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Abstract
The Propositional Logic of Proofs (LP) is a modal logic in which the modality �A is revisited as [[t]]A, t being an expression
that bears witness to the validity of A. It enjoys arithmetical soundness and completeness, can realize all S4 theorems and
is capable of reflecting its own proofs (�A implies �[[t]]A, for some t). A presentation of first-order LP has recently been
proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics.Akey notion in this presentation
is how free variables are dealt with in a formula of the form [[t]]A(i). We revisit this notion in the setting of a Natural Deduction
presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong
normalization is given.
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1 Introduction

Justification Logic [2] is a family of modal logics in which the modality �A is revisited as [[t]]A, t
being an expression that bears witness to the validity of A. The Propositional Logic of Proofs (LP)
is the first member of this family. A recent addition is the First-Order Logic of Proofs (FOLP) [9],
which extends LP to first-order logic, enjoys a natural provability semantics (just like its propositional
counterpart) and is able to realize all first-order modal logic theorems. We build on proof theoretical
investigations of modal logic based on judgemental reconstruction of intuitionistic S4 [17–19, 28]
later applied to LP [5, 10, 11, 14], to construct a Natural Deduction presentation for FOLP. The overall
aim is to explore possible computational metaphors of (first-order) LP in terms of the Curry–Howard
isomorphism. A term assignment (a lambda calculus) is proposed for which some fundamental
properties are studied. We next provide a brief overview of LP and FOLP, and spell out the main
ideas behind our proposal.

1.1 The logic of proofs

Early work of Orlov [36] and Gödel [23] propose an explanation of intuitionistic truth in terms of
classical provability by prefixing every subformula in Int (Intuitionistic Propositional Logic) with
‘�’, where ‘�’ is subject to the laws of S4. Gödel established that the translation of formulas which
are provable in Int are provable in S4 (this embedding is also faithful [34]). In order to complete the
explanation, it is necessary to relate the ‘�’ modality with provability in PA:

Int ↪→S4 ↪→ ? ↪→PA. (1)
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2 First-order hypothetical logic of proofs

Reading ‘�A’ as ‘∃x.Proof (x,�A�)’, where �A� denotes an appropriate numeric encoding of A,
is problematic since the S4 theorem �(¬�⊥), which expresses Con(PA), is provable in PA. This
situation was observed by Gödel [23], who posed two problems:

(1) Uncover the modal logic of the formal provability predicate ∃x.Proof (x,�A�).
(2) Devise the intended provability semantics for S4.

Both of these problems have been solved. The first is answered by Solovay’s completeness
theorem [44] of Löb’s logic; the second by LP [1, 3]1:

Int ↪→S4
a︷︸︸︷
↪→ LP

b︷︸︸︷
↪→ PA. (2)

LP arises essentially from skolemizing the existential quantifier which is implicit in the provability
interpretation of �. It replaces statements of the form �A (read as: ‘there is some proof of A’) by
[[t]]A (read as: ‘t is a proof of A’). Here t is called a proof term, and belongs to the set of expressions
specified by the following grammar:

s,t ::= x |c|s ·t |!s|s+t.

Proof terms are constructed from proof variables, proof constants, application, bang and sum. The
axiom and inference schemes of LP are as follows:

A0. Axioms of classical propositional logic in the language of LP
A1. [[s]]A⊃A
A2. [[s]](A⊃B)⊃ ([[t]]A⊃[[s ·t]]B)
A3. [[s]]A⊃[[!s]][[s]]A
A4. [[s]]A⊃[[s+t]]A
A5. [[t]]A⊃[[s+t]]A
MP. �A⊃B ∧�A⇒�B
Nec. A axiom A0−A5⇒�[[c]]A

Note that if one discards the proof terms decorating these axioms, one obtains the axioms of S4
(A4 and A5 collapse to a trivial theorem). Returning to (2), the arrow marked with an (a) is
Artemov’s realization theorem [1, Thm.9.4] which states that S4�A implies LP�Ar , for some
normal realization •r . A realization is a function that decorates each occurrence of � with a proof
term; it is said to be normal if each negative such occurrence is decorated with a different proof
variable. This entails that each S4 theorem has an underlying statement about proofs. For instance:
�A⊃�B can be realized as [[x]]A⊃[[t(x)]]B, for an appropriate proof term t(x). The arrow marked
(b) in (2) is Artemov’s arithmetical soundness and completeness theorem. The correspondence
(2) was later extended to a fragment of LP capturing provability in HA [7, 16]. A further salient
property of LP is that it is endowed with a reflection (or internalization) mechanism, meaning that
�A implies there exists a ground t s.t. �[[t]]A [1, Corollary 5.5]. The proof of this result consists in
analyzing the given derivation of A in LP, and encoding it using proof terms.

1.2 The first-order logic of proofs

Given a first-order language L, the language of FOLP is obtained by extending L with proof variables
and functional symbols for operations on proofs (cf. Definition 2.1). Also, the set of formulas is

1LP later gave birth to the family of Justification Logics [2, 4].
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First-order hypothetical logic of proofs 3

extended with a skolemized version of the modal operator � whose notation we shall introduce
shortly. A crucial aspect is how parameters are understood in this skolemized version. Consider the
formula �A(i), where A has a parameter i. This parameter can play one of two roles in a proof of
A(i). It can be interpreted as a global parameter. Global parameters are placeholders and, as such,
may be substituted by any first-order expression (denoting an individual) at all. For example, in the
following derivation π (j), where P is a binary predicate letter and F is a first-order expression:

∀i,j.P(i,j)⊃P(j,i)

P(F,j)⊃P(j,F) P(F,j)

P(j,F)

the parameter j acts as a global parameter since it may be substituted for any first-order expression E
in order to obtain a derivation π (E) of P(E,F). However, parameters can also play a different role,
namely that of eigenvariables: syntactic objects subject to generalization. For example, consider the
derivation:

π (j)

∀j.∀i.P(i,j)
,

where π (j) is:

∀i.∀j.P(i,j)

∀j.P(i,j)

P(i,j)

∀i.P(i,j)

.

