HLP Θ, vA; Γ;Δ �MB | s

and �HLP Θ; ·; · � NA | t, then
�HLP Θ;Γ;Δ �M{vA ← NA, t}B{vA←t} | s{vA ← t}.

2. If �HLP Θ, vA; Γ;Δ � s≡r : B and �HLP Θ; ·; · � NA | t, then
�HLP Θ;Γ;Δ � s{vA ← t}≡r{vA ← t} : B{vA ← t}.

Lemma 4.5 (Validity Variable Substitution with Proof Witness Equivalence).
If �HLP Θ, vA; Γ;Δ �MB | s, �HLP Θ; ·; · � NA | r and �HLP Θ;Γ;Δ � r≡ t : A,
then there exists s′ such that both �HLP Θ;Γ;Δ �MB{vA ← NA, t}B{vA←t} | s′
and �HLP Θ;Γ;Δ � s′≡s{vA ← t} : B{vA ← t}.
Lemma 4.6 (Falsehood Variable Renaming). If �HLP Θ;Γ;Δ, αA, βA �MB | s,
then �HLP Θ;Γ;Δ, βA �M{αA ← βA}B | s{αA ← βA}.
Lemma 4.7 (Structural Substitution). If �HLP Θ;Γ;Δ, αA⊃B �MF | s
and �HLP Θ;Γ;Δ � NA | t, then also
�HLP Θ;Γ;Δ, βB �M{|[αA⊃B ](•)←[βB ](•)NA|}F | s{|[αA⊃B ](•)←[βB ](•)t|}.
Corollary 4.8. If �HLP Θ;Γ;Δ, αA⊃B �M⊥ | s and �HLP Θ;Γ;Δ � NA | t, then
�HLP Θ;Γ;Δ � (μβB .M⊥{|[αA⊃B ](•)←[βB ](•)NA|})B |μβB .s{|[αA⊃B ](•)←[βB ](•)t|}.
Lemma 4.9. If �HLP Θ;Γ;Δ �MA | s, then FVT(s) ⊆ FVT(MA) and FVF(s)
⊆ FVF(MA).

4.3. The Reduction Rules

Reduction in λLP is defined as the compatible closure of the following reduction
rules. The first set of rules arises from the principal cases of normalisation of
derivations and are referred to as the principal rules:

β : (λxA.MB)NA → MB{xA ← NA}
γ : MB〈vA:=r, !NA〉 → MB{vA ← NA, r}, if FVT(NA)=FVF(NA)=∅
μ : [βA]μαA.M⊥ → M⊥{αA ← βA}
ζ : (μαA⊃B.M⊥)NA → μβB .M⊥{|[αA⊃B ](•)←[βB ](•)NA|}
θ : μαA.[αA]MA → MA, if αA �∈ FVF(MA)
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The second set of rules, the permutative rules, arise from the permutative cases:
ψL : (MA⊃B+Lt)A⊃BNA → (MA⊃BNA)B+Lt
ψR : (s+RM

A⊃B)A⊃BNA → s+R(MA⊃BNA)B

φL : NB〈vA:=r, (M [[r]]A+Lt)〉→ (NB〈vA:=r,M〉)B{vA←rA}+Lt

φR : NB〈vA:=r, (s+RM
[[r]]A)〉→ s+R(NB〈vA:=r,M〉)B{vA←rA}

χL : [βA](MA+Lt)A → ([βA]MA)⊥+Lt
χR : [βB ](s+RN

B)B → s+R([βB ]NB)⊥

ιL : μαA.(M⊥+Lt)⊥ → (μαA.M⊥)+Lt if αA �∈ FVF(t)

ιR : μαA.(s+RN
⊥)⊥ → s+R(μαA.N⊥) if αA �∈ FVF(s)

The restrictions to rules γ, θ, ιL and ιR prevent the creation of free vari-
ables upon reduction. Bound variables may be renamed before reduction to
avoid capture.

Lemma 4.10. If �HLP Θ;Γ;Δ �MD | s and MD → ND by reducing a redex
at the root of MD, then �HLP Θ;Γ;Δ � ND | s′ for some witness s′ such that
Θ;Γ;Δ � s≡s′ : D.