The parameter j here is not meant to be substituted for; rather it acts as a fresh scoped constant. These
two distinct roles have been identified in Computer Science in the context of proof assistants where
reasoning over open objects is explored (cf. [22] and the citations therein; see also the discussion
on proving universally quantified expressions using the extensional versus intensional approach of
Miller and Tiu [32]).

The above considerations lead to the following skolemized modal operator, proposed in [9], which
allows both interpretations to be accounted for:

[[s]]�A.

Here � is a set of variables and determines the role that a variable plays in a proof of A. Variables
in � play the role of global parameters in A and hence in s (which encodes a proof of A). Variables
that occur in A but that are not in � are understood as eigenvariables. These are therefore taken to
be implicitly bound in A: FIV([[s]]�A), the set of free individual variables in [[s]]�A, is defined to be
�. Arithmetical soundness, realization and reflection are generalized to FOLP [9].

1.3 The first-order hypothetical logic of proofs

Our Natural Deduction presentation for FOLP, dubbed FOHLP, arises from the task of giving
meaning to expressions of the following form called judgements:

�;�;��A|s
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4 First-order hypothetical logic of proofs

Figure 1. Classical natural deduction schemes.

� is a set of validity hypotheses, � is a set of truth hypotheses, and � is a set of negated truth
(false) hypotheses. The intended reading is, ‘s is evidence of the truth of A under truth hypotheses
�, validity hypotheses � and false hypotheses �’. Hypotheses of truth and validity arise from
the work on judgemental reconstruction of S4 [17–19, 28]; the hypothesis of falsity is perhaps
less frequently used. It arises from the work of Parigot [37, 38] on Classical Natural Deduction
(CND), a variation of Natural Deduction for classical logic. CND admits the λμ-calculus as term
assignment, a variation of the lambda calculus which supplies classical logic with an interesting
computational interpretation built around the notion of continuation (and, more recently, also related
to streams [43]).

Before proceeding any further, and for the sake of self-containedness, we briefly revisit Parigot’s
CND2.

CND. Parigot introduces sequents of the form ���, where � and � are sets of formulas. The
axioms and inference schemes are given in Figure 1. Note that all inferable sequents have a formula
in � that is singled out and called active (written to the left of the ‘;’). CND proves exactly the
classical tautologies. On an understanding that hypotheses in � are negated, NAbs is interpreted as
classical absurdity and Name as an instance of implication elimination. CND admits the following
term assignment where hypotheses in � are labeled x,y,... and those in � are labelled α,β,...:

�,x :A�x :A;�
�,x :A�M :B;�

⊃I
��λxA.M :A⊃B;�

��M :A⊃B;� ��N :A;�
⊃E

��M N :B;�
��M :⊥;�,α :A
��[αA]M :A;�

��M :A;�,α :A
��μαA.M :⊥;�,α :A

.

Apart from β, three further rules describe reduction in λμ, where N(|[αA⊃B](•)←[βB](•)U |) below is
a notion of substitution called structural substitution and consists in replacing all occurrences of
[αA⊃B]M in N with [βB](M U).

ς : (μαA⊃B.M)N → μβB.M(|[αA⊃B](•)←[βB](•)N |)
βμ : [βA]μαA.M → M{αA←βA}
ημ : μαA.[αA]M → M, if αA �∈FV(U).

2There are nowadays a number of variations of Parigot’s CND and its associated λμ-calculus (cf. [42]); we essentially
follow the simplified presentation of [45].
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These schemes spell out an interesting operational reading of the new term constructs. The term
μαA.M may be understood as naming its current evaluation context α and then continuing as
M. Similarly, [αA]M calls the continuation α, passing it the value of M. An encoding of the
standard throw and catch mechanism by means of naming and abstraction is possible [45, Ex.6.2.9.].
Computation with continuations has been present in many influential programming languages such
as Scheme and ML.

FOHLP. Returning to our discussion on FOHLP, the introduction scheme for the modality in
Propositional Hypothetical LP [5, 14] is:

�;·;·�A|s �;·;·� s≡t :A
�ILP

�;�;��[[t]]A|!t
.

Here ‘·’ denotes the empty context. Moreover, the judgement �;·;·� s≡t :A establishes that s and t
are equivalent in as much as proof witnesses of the validity of A (cf. Figure 3, Figure 4). Dropping this
judgement yields the following, simpler, scheme which however does not allow the set of derivations
to be closed under normalization [5]:

�;·;·�A|s
�I′LP

�;�;��[[s]]A|!s
.

So consider �ILP. The double role that variables play, as discussed above, must now be reflected in this
scheme (and also in the corresponding elimination scheme). Replacing [[t]]A by [[t]]�A in �ILP would
not do since the resulting scheme allows to prove formulas which are not valid theorems of FOLP.
An example is [[t]]{i}P(i)⊃[[t]]∅P(i), for any t. The standard rule for generalization (i.e. introduction
for ∀) suggests that the free individual variables in A that are additionally in � are not eligible for
generalization and hence must play the role of global parameters. Otherwise, they are eigenvariables.
This suggests the following inference scheme:

�;·;·�A|s �;·;·� s≡t :A FIV(�)∩FIV(A)⊆�
�I

�;�;��[[t]]�A|!t
.

Note the condition FIV(�)∩FIV(A)⊆�. It spells that the free individual letters in A that are in �
must be treated as global parameters. Let us consider now the elimination rule. In Propositional LP
it is:

�;�;��[[r]]A|s �,vA;�;��C |t
�ELP

�;�;��C{vA←r}|t〈vA:=r,s〉
.

The proof witness t〈vA:=r,s〉, may be ignored for now; it simply records the application of �ELP. The
upper left-hand judgement becomes �;�;��[[r]]�A|s in our first-order setting. We are now faced
with the following problem: when a proof of unconditional truth (validity) of A is to be substituted
for vA, the validity variable vA supplies no information on the role that the free individual variables
in A play. Indeed, the rule as it stands allows proving theorems that are not valid in FOLP (the same
example as above applies). This missing information may be regained by writing vA

�′ rather than vA.
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A validity variable vA
�′ stands for a proof of unconditional truth whose global parameters must be

among �′s. These considerations lead to the following proposal for elimination of the modality:

�;�;��[[r]]�A|s �,vA
�′ ;�;��C |t �∩FIV(A)⊆�′

�E
�;�;��C{vA

�′←r}|t〈vA
�′ :=r,s〉

.

The formula [[t]]{i}P(i)⊃[[t]]∅P(i) is no longer provable with these rules (as will be made clear in
Sec. 3 where the correspondence between FOLP and FOHLP is studied).

The remainder of this work consists in verifying whether the above intuitions—and the schemes
they suggest—yield a Natural Deduction presentation for FOLP which admits a strongly normalizing
notion of proof normalization producing valid derivations.Aterm assignment will also be proposed as
a step forward towards a computational reading of FOLP in terms of the Curry–Howard isomorphism.

Structure of the article. Section 2 introduces FOLP and some of its salient properties. Section 3
is devoted to the Natural Deduction presentation for FOLP. Section 4 studies the relation between
FOLP and FOHLP. Section 5 proposes a term assignment and addresses strong normalization.
Section 6 presents related work. Finally, we conclude. An Appendix includes detailed proofs of all
results.

2 First-order logic of proofs

The language of FOLP [9] has a countable number of individual variables i0,i1,..., predicate letters
of any arity P0,P1,... and functional letters3 of any arity f0,f1,..., but no equality. FOLP expressions,
denoted E0,E1,... thus are either of the form i or f (E1,...,En), for E1,...,En FOLP expressions.
In addition to that, the language includes symbols for constructing proof terms. These include a
countable number of proof variables,4 proof constants and functional symbols for operations on
proofs.

Definition 2.1
Proof terms and formulas of FOLP are defined as follows:

s,t ::= xA |c|s ·t |!s|s+t |geni(s)

A,B ::= P(E1,...,En)|⊥|A⊃B|[[s]]�A|∀i.A,

where � is a set of individual variables. We often abbreviate [[s]]∅A with [[s]]A.

We use ‘¬A’as an abbreviation for ‘A⊃⊥’. Note that the functional symbols for constructing proof
terms are binary ‘·’, unary ‘!’, binary ‘+’, (these three are inherited from LP) and an infinite number
of unary operators ‘geni()’, one for each individual variable i. The free individual variables in E
are the set of all variables that occur in it and is denoted FIV(E). A proof term has a free individual
variable i only if it occurs in the formula that decorates a proof variable and does not occur in an
expression of the form geni(s). As stated earlier, the individual variables which are free in [[t]]�A
are exactly those contained in �. All other individual variables are assumed to be bound. The set of
free proof variables in A are all the proof variables that occur in A and are denoted FV(A).

3In [9], no functional letters are assumed.
4In contrast to [9], we assume proof variables to be decorated with formulas.
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Definition 2.2
Free individual variables in proof terms and formulas are defined by recursion as follows5:

FIV(P(E1,...,En)) �
⋃

i∈1..nFIV(Ei)
FIV(⊥) � ∅

FIV(A⊃B) � FIV(A)∪FIV(B)
FIV([[t]]�A) � �

FIV(∀i.A) � FIV(A)\{i}

FIV(xA) � FIV(A)
FIV(c) � ∅

FIV(s ·t) � FIV(s)∪FIV(t)
FIV(!s) � FIV(s)

FIV(s+t) � FIV(s)∪FIV(t)
FIV(geni(s)) � FIV(s)\{i}

For instance, in the formula [[c]]{j}(P(i)⊃Q(j)⊃P(i)), the variable j is free, while i is bound. We
work modulo α-equivalence over individual variables as generated by the following α-equivalence
axioms:

∀i.A =α ∀j.A{i← j}, if j �∈FIV(A)
[[t]]�A =α [[t{i← j}]]�A{i← j}, if i �∈� and j fresh

Furthermore, we assume the following variable convention: we rename where appropriate so that
the names of the bound individual variables are distinct and also different from the names of the free
individual variables, in any proof witness, formula, statement or proof. For example, we do not allow
formulas of the form [[s]]�A where � contains one or more individual variables which are bound in
either s or A.

There are two notions of substitution, namely substitution of free individual variables and
substitution of proof term variables. The latter is the standard notion of substitution where, in
particular, yB{xA←s}=yB. The former is defined below.

Definition 2.3 (Individual variable substitution in FOLP)
Substitution of individual variable i in a first-order expression E′ by E, written E′{i←E}, is defined as:

i{i←E} � E
j{i←E} � j, if j �= i

f (E1,...,En){i←E} � f (E1{i←E},...,En{i←E})

Substitution of individual variable i in a formula is defined as:

P(E1,...,En){i←E} � P(E1{i←E},...,En{i←E})
⊥{i←E} � ⊥

(A⊃B){i←E} � A{i←E}⊃B{i←E}
([[s]]�A){i←E} � [[s{i←E}]](�\{i})∪FIV(E)A{i←E}, if i∈�
([[s]]�A){i←E} � [[s]]�A, if i �∈�

(∀j.A){i←E} � ∀j.A{i←E}, if i �= j
(∀i.A){i←E} � ∀i.A

5‘�’ denotes definitional equality.
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Finally, substitution of individual variable i in a proof witness is defined as:

xA{i←E} � xA{i←E}
c{i←E} � c

(s ·t){i←E} � s{i←E}· t{i←E}
(!s){i←E} � !s{i←E}

(s+t){i←E} � s{i←E}+ t{i←E}
geni(s){i←E} � geni(s)
genj(s){i←E} � genj(s{i←E}), if j �= i

Note that the formula which decorates a proof variable may change after a substitution. For example
xA{i←E}=xA{i←E}.

Remark 2.4
For every formula A, proof variable x and proof term s, FIV(A{xA←s})=FIV(A).