Proof. We must consider which reduction rule was used.
• β : M = (λxA.MB

1 )MA
2 , N = MB

1 {xA ← MA
2 } and, by Inversion Lemma

(used twice), D = B, s = (λxA.t) · t′ and both Θ; Γ;Δ � MA
2 | t′ and

Θ; Γ, xA;Δ � MB
1 | t are derivable. By Lemma 4.3, we can derive Θ; Γ;Δ �

MB
1 {xA ← MA

2 }B | t{xA ← t′}. And, by Eq-β, Θ; Γ;Δ � (λxA.t) · t′ ≡
t{xA ← t′} : B.
• γ : in this case M = (MB

1 〈vA:=r, !MA
2 〉)B{vA←r}, N = (MB

1 {vA ←MA
2 , r})

B{vA←r} and, by Inversion Lemma (twice),D = B{vA ← r}, s = t〈vA:=r, !r〉
and there is a witness r′ such that Θ; ·; · � r′≡r : A and both Θ; ·; · �MA

2 | r′
and Θ, vA; Γ;Δ � MB

1 | t are derivable. By Weakening and Lemma 4.5, we
can derive Θ; Γ;Δ � MB

1 {vA ← MA
2 , r}B{v

A←r} | s′ and Θ; Γ;Δ � s′ ≡
t{vA ← r} : B{vA ← r} for some witness s′ - and, by Eq-Symm, we
derive Θ; Γ;Δ � t{vA ← r} ≡ s′ : B{vA ← r}. By Eq-γ, we can derive
Θ; Γ;Δ � s≡ t{vA ← r} : B{vA ← r}. And finally, by Eq-Trans, Θ; Γ;Δ �
s≡s′ : B{vA ← r}.
• μ : M = [βA]μαA.M⊥1 , N = M⊥1 {αA ← βA} and, by Inversion Lemma

(twice), s = [βA]μαA.t, D = ⊥, Δ = Δ′, βA and both Θ; Γ;Δ′, βA

� (μαA.M⊥1 )A |μαA.t and Θ; Γ;Δ′, αA, βA �M⊥1 | t are derivable. Then, by
Lemma 4.6, Θ; Γ;Δ′, βA �M⊥1 {αA ← βA}⊥ | t{αA ← βA} is also derivable.
And, by Eq-μ, Θ; Γ;Δ′, βA � [βA]μαA.t≡ t{αA ← βA} : ⊥.
• ζ : M = (μαA⊃B .M⊥1 )A⊃BMA

2 , N = μβB .M⊥1 {|[αA⊃B ](•)←[βB ](•)MA
2 |} and, by

Inversion Lemma (twice), D = B, s = (μαA⊃B .s1) · s2 and the judgements
Θ; Γ;Δ �MA

2 | s2, Θ; Γ;Δ � (μαA⊃B .M1)A⊃B |μαA⊃B .s1 and Θ; Γ;Δ, αA⊃B �
M⊥1 | s1 are derivable. By Corollary 4.8, we can derive
Θ; Γ;Δ � (μβB .M⊥1 {|[αA⊃B ](•)←[βB ](•)MA

2 |})B |mutβBs1{|[αA⊃B ](•)←[βB ](•)s2|}.
And by Eq-ζ, Θ; Γ;Δ � (μαA⊃B.s1) · s2≡s1{|[αA⊃B ](•)←[βB ](•)s2|} : B.
• θ : M = μαA.[αA]MA

1 , N = MA
1 and αA 
∈ FVF(MA). By Inversion Lemma

(twice), D = A, s = μαA.[αA]t and both Θ; Γ;Δ, αA � ([αA]MA
1 )⊥ | [αA]t

and Θ; Γ;Δ, αA � MA
1 | t are derivable. Since αA 
∈ FVF(MA

1 ) - and, by
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Lemma 4.9, αA 
∈ FVF(t) -, then Θ; Γ;Δ �MA
1 | t is derivable and, by Eq-Θ,