Definition 2.5
The axiom schemes and inference rules of FOLP are the following:

A1. Axioms of first-order logic in the language of FOLP
A2. ([[t]]�,iA)⊃[[t]]�A, if i �∈FIV(A)
A3. ([[t]]�A)⊃[[t]]�,iA
B1. ([[t]]�A)⊃A
B2. ([[s]]�(A⊃B))⊃ ([[t]]�A)⊃[[(s ·t)]]�B
B3a. ([[s]]�A)⊃[[(s+t)]]�A
B3b. ([[t]]�A)⊃[[(s+t)]]�A
B4. ([[t]]�A)⊃ [[!t]]�[[t]]�A
B5. ([[t]]�A)⊃[[geni(t)]]�∀i.A, if i �∈�
MP. �A⊃B ∧ �A ⇒�B
Gen. �A ⇒�∀i.A
Nec. A an axiom ⇒�[[c]]A

where we assume the following axiom schemes for first-order logic:

A1a. A⊃B⊃A
A1b. (A⊃B⊃C)⊃(A⊃B)⊃A⊃C
A1c. ¬¬A⊃A
A1d. (∀i.A)⊃A{i←E}
A1e. (∀i.(A⊃B))⊃(∀i.A)⊃∀i.B
A1f. A⊃∀i.A, if i �∈FIV(A)

A FOLP-derivation (π,π ′, etc) is a sequence of formulas each of which is an instance of an axiom or
the conclusion of an instance of a rule whose premisses occur before in the sequence. A set of labelled
hypotheses (�,�′, etc.) is written {xA1

1 ,...,x
An
n }where the xi, with i∈1..n, are labels taken from some

given infinite set of labels. A FOLP-derivation from a set of labelled hypotheses {xA1
1 ,...,x

An
n } is one

in which the formulas Ai, for i∈1..n, may also be used in the sequence.

A constant specification is a set C of formulas of FOLP of the form [[c]]∅A. It is assumed that
A is an axiom. Given a constant specification C, a derivation is said to meet it if whenever the rule
Nec is used to introduce [[c]]∅A, then [[c]]∅A is in C. A derivation π determines the (finite) constant
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specification C consisting of formulas of FOLP of the form [[c]]∅A which are conclusions of instances
of Nec in π . A constant specification is injective if [[c]]∅A1∈C and [[c]]∅A2∈C, implies A1=A2.

2.1 Additional comments

FOLP was introduced in [8]. Artemov and Yavorskaya [9] later proposed a presentation of FOLP
that enjoys a natural provability semantics [9, Thm.4 and Thm.6] and that is capable, at the same
time, of realizing the full set of first-order S4 theorems [9, Thm.2]: FOS4�A implies FOLP�Ar ,
for some normal realization •r . Just like its propositional counterpart, it can internalize its own
proofs [9, Thm.1]: [[x0]]�0A0,...,[[xn]]�n An�A in FOLP implies there exists a proof term t s.t.
[[x0]]�0A0,...,[[xn]]�n An�[[t(x0,...,xn)]]�0∪...∪�n A in FOLP.

Although arithmetical completeness is unattainable, completeness with respect to a Kripke
semantics has been established by Fitting [21]. A further extension of LP that has been considered
is one which includes quantification over proof variables. Such a system was studied in [47] and
shown not to be axiomatizable. Also related is [46] where the parameter i in the formula �A(i) is
assumed bound (coined ‘binding interpretation’ in op.cit.). This system is shown to have a complete
axiomatization, however it does not suffice to realize first-order modal logic [9].

3 First-order hypothetical logic of proofs

We now address the Natural Deduction presentation of FOLP, namely FOHLP. The language of
FOHLP is similar to that of FOLP except that (1) it is augmented with a set of a validity variables
v1

A1
�1
,v2

A2
�2
,... and one of falsehood variables αB1

1 ,α
B2
2 ,...; and (2) proof terms are replaced by proof

witnesses. Formulas are as in Definition 2.1, except now s ranges over proof witnesses.

Definition 3.1
Proof witnesses of FOHLP are defined by the following syntax:

r,s,t ::= xA |vA
�| λxA.s|s ·t

| !s|t〈vA
�′ :=r,s〉

| [αA]s|μαA.s
| s+t
| geni(s)|insE

i (s)

A proof witness is one of the following: a truth variable xA, a validity variable vA
�, an abstraction

λxA.s (xA is bound with scope s), application s ·t, bang !s (which binds all free occurrences of truth
and falsehood variables in s), unbox t〈vA

�′ :=r,s〉 (vA
� is bound with scope t), name [αA]s, name

abstraction μαA.s (αA is bound with scope s), plus s+t, generalization geni(s), and instantiation
insE

i (s). Regarding proof witnesses of the form t〈vA
�′ :=r,s〉 they can be read as ‘replace all free

occurrences of vA
�′ by r in the formula witnessed by t, with s bearing witness to the truth of [[r]]�A’.

Definition 3.2
The set of free variables of validity, truth and falsehood in a formula A are denoted FVT(A),
FVV(A) and FVF(A), resp. The definition of FVT(A) is as follows (FVV(A) and FVF(A) are similar
and hence omitted), where FVT(A,B) abbreviates FVT(A)∪FVT(B):
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10 First-order hypothetical logic of proofs

FVT(P(E1,...,En)) � ∅
FVT(⊥) � ∅

FVT(A⊃B) � FVT(A,B)
FVT([[s]]�A) � FVT(s)∪FVT(A)

FVT(∀i.A) � FVT(A)

The set of free variables of validity, truth and falsehood in a proof witness s, denoted FVT(s), FVV(s)
and FVF(s), resp., are defined as follows:

FVT(xA) � {xA}
FVT(vA

�) � ∅
FVT(λxA.s) � FVT(s)\{xA}

FVT(s ·t) � FVT(s,t)
FVT(!s) � ∅

FVT(s〈vA
�:=r,t〉) � FVT(t,s)

FVT([αA]s) � FVT(s)
FVT(μαA.s) � FVT(s)

FVT(s+t) � FVT(s,t)
FVT(geni(s)) � FVT(s)
FVT(insE

i (s)) � FVT(s)

FVV(xA) � ∅
FVV(vA

�) � {vA
�}

FVV(λxA.s) � FVV(s)
FVV(s ·t) � FVV(s,t)
FVV(!s) � FVV(s)