Θ; Γ;Δ � μαA.[αA]t≡ t : A.
• ψL : M = (MA⊃B

1 +L s2)A⊃BMA
3 and N = (MA⊃B

1 MA
3 )B+L s2. By Inversion

Lemma (twice), D = B, s = (s1 + s2) · s3, and the judgements Θ; Γ;Δ �
MA⊃B

1 | s1, Θ; Γ;Δ � MA
3 | s3 and Θ; Γ;Δ � (M1+L s2)A⊃B | s1 + s2 are

derivable. By T- ⊃ E, we can derive Θ; Γ;Δ � (MA⊃B
1 MA

3 )B | s1 · s3. By
T-PlusL, we obtain Θ; Γ;Δ � (MA⊃B

1 MA
3 )+Ls

B
2 | (s1 ·s3)+s2. And, by Eq-ψL,

Θ; Γ;Δ � (s1 + s2) · s3≡(s1 · s3) + s2 : B.
• ψR : M = (s1+RM

A⊃B
2 )A⊃BMA

3 and N = s1+R (MA⊃B
2 MA

3 )B . This case is
analogous to the previous one.
• φL : (φR is similar and hence omitted) M = LB〈vA:=r, (M [[r]]A

1 +L s2)〉 and
N = (LB〈vA:=r,M1〉)B{vA←rA}+L s2. By Inversion Lemma (twice), D =
B{vA ← r}, s = t〈vA:=r, (s1+s2)〉, and the judgements Θ, vA; Γ;Δ � LB | t,
Θ; Γ, vA;Δ � (M [[r]]A

1 +Ls2)[[r]]A | s1 +s2 and Θ; Γ;Δ �M [[r]]A
1 | s1 are derivable.

By T-�E, Θ; Γ;Δ � (LB〈vA:=r,M1〉)B{vA←r} | t〈vA:=r, s1〉. By T-PlusL, the
judgment Θ; Γ;Δ � NB{vA←r} | (t〈vA:=r, s1〉) + s2 is derivable. And, by
Eq-φL, so is Θ; Γ;Δ � t〈vA:=r, (s1 + s2)〉≡(t〈vA:=r, s1〉) + s2 : B{vA ← r}.
• χL : (χR is similar and hence omitted) M = [βA](MA

1 +L s2)A and N =
([βA]MA

1 )⊥+Ls2. By Inversion Lemma (twice), D = ⊥, s = [βA]s1 +s2, Δ =
Δ′, βA and the judgements Θ; Γ;Δ′, βA � (MA

1 +L s2)A | s1 + s2 and
Θ; Γ;Δ′, βA �MA

1 | s1 are derivable. By T-Name, we can derive Θ; Γ;Δ′, βA �
([βA]MA

1 )⊥ | [βA]s1. By T-PlusL, we obtain Θ; Γ;Δ′, βA � ([βA]MA
1 )⊥+L

s⊥2 | ([βA]s1) + s2. And finally, by Eq-χL, Θ; Γ;Δ′, βA � [βA]s1 + s2 ≡
([βA]s1) + s2 : ⊥.
• ιL : M = μαA.(M⊥1 +Ls2)⊥ and N = (μαA.M⊥1 )A+Ls2. By Inversion Lemma

(twice), D = A, s = μαA.s1 + s2, and the judgements Θ; Γ;Δ′, αA � (M⊥1 +L

s2)⊥ | s1 + s2 and Θ; Γ;Δ′, αA � M⊥1 | s1 are derivable. By T-NAbs, we can
derive Θ; Γ;Δ � (μαA.M⊥1 )A |μαA.s1. By T-PlusL, we obtain Θ; Γ;Δ �
(μαA.M⊥1 )A+Ls

A
2 | (μαA.s1)+ s2. And finally, by Eq-χL, Θ; Γ;Δ � μαA.s1 +

s2≡(μαA.s1) + s2 : A.
• ιR : This case is analogous to the previous one.

�

The following result is proved by induction on the derivation of Θ; Γ;Δ �
MB |s and resorting to 4.10 and the congruence schemes for proof witness
equivalence.

Proposition 4.11 (Subject Reduction). If �HLPΘ;Γ;Δ �
MB |s and MB → NB, then �HLP Θ;Γ;Δ � NB | s′ for some witness s′ such
that Θ;Γ;Δ � s≡s′ : B.