FVV(s〈vA
�:=r,t〉) � (FVV(t)\{vA

�})∪ FVV(r,s)
FVV([αA]s) � FVV(s)

FVV(μαA.s) � FVV(s)
FVV(s+t) � FVV(s,t)

FVV(geni(s)) � FVV(s)
FVV(insE

i (s)) � FVV(s)

FVF(xA) � ∅
FVF(vA

�) � ∅
FVF(λxA.s) � FVF(s)

FVF(s ·t) � FVF(s,t)
FVF(!s) � ∅

FVF(s〈vA
�:=r,t〉) � FVF(t,s)

FVF([αA]s) � FVF(s)∪{αA}
FVF(μαA.s) � FVF(s)\{αA}

FVF(s+t) � FVF(s,t)
FVF(geni(s)) � FVF(s)
FVF(insE

i (s)) � FVF(s)

We assume the following variable conventions: all bound variable names are different from
each other, and different from all free variables. We also assume that application ‘·’ and sum ‘+’
are left-associative, and implication ‘⊃’ is right-associative. The operators ‘!’, ‘¬’ and “[[ ]]” have
precedence over ‘·’, “+” and ‘⊃’, which in turn have precedence over ‘λ’, ‘μ’ and ‘[ ]’. For example,
[α([[r]]A)⊃((¬B)⊃C)]((!s)+t) may be written [α[[r]]A⊃¬B⊃C]!s+t.

Definition 3.3 (Free individual variables of formulas and proof witnesses)
The set of free individual variables of a formula A, denoted FIV(A), is defined as in Definition 2.2.
The set of free individual variables of a proof witness ar defined as follows:

FIV(xA) � FIV(A)
FIV(vA

�) � �

FIV(λxA.s) � FIV(A)∪FIV(s)
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First-order hypothetical logic of proofs 11

FIV(s ·t) � FIV(s)∪FIV(t)
FIV(!s) � FIV(s)

FIV(t〈vA
�:=r,s〉) � FIV(t)∪FIV(r)∪FIV(s)∪�

FIV([αA]s) � FIV(A)∪FIV(s)
FIV(μαA.s) � FIV(A)∪FIV(s)

FIV(s+t) � FIV(s)∪FIV(t)
FIV(geni(s)) � FIV(s)\{i}
FIV(insE

i (s)) � FIV(s)\{i}∪FIV(E)

Note the clause defining FIV(vA
�): all free individual variables that are not in � are considered

bound, whereas those that are in� are considered free (disregarding whether they occur in A or not).
Individual variable substitution is defined similarly to that of FOLP (Definition 2.3). The only

difference is that the clause for proof constants is dropped and the following new ones are added,
where in the clause for insE′

i (s){i←E} we may assume i �∈FIV(E′) by the variable convention:

vA
�{i←E} � vA{i←E}

(�\{i})∪FIV(E), if i∈�
vA
�{i←E} � vA

�, if i �∈�
(t〈vA

�:=r,s〉){i←E} � t{i←E}〈vA
�{i←E}:=r{i←E},s{i←E}〉

(λxA.s){i←E} � λxA{i←E}.s{i←E}
([αA]s){i←E} � [αA{i←E}]s{i←E}

(μαA.s){i←E} � μαA{i←E}.s{i←E}
insE′

i (s){i←E} � insE′
i (s), i �∈FIV(E′)

insE′
j (s){i←E} � insE′{i←E}

j (s{i←E}), if j �= i

A truth context (�) is a set of truth hypotheses {xA1
1 ,...,x

An
n }; a validity context (�) is a

set of validity variables {v1
A1
�1
,...,vn

An
�n
}; a falsehood context (�) is a set of falsehood variables

{αA1
1 ,...,α

Ak
k }. We write · for the empty context. We write xA∈� if �=�′ ∪{xA}. Similarly for

vA
�∈� and αA∈�. Free individual variables of truth and falsehood contexts are defined as expected:

FIV(�) � {FIV(A) | xA∈�}
FIV(�) � {FIV(A) | αA∈�}
FIV(�) �

⋃
vA
�∈�

�

A (FOHLP) judgement is an expression of the form:

�;�;��A|s
It will often be convenient to abbreviate �;�;� in order to improve readability. We will use H
for this purpose and refer to it as a composite context. So the above judgement will also be written
H�A|s. We write i �∈FIV(H) for i �∈FIV(�,�,�). Also we write: H,xA for �;�,xA;�, H,αA for
�;�;�,αA, and H,vA

� for �,vA
�;�;�.

Definition 3.4
The inference schemes of FOHLP derive judgements (Figure 2) and proof witness equivalence
judgements (Figures 3–5). We say�;�;��A|s is derivable if there is a derivation of it using these
inference schemes and write �FOHLP�;�;��A|s (or also �FOHLPH�A|s) in that case. Similarly
for H� s≡t :A.
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12 First-order hypothetical logic of proofs

Figure 2. Axiom and inference schemes of FOHLP.

The axiom scheme Var states that the judgement H,xA�A|xA is evident in itself: if we assume
that xA is a witness that proposition A is true, then we immediately conclude that A is true with proof
witness xA.

The introduction scheme for the [[t]]� modality internalizes meta-level evidence into the object
logic. It states that if s is unconditional evidence that A is true, then A is in fact valid with proof
witness s, or more generally, any proof witness t equivalent to s. Evidence for the truth of [[t]]�A
is constructed from the (verified) evidence that A is unconditionally true by prefixing it with a bang
constructor. FIV(�)∩FIV(A)⊆� is necessary to avoid binding individual variables which are used
as free variables in the premises. As mentioned in the introduction, without that restriction we would
be able to prove theorems not provable in FOLP.

Remark 3.5
We may also introduce a less general variant of �I:

�;·;·�A|t FIV(�)∩FIV(A)⊆�
�I′

�;�;��[[t]]�A|!t
.

This variant presents the same problem as its propositional counterpart [5, 14], as equivalence is
still required for proof normalization. However, it shall prove useful for some technical results that
follow.

The �E scheme allows the discharging of validity hypotheses. In order to discharge the validity
hypothesis vA

�′ , a proof of the validity of A is required. In this system, this requires proving that
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Figure 3. Proof witness equivalence (1/2).

Figure 4. Proof witness equivalence (2/2).

[[r]]�A is true with proof witness s, for some proof witnesses r and s. Note that r is a witness
that A is unconditionally true (i.e. valid) whereas s is witness to the truth of [[r]]�A. The former is
then substituted in the place of all free occurrences of vA

�′ in the proposition C. This construction is
recorded with proof witness s〈vA

�′ :=r,t〉 in the conclusion, meaning that s is proof that r can be used
in place of vA

�′ in t. This has the practical effect of allowing us to take the witness r out of the box
from [[r]]�A. The expression C{vA

�′ ←r} denotes the substitution of vA
�′ by r in C. Two final remarks

on �E, its witness includes s since this is required for the proof that derivable FOHLP formulas are
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14 First-order hypothetical logic of proofs

Figure 5. Equivalence and compatibility schemes.

also derivable in FOLP (Sec. 4) and also for Type Preservation (see validity variable substitution and
its use in the reduction rule γ in Definition 5.11). The condition �∩FIV(A)⊆�′ prevents a proof of
a formula with free individual variables to be used as proof of a formula where those variables are
bound, as discussed in the introduction. The converse can be done safely (just like a proof of ∀i.P(i)
can be used to prove P(i)), which is why the inclusion is oriented in only one direction.

Regarding the schemes for plus we comment on PlusL, the case of PlusR being similar. Informally,
the proof witness s+t testifies that either s or t is witness to the truth of A without supplying details on
which of the two. Note that t is any proof witness whatsoever. Indeed, it may even contain variables
not included in H. The reason is that we seek to preserve the theorems of FOLP in FOHLP, in
particular [[s]]A⊃[[s+t]]A, which places no restriction on t.

Remark 3.6
In the derivation of a judgement �;�;��D|s we assume the following freshness condition: for
every pair of formulas A, B such that xA∈�, vA

�∈� or αA∈�:

• if yB∈�, then yB �∈FVT(A)∪FVT(D);
• if wB

�′ ∈�, then wB
�′ �∈FVV(A); and

• if βB∈�, then βB �∈FVF(A)∪FVF(D).

That this entails no loss of generality is reflected in Lemma 3.12.
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The schemes defining H� s≡t :A encode equality of derivations as follows from proof
normalization [5]. It should be mentioned that the resulting equational theory is consistent
(Corollary 5.19) in the sense that there exist H,A,s and t s.t.

• H�A|s is derivable;
• H�A|t is derivable; and
• the judgement H� s≡t :A is not derivable.

The schemes in Figure 5 ensure that proof witness equivalence is indeed an equivalence, and is
compatible with all operators with the exception of ‘!’. Intuitively, a proof witness such as !s, of a
formula such as [[s]]�A, supplies intensional information on how this formula is proved. For any
proof witness t with t �=s, the proof encoded by !t is intensionally different from s and hence cannot
be equated with it. In fact !s and !t prove different formulas (since !t proves [[t]]�A). This does
not present an obstacle for proof normalization ‘under’ a box type constuctor since the introduction
scheme for �I includes the judgement on proof witness equivalence (cf. case of internal reduction
reduction under a ‘!’ in Proposition 5.14).

3.1 Basic results

In this section we use ��;�;A��|s as shorthand for derivability in FOHLP, written
�FOHLP�;�;A��|s. This applies to all judgements in the statements of the results presented
below.

Lemma 3.7 (Weakening and Strengthening)
Suppose ��;�;A��|s. Then:

(1) ��∪�′;�∪�′;A��∪�′ |s; and
(2) ��∩FVV(s);�∩FVT(s);A��∩FVF(s)|s.

Lemma 3.8 (Weakening for proof witness equivalence)
Suppose ��;�;�� s≡t :A. Then also ��∪�′;�∪�′;�∪�′ � s≡t :A.

The following substitution principles hold.

Lemma 3.9 (Validity Variable Substitution)
(1) If ��,vA

�;�;��B|s and ��;·;·�A|t, then ��;�;��B{vA
�← t}|s{vA

�← t}.
(2) If ��,vA

�;�;�� s≡r :B and ��;·;·�A|t, then ��;�;�� s{vA
�← t}≡r{vA

�← t}:B{vA
�←

t}.
Lemma 3.10 (Individual Variable Substitution)

(1) If ��;�;��D|r, then ��{i←E};�{i←E};�{i←E}�D{i←E}|r{i←E}.
(2) If ��;�;�� r1≡r2 :D, then ��{i←E};�{i←E};�{i←E}� r1{i←E}≡r2{i←E}:D{i←

E}.
Lemma 3.11
If ��;�;�� s≡t :D, then both ��;�;��D|s and ��;�;��D|t.
Lemma 3.12
If ��;�,zB;��D|s, then there is a proof witness s′ such that ��;�,yB;��D|s′ with yB a fresh
variable.
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16 First-order hypothetical logic of proofs

Similarly, if ��;�;�,αB�D|s, then there is a proof witness s′ such that ��;�;�,βB�D|s′
with βB a fresh variable.

4 Relating FOLP and FOHLP

All theorems of FOLP can be proved in FOHLP (Section 4.1). This may be shown by introducing
a simple translation from formulas in FOLP to formulas of FOHLP and then transforming a proof
of theorem A in FOLP to a proof of the translation of A in FOHLP. The reverse translation is more
complicated (Section 4.2). Several issues arise when translating proof witnesses. One of them is
the translation of lambda abstraction and name abstraction; these must be simulated in FOLP. The
other is the translation of the bang and the unbox proof witness constructors; here the problem is
upholding the role of variables as registered in the decoration of the modality. These issues require
that the reverse translation have as target a simple variant of FOLP that consists in adding a number
of FOLP theorems as axioms (cf. Definition 4.3). The new axioms allow Nec. to apply to them too.