Corollary 4.12. If �HLP Θ;Γ;Δ�(!MB)A|t and MB→ NB, then
�HLP Θ;Γ;Δ � (!NB)A | t.
Proof. By the Inversion Lemma, A = [[r]]B, t =!r for some proof witness r,
and there is an s such that both Θ; ·; · � MB |s and Θ; ·; · � s ≡ r : B are
derivable. By Proposition 4.11, there is an s′ such that both Θ; ·; · �NB |s′ and
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Figure 6. Inference schemes and reduction rules of λμ1

Θ; ·; · � s′≡s : B are derivable. By Eq-Trans, Θ; ·; · � s′≡r : B is also derivable.
And, by T-�I, so is Θ; Γ;Δ � (!NB)[[r]]B | !r. �

5. Strong Normalisation

We prove strong normalisation (SN) of term reduction by mapping λLP-terms
into terms of Parigot’s λμ-calculus with unit type (λμ1). A proof of SN of
the λμ-calculus can be found in [17]. Since we are working with propositional
logic, we will only use the pure (propositional) λμ-calculus, rather than its
second-order extension.

λμ1 inherits the inference schemes (top of Fig. 6) and reduction rules from
λμ along with all its properties, since unit is not involved in the reduction. λμ1-
judgements take the form M : Γ � Δ, with M a λμ1-term, Γ a truth context
and Δ a falsehood context. For clarity, we adapt Parigot’s notation replacing
→ by ⊃ and Ax (resp. Aα) as xA (resp. αA). Also, we include ⊥ as a formula
or type since it simplifies our mapping and assume that ⊥,Δ = Δ. Finally,
we also assume that application is left-associative, dropping the parentheses
where it is safe. The reduction rules of λμ1 are given in Fig. 6 (bottom) and
correspond, respectively, to rules β, ζ, μ and θ in λLP.

As mentioned above, in order to prove SN of λLP, we introduce a mapping
〈| · |〉, which associates types (formulas) and terms (proofs) in λLP with types
and terms in λμ1. The modal type [[s]]A is mapped to a functional type whose
domain is the unit type 1 and whose co-domain is the mapping of A.

〈|P |〉 � P

〈|⊥|〉 � ⊥
〈|A⊃B|〉 � 〈|A|〉⊃〈|B|〉
〈|[[s]]A|〉 � 1⊃〈|A|〉

〈| · |〉 � ·
〈|Θ, vA|〉 � 〈|Θ|〉, x1⊃〈|A|〉

v

〈|Γ, xA|〉 � 〈|Γ|〉, x〈|A|〉
〈|Δ, αA|〉 � 〈|Δ|〉, α〈|A|〉
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Since λμ1 has truth and falsehood variables but not validity variables, the
mapping of validity variables will rely on a new set of truth variables in λμ1.

〈|xA|〉 � x〈|A|〉

〈|vA|〉 � (x1⊃〈|A|〉
v )unit

〈|(MA⊃BNB)B |〉 � 〈|MA⊃B|〉〈|NB |〉
〈|([αA]MA)⊥|〉 � [α〈|A|〉]〈|MA|〉
〈|(μαA.M⊥)A|〉 � μα〈|A|〉.〈|M⊥|〉
〈|(!MA)[[s]]A|〉 � λx1.〈|MA|〉 with x1 a fresh variable.

〈|(NB〈vA:=r,M [[r]]A〉)B{vA←r}|〉 � (λx1⊃〈|A|〉
v .〈|NB |〉)〈|M [[r]]A|〉

〈|(MA+Lt)A|〉 � 〈|MA|〉
〈|(s+RM

A)A|〉 � 〈|MA|〉
Note that the truth λμ1-variables which appear in the translations of

different validity λLP-variables are different from each other, and from the
translations of all truth λLP-variables.

The following result is proved by by induction on the derivation of
Θ; Γ;Δ � MA | s and noting that 〈|C{vA ← r}|〉 = 〈|C|〉 for every formula
C, validity variable vA and proof witness r.

Lemma 5.1. If �λLP Θ;Γ;Δ �MA | s, then 〈|M |〉 : 〈|Θ|〉 ∪ 〈|Γ|〉 � 〈|A|〉, 〈|Δ|〉 is
derivable in λμ1.