4.1 From FOLP to FOHLP

Let π be a FOLP-proof. We introduce a simple translation •π , parameterized over π , from formulas
in FOLP to those in FOHLP. The derivation π is used to determine the (finite) constant specification
Cπ and, from this, the translation of the constants. For technical convenience, we assume that the
formulas in Cπ are ordered. We define Cπ (c)�{A|[[c]]∅A∈Cπ }. Note that Cπ (c) consists of formulas
that are instances of axioms of FOLP. We write 〈B1,xB,�,B〉 to denote a proof witness (Figure 6)
associated with the formula ([[xB]]�B)⊃B, the instance of axiom B1 in the language of FOHLP
obtained from instantiating its metavariables (in order of appearance) with xB,� and B, resp. Similar
notation is used for the instances of other axiom schemes. If we know that A is an instance of an
axiom, we write 〈A〉 to denote its unique6 decomposition in terms of the associated axiom scheme
and instance variables. For example, 〈([[xB]]�B)⊃B〉=〈B1,xB,�,B〉. Translation of formulas and
proof terms are defined by mutual recursion.

Definition 4.1
The translation •π from FOLP proof terms and formulas to FOHLP proof witnesses and formulas
is defined as follows:

Eπ � E
P(E1,...,En)

π
� P(E1,...,En)

⊥π � ⊥
A⊃Bπ � Aπ ⊃Bπ
[[s]]�A

π
� [[sπ ]]�Aπ

∀i.Aπ � ∀i.Aπ

cπ � 〈A1〉π+ ...+〈An〉π
xA
π � xAπ

s ·tπ � sπ ·tπ
!sπ � !sπ

s+tπ � sπ+tπ
geni(s)

π
� geni(sπ ),

where Cπ (c)={A1,...,An} and:

6There is one exception to uniqueness due to the overlap between axioms B3a and B3b, namely in the case of [[s]]�A⊃
[[s+s]]�A. In this case, we always select B3a over B3b.
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Figure 6. Translation of proof constants to proof witnesses.

〈A1a,A,B〉
π

� 〈A1a,Aπ ,Bπ 〉
〈A1b,A,B,C〉

π
� 〈A1b,Aπ ,Bπ ,Cπ 〉

〈A1c,A〉
π

� 〈A1c,Aπ 〉
〈A1d,A,i,E〉

π
� 〈A1d,Aπ ,i,E〉

〈A1e,A,B,i〉
π

� 〈A1e,Aπ ,Bπ ,i〉
〈A1f,A,i〉

π
� 〈A1f,Aπ ,i〉

〈A2,t,�,i,A〉
π

� 〈A2,tπ ,�,i,Aπ 〉

〈A3,t,�,i,A〉
π

� 〈A3,tπ ,�,i,Aπ 〉
〈B1,t,�,A〉

π
� 〈B1,tπ ,�,Aπ 〉

〈B2,s,�,A,B,t〉
π

� 〈B2,sπ ,�,Aπ ,Bπ ,tπ 〉
〈B3a,s,�,A,t〉

π
� 〈B3a,sπ ,�,Aπ ,tπ 〉

〈B3b,t,�,A,s〉
π

� 〈B3b,tπ ,�,Aπ ,sπ 〉
〈B4,s,�,A〉

π
� 〈B4,sπ ,�,Aπ 〉

〈B5,t,�,A,i〉
π

� 〈B5,tπ ,�,Aπ ,i〉

,

Also, we define �π �{xAπ | xA∈�}.

Proposition 4.2
�FOLP��A implies �FOHLP ·;�π ;·�Aπ |s, for some proof witness s.

The proof is by induction on the derivation π of ��A; sample cases of the key axioms (A2, A3
and B5) and Nec are:

• A2. ([[t]]�,iA)⊃[[t]]�A, if i �∈FIV(A).

Var
·;x[[t]]�,iA;·�[[t]]�,iA|x[[t]]�,iA

VarM
vA
�;·;·�A|vA

�
�I

vA
�;x[[t]]�,iA;·�[[vA

�]]�A|!vA
�

�E
·;x[[t]]�,iA;·�[[t]]�A|!vA

�〈vA
�:=t,x[[t]]�,iA〉

⊃I
·;·;·� ([[t]]�,iA)⊃[[t]]�A|λx[[t]]�,iA.!vA

�〈vA
�:=t,x[[t]]�,iA〉

The restriction for �I holds, since �∩FIV(A)⊆�. That of �E holds, since �,i∩FIV(A)⊆�
because i �∈FIV(A).
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18 First-order hypothetical logic of proofs

• A3. ([[t]]�A)⊃[[t]]�,iA.

Var
·;x[[t]]�A;·�[[t]]�A|x[[t]]�A

VarM
vA
�,i;·;·�A|vA

�,i
�I

vA
�,i;x[[t]]�A;·�[[vA

�,i]]�,iA|!vA
�,i

�E
·;x[[t]]�A;·�[[t]]�,iA|!vA

�,i〈vA
�,i:=t,x[[t]]�A〉

⊃I
·;·;·� ([[t]]�A)⊃[[t]]�,iA|λx[[t]]�A.!vA

�,i〈vA
�,i:=t,x[[t]]�A〉

The derivation is almost identical to that for A2, exchanging the occurrences of � and �,i.
The restriction for �I holds, since �,i∩FIV(A)⊆�,i. The restriction for �E holds, since
�∩FIV(A)⊆�,i.

• B5. ([[t]]�A)⊃[[geni(t)]]�∀i.A, if i �∈�.

Var
·;x[[t]]�A;·�[[t]]�A|x[[t]]�A

VarM
vA
�;·;·�A|vA

� ∀I
vA
�;·;·�∀i.A|geni(v

A
�)

�I
vA
�;x[[t]]�A;·�[[geni(v

A
�)]]�∀i.A|!geni(v

A
�)

�E
·;x[[t]]�A;·�[[geni(t)]]�∀i.A|!geni(v

A
�)〈vA

�:=t,x[[t]]�A〉
⊃I

·;·;·� ([[t]]�A)⊃[[geni(t)]]�∀i.A|λx[[t]]�A.!geni(v
A
�)〈vA

�:=t,x[[t]]�A〉
The restriction for ∀I holds, since i �∈�. That of �I holds, since�∩FIV(∀i.A)⊆�. Finally, that
of �E holds, since �∩FIV(A)⊆�.