The mapping preserves substitution of truth variables, renaming of false-
hood variables and even structural substitution, as may be proved by structural
induction on M :

Lemma 5.2. For all λLP-terms M, N , for every truth variable xA: 〈|M |〉{x〈|A|〉 ←
〈|N |〉} = 〈|M{xA←N}|〉.
Lemma 5.3. For every λLP-term M , for all falsehood variables αA, βA: 〈|M |〉
{α〈|A|〉 ← β〈|A|〉} = 〈|M{αA ← βA}|〉.
Lemma 5.4. For all λLP-terms M, NA, for all falsehood variables αA⊃B, βB:
〈|M |〉{|[α〈|A⊃B|〉](•)←[β〈|B|〉](•)〈|NA|〉|}=〈|M{|[αA⊃B](•)←[βB ](•)NA|}|〉.

The same cannot be said for substitution of validity variables however.
For instance, if M = vA, then 〈|M |〉{x1⊃〈|A|〉

v ←〈|N |〉} = ((x1⊃〈|A|〉
v )unit){x1⊃〈|A|〉

v ←
〈|N |〉} = 〈|N |〉unit, which is clearly not the same as 〈|M |〉{vA ← N,w(N)} =
〈|N |〉. In the case of substitution of validity variables we have the following
weaker result, which can also be verified by induction on M .

Lemma 5.5. For all λLP-terms M, N , for every validity variable vA and every
truth variable y1 
∈ FVT(〈|N |〉): 〈|M |〉{x1⊃〈|A|〉

v ← λy1.〈|N |〉}−−→−→R1〈|M{vA ←
}N,w(N)|〉, where −−→−→R1 is the reflexive transitive closure of β-reduction (rule
R1 in λμ1).
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In order to prove that the mapping preserves SN, we need to distinguish
between the two kinds of λLP-reduction: principal reduction (using the rules
β, γ, μ, ζ and θ) and permutative reduction (rules ψL, ψR, φL, φR, χL, χR, ιL
and ιL). A principal reduction step maps to one or more reduction steps in
λμ1, while permutative reduction steps are dropped by the mapping (i.e. they
translate to 0 reduction steps in λμ1).

Lemma 5.6. If M → N in λLP without the use of permutative rules, then
〈|M |〉 →+ 〈|N |〉 in λμ1. That is, 〈|M |〉 reduces to 〈|N |〉 in 1 or more steps.

Lemma 5.7. If M → N in λLP using only permutative rules, then 〈|M |〉 = 〈|N |〉.
SN of permutative reduction may be shown by means of a polynomial

interpretation using the standard ordering over the natural numbers. For every
reduction step M → N one shows that NA < MA. For example, the following
interpretation may be used:

xB
A � 2

vB
A � 2

(MC⊃BNA)B
A � MC⊃B

A ×NA
A

(λxA.MB)A⊃BA � 2×MB
A

([αB ]MB)⊥A � 2×MB
A

(μαB .M⊥)B
A � 2×M⊥A

(!MB)[[s]]BA � 1 +MB
A

(NB〈vC :=r,M〉)B{vC←r}
A � NB

A ×M [[r]]B
A + 1

(MB+Lt)B
A � 2×MB

A + 2

(s+RM
B)B
A � 2×MB

A + 2

Lemma 5.8. Permutative reduction is SN.

We may now prove the main result of this section.

Proposition 5.9. Every typable λLP-term is SN.

Proof. We prove this result by contradiction. Assume that there is an infinite
reduction sequence starting from a typable λLP-term M0. Since, by Lemma 5.8,
permutative reduction is SN, our sequence must contain an infinite number of
principal reduction steps. Between any two principal steps, there may be 0
or more permutative steps (always a finite number). Therefore, the reduction
sequence has the form:

M0
P−−→−→M ′0

B→M1
P−−→−→M ′1

B→M2
P−−→−→M ′2

B→ · · ·

where B→ denotes a principal reduction step and P→ a permutative one. Addi-
tionally, by Lemma 5.7, 〈|Mi|〉 = 〈|M ′i |〉 for every i. Also, by Lemma 5.6, we
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know that for every i, 〈|Mi|〉 →+ 〈|Mi+1|〉 in λμ1. We can therefore construct
an infinite λμ1-reduction sequence:

〈|M0|〉 →+ 〈|M1|〉 →+ 〈|M2|〉 →+ · · ·
However, M0 is typable in λLP and, by Proposition 4.11, so is every Mi.

Since the mapping preserves typability (Lemma 5.1), then we have an infinite
reduction sequence of typable λμ1-terms. This is an absurd, since reduction
of typable λμ1-terms is SN. Therefore, there cannot be an infinite reduction
sequence starting from a typable λLP-term. �

6. Confluence

This section addresses confluence of λLP, namely that if M0 −−→−→M1 and M0 −−→−→
M2, then there exists M3 s.t. M1 −−→−→ M3 and M2 −−→−→ M3. Confluence is an
immediate consequence (via Newman’s Lemma) of the fact that λLP is strongly
normalising and that all critical pairs are joinable. Regarding the latter point,
note that λLP has the following critical pairs:

• μ− θ : [βA]μαA.[αA]MA with αA �∈ FVF(MA)

• μ− ιL : [βA]μαA.M⊥+Lt with αA �∈ FVF(t)

• μ− ιR : [βA]μαA.s+RM
⊥ with αA �∈ FVF(s)

• ζ − θ : (μαA⊃B .[αA⊃B ]MA⊃B)NA with αA⊃B �∈ FVF(MA⊃B)

• ζ − ιL : (μαA⊃B .M⊥+Lt)NA with αA �∈ FVF(t)

• ζ − ιR : (μαA⊃B .s+RM
⊥)NA with αA �∈ FVF(s)

• θ − μ : μβA.[βA]μαA.MA with βA �∈ FVF(MA)

• θ − χL : μαA.[αA]MA+Lt with αA �∈ FVF(t)

• θ − χR : μαA.[αA]s+RM
A with αA �∈ FVF(s)

As depicted in Fig. 7 all these critical pairs are joinable (note that those
involving ιR, φR or χR are analogous to those involving ιL, φL or χL, resp.,
and hence are omitted).

Proposition 6.1 (Confluence). Reduction in λLP is confluent.

7. Additional Permutative Rules

We briefly comment on the λLP
p -calculus, resulting from adding the following

permutative reduction rules to λLP, where υθ is subject to the condition that
αA 
∈ FVF(N[[r]]B):

υβ : MA⊃B
1 〈vC :=r,M [[r]]C

2 〉NA → (MA⊃B
1 NA)〈vC :=r,M [[r]]C

2 〉
υγ : MA〈vB:=r,N[[r]]B

1 〈uC :=s,N[[s]]C
2 〉〉→MA〈vB :=r,N[[r]]B

1 〉〈uC :=s,N[[s]]C
2 〉

υμ : [βB ](MB〈vA:=r,N[[r]]A〉) → ([βB ]MB)〈vA:=r,N[[r]]A〉
υθ : μαA.(M⊥〈vB :=r,N[[r]]B〉) → (μαA.M⊥)〈vB :=r,N[[r]]B〉
Proof witness equivalence must also be augmented with the inference

schemes of Fig. 8. Subject Reduction is then seen to hold. Also, the following
new critical pairs appear:
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Figure 7. Critical pairs of λLP

• μ− υθ : [βA]μαA.(M⊥〈vB :=r,N [[r]]B〉) with αA �∈ FVF(N [[r]]B)

• ζ − υθ : (μαA⊃B.M⊥1 〈vC :=r,N [[r]]C〉)MA
2 with αA �∈ FVF(N [[r]]C)

• υβ − γ : (MA⊃B
1 〈vC :=r, !NC〉)MA

2 with vC �∈FVV(MA
2 ), FVT(NC)=FVT(NC)=∅

• υβ − φL : (MA⊃B
1 〈vC :=r,N [[r]]C+Lt〉)MA

2

• υβ − φR : (MA⊃B
1 〈vC :=r, s+RN

[[r]]C〉)MA
2

• υβ − υγ : (MA⊃B
1 〈vC :=r,M [[r]]C

2 〈uF :=s,M [[s]]F
3 〉〉)NA

• υγ − γ : MA
1 〈vB :=r,M [[r]]B

2 〈uC :=s, !NC〉〉 with FVT(NC)=FVT(NC)=∅
• υγ − φL : MA

1 〈vB :=r,M [[r]]B
2 〈uC :=s,M [[s]]C

3 +Lt〉〉
• υγ − φR : MA

1 〈vB :=r,M [[r]]B
2 〈uC :=s, t+RM

[[s]]C
3 〉〉

• υγ − υγ : MA
1 〈vB :=r,M [[r]]B

2 〈uC :=s,M [[s]]C
3 〈wF :=t,M [[w]]F

4 〉〉〉
• υμ − γ : [αA](MA〈vB :=r, !NB〉)with FVT(NB)=FVT(NB)=∅
• υμ − φL : [αA](MA〈vB :=r,N [[r]]B+Lt〉)
• υμ − φR : [αA](MA〈vB :=r, s+RN

[[r]]B〉)
• υμ − υγ : [αA](MA

1 〈vB:=r,M [[r]]B
2 〈uC :=s,M [[s]]C

3 〉〉)
• υθ − γ : μαA.(MA〈vB :=r, !NB〉) with FVT(NB)=FVT(NB)=∅
• υθ − φL : μαA.(MA〈vB:=r,N [[r]]B+Lt〉) with αA �∈ FVF(N [[r]]B+L t)

• υθ − φR : μαA.(MA〈vB :=r, s+RN
[[r]]B〉) with αA �∈ FVF(s+RN [[r]]B)
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Figure 8. Additional proof witness equivalence schemes

• υθ − υγ : μαA.(MA
1〈vB :=r,M [[r]]B

2 〈uC :=s,M [[s]]C
3 〉〉) with αA �∈FVF(M

[[r]]B
2 )∪

FVF(M
[[s]]C
3 )

These are all joinable (Appendix section). Regarding SN, λLP
p \{υμ, υθ}

may be proved SN by translating it into the λμ→∧∨⊥-calculus of [11] adapting
the translation of [15]. The translation is the same as the one shown in Sect. 5,
except for the following clauses:

〈|vA|〉 � v〈|A|〉

〈|(!MA)[[s]]A|〉 � ι1(〈|MA|〉)
〈|(NB〈vA:=r,M [[r]]A〉)B{vA←r}|〉 � δ(〈|NB |〉, v〈|A|〉.〈|MA|〉, v〈|A|〉.〈|MA|〉)

where ι1 is the term denoting a left injection into a disjoint union and δ is
the case elimination construct of the disjoint union. Note that the translated
versions of rules υβ and υγ are already present in λμ→∧∨⊥, since this calculus
already includes the two permutation rules:

δ(M,x.N, y.O) P → δ(M,x.N P, y.O P )
δ(δ(M,x.N, y.O), u.P, v.Q) → δ(M,x.δ(N,u.P, v.Q), y.δ(O, u.P, v.Q))

For λLP
p \{υμ, υθ} we thus obtain confluence from Newman’s Lemma. As

regards SN for λLP
p , we conjecture that it should be easily obtainable by adapt-

ing the approach mentioned above for λLP
p \{υμ, υθ}.

8. Related Work

Applications of modal logic to programming languages are extensive. A review
may be found here [12]. The specific applications of LP, via the Curry–Howard
isomorphism, to programming languages were mentioned in the introduction.
Further details are supplied in this section.
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In [2] a lambda calculus where the reduction history is part of the term is
introduced. The following scheme is used to recover Subject Reduction (which
fails for the naive scheme as discussed in Sect. 2), e encoding the derivation of
the judgement Θ; Γ � s≡ t : A|e:

Θ; Γ �MA | s Θ;Γ � s≡ t : A|e
Eq

Θ;Γ � e�MA | s
Strong normalisation is deduced for the resulting term assignment λI from
weak-normalisation using techniques from higher-order rewriting. Also, a Chu-
rch–Rosser theorem yields confluence of λI . Note that since terms carry infor-
mation on how a result is computed (very much in line with Lévy labels in
rewriting), the CR result may be considered a strengthening of the standard
CR result of the typed lambda calculus.

In [7] the history or computation trail is allowed to be inspected by
introducing trail variables; this permits the calculus to model history-based
access control [3] and history-based information flow [9]. In that work the
following term assignment for �I is proposed, where Δ is a set of trail variables:

Θ;Δ; · �MA | s Θ;Δ; · � s≡ t : A|e
�I

Θ;Δ′; Γ � (!Δe M)[[t]]A | !t
A term of the form !Δe M operates as an audited computation unit, where all
computation is audited and locally scoped within M .

Also, in [8] by interpreting �A as mobile code of type A, LP suggests a
calculus of certified mobile units which enriches mobile code with certificates
(representing type derivations). Such units take the form boxsM, s being the
certificate and M the executable. Composition of certified mobile units allows
one to build mobile code out of other pieces of mobile code together with
certificates that are also composed out of other certificates. For example, the
term

λa.λb.unpack a to 〈•u, ◦u〉 in (unpack b to 〈•v, ◦v〉 in (box ◦
u·◦v
•
u
•
v))

reads as follows: “Given a mobile unit a and a mobile unit b, extract code
•
v and

certificate
◦
v from b and extract code

•
u and certificate

◦
u from a. Then create

new code
•
u
•
v by applying

•
u to

•
v and a new certificate for this code

◦
u · ◦v.

Finally, wrap both of these up into a new mobile unit.”. The type system
ensures that certificates always correspond to the mobile code with which it is
enclosed.

9. Conclusions

A presentation of LP based on hypothetical reasoning, dubbed HLP, is pro-
posed. The work builds, on the one hand, on Parigot’s Classical Natural Deduc-
tion and, on the other, on prior work by one of the authors on hypotheti-
cal presentations of an intuitionistic fragment of LP [2,7,8,20]. This yields a
Natural Deduction formalism for proving LP theorems. A term assignment is
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proposed which is accompanied by a fine analysis of normalisation of deriva-
tions in HLP: derivations are represented as terms and normalisation steps on
derivations are encoded as reduction steps over terms. This yields a lambda
calculus, the λLP-calculus. Strong normalisation of reduction in λLP is shown
to hold together with confluence (which is a rather immediate consequence of
strong normalisation given that all critical pairs converge).

The are a number of avenues for further research. Given that one of
the main motivations behind this work is to uncover programming idioms
behind HLP via the Curry-Howard isomorphism, quite some work needs to be
developed in that direction. A combination of continuation-based computation
together with history-based computation should emerge. The latter feature
may require variants of the term assignment proposed here in which the full set
of derivations is encoded (cf. [7]). Other issues involve the study of fundamental
properties of programming languages with regards to the calculus, as pioneered
by the work of Plotkin [19]. In particular this includes the study of abstract
machines, reduction strategies such as call-by-name and appropriate notions
of standard derivations.

Appendix: Confluence

This section depicts (Figs. 9, 10, 11) how the critical pairs that arise from the
additional permutation rules (Sect. 7) may be joined.
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Figure 9. Additional critical pairs associated to permutative
reductions (1/3)
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Figure 10. Additional critical pairs associated to permuta-
tive reductions (2/3)
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Figure 11. Additional critical pairs associated to permuta-
tive reductions (3/3)
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Roque Sáenz Peña 352, Bernal, Buenos Aires
Argentina

e-mail: ebonelli@unq.edu.ar

Author's personal copy



140 E. Bonelli and G. Steren Log. Univers.

Gabriela Steren
UBA
Buenos Aires
Argentina
e-mail: gsteren@yahoo.com

Received: September 16, 2013.

Accepted: February 5, 2014.

Author's personal copy


	Hypothetical Logic of Proofs
	Abstract
	1. Introduction
	1.1. LP
	1.2. LP and Programming Languages
	1.3. Hypothetical Reasoning for LP

	2. HLP
	2.1. Formulae and Proof Witnesses
	2.2. Axiom and Inference Schemes
	2.3. Proof Witness Equivalence

	3. LP
	3.1. From LP to HLP
	3.2. From HLP to LP
	3.2.1. Abstraction in LP
	3.2.2. Completing the Definition of the Translation


	4. Term Assignment
	4.1. Terms and Substitution
	4.2. The Typing Rules
	4.3. The Reduction Rules

	5. Strong Normalisation
	6. Confluence
	7. Additional Permutative Rules
	8. Related Work
	9. Conclusions
	Appendix: Confluence
	References