• Nec. Then π is of the form �[[c]]A, with A an instance of an axiom scheme. Note that, if
Cπ (c)={A1,...,An}, then A=Ai for some i∈1..n. In this case, it is easy to verify that the
judgement: ·;·;·�Aiπ |〈Ai〉π can be derived (recall that the proof witness 〈A〉

π
is defined in

Figure 6). Therefore,

·;·;·�Aiπ |〈Ai〉π
(PlusL,PlusR)∗

·;·;·�Aiπ |〈A1〉π+ ...+〈An〉π
�I

·;·;·�[[〈A1〉π+ ...+〈An〉π ]]Aiπ |!(〈A1〉π+ ...+〈An〉π )

4.2 From FOHLP to FOLP

We first introduce Extended FOLP (EFOLP) which serves as target of our translation, and then
address the translation itself. EFOLP differs from FOLP in that some theorems of FOLP are

adopted as axioms. Let S
�i⇒T be shorthand for (�i∩S)⊆T and S

�i⇒¬T be shorthand for �i∩S∩T=∅.
EFOLP is defined as follows.

Definition 4.3 (EFOLP)
The proof terms and formulas of EFOLP are exactly those of FOLP (Definition 2.1). The axiom
and inference schemes are those of FOLP (Definition 2.5) modified as follows:

(1) The following two axiom schemes:
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Figure 7. Axiom schemes of EFOLP.

A1d. (∀i.A)⊃A{i←E}
A1f. A⊃∀i.A, if i �∈FIV(A)

are replaced by more general ones:

A1dd. (∀�j.∀�i.A)⊃∀�j.(A{�i←�E})
A1ff. ∀�j.A⊃∀�j.∀i.A, if i �∈FIV(A)

(2) The following new axiom schemes are added:

A1g. ∀�i.A⊃∀�j.A, if �j is a permutation of �i
A1h. ∀�i.A⊃∀�j.A, FIV(A)

�j⇒�i
A1i. ∀�i.(A⊃B)⊃∀�j.A⊃∀�k.B, FIV(A)

�j⇒�i,FIV(B)
�k⇒�i,(FIV(A)∩FIV(B))

�k⇒�j
A4. A⊃A
A5. A⊃([[t]]�B⊃B)
A6. A⊃(∀�i.B⊃B)

A7. ∀�i.(A⊃B)⊃[[s]]�A⊃∀�j.B, FIV(B)
�k⇒�i,FIV(B)

�k⇒¬�,FIV(A)\�⊆�i
A8. [[s]]�A⊃∀�i.A, FIV(A)

�i⇒¬�
A9. [[s]]�(A⊃B)⊃∀�j.A⊃∀�k.B FIV(A)

�j⇒¬�,FIV(B)
�k⇒¬�,(FIV(A)∩FIV(B))

�k⇒�j

 by guest on June 22, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[18:32 13/1/2016 exv090.tex] LogCom: Journal of Logic and Computation Page: 20 1–44

20 First-order hypothetical logic of proofs

The full set of axiom schemes is given in Figure 7. Note that they are all theorems of FOLP.

Lemma 4.4
All EFOLP-axioms are FOLP-theorems.

Just like FOLP, EFOLP enjoys internalization of its own derivations. Our formulation below is
a slight variant of the Internalization Theorem mentioned in Section 2.1. It differs with respect to it
in that the set of free individual variables depends on the formula rather than the hypotheses used to
prove it. This eases some proofs (eg. Proposition 4.16). If �=A1,...An, then a context of the form
[[u1]]�1A1,...,[[un]]�n An is referred to as [[�u]] ���. The proof of Lemma 4.5 is by induction on the
derivation of [[�u]] ����D.

Lemma 4.5 (Internalization for EFOLP)
�EFOLP [[�u]] ����D implies there exists a proof term r such that �EFOLP [[�u]] ����[[r]] ��D.

Corollary 4.6
�EFOLP [[�u]] ����D implies there exists a r ��,D such that �EFOLP [[�u]] ����[[r ��,D]] ��∩FIV(D)D.

Proof. Since [[�u]] ����[[r]] ��D is derivable for some r by Internalization, we can obtain [[�u]] ����
[[r]] ��∩FIV(D)D by using A2 and MP as many times as necessary. Take r ��,D=r. �

4.2.1 Stripping and λ-Abstraction in EFOLP
The main property of EFOLP that we require for our translation is the Stripping Lemma
(Lemma 4.11). It states that if π is a EFOLP-derivation of �,x[[yA]]�A�B and yA /∈�, then there is a
EFOLP-derivation π ′ of �,yA�ByA . Here ByA means stripping B of all modalities whose associated

proof term has yA among its free variables and replacing these modalities by universal quantification
over an appropriate set of individial variables.

Definition 4.7
The result of stripping a variable xC from a formula A, denoted AxC , is defined inductively as follows:

P(E1,...,En)xC � P(E1,...,En)
⊥xC � ⊥

(A⊃B)xC � AxC⊃BxC

([[s]]�A)xC �
{∀�i.AxC , if xC ∈FV(s)
[[s]]�AxC , otherwise

where �i�FIV(A)\�
(∀i.A)xC � ∀i.AxC

Stripping does not introduce new free individual variables as may be verified by induction on A:

Lemma 4.8
FIV(AxC )⊆FIV(A).

The Stripping Lemma is a key ingredient of the λ-Abstraction Lemma (Lemma 4.12) which will
allow us to internalise the hypothetical reasoning of FOHLP in EFOLP. A detailed account of the
role this lemma plays in our translation is given in Section 4.2.2. The rest of this subsection presents
some preliminary results required to prove both the Stripping and the λ-Abstraction lemmas.
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Lemma 4.9
Suppose S′ ⊆S. Then

(1) S
�j⇒T implies S′

�j⇒T

(2) S
�j⇒¬T implies S′

�j⇒¬T

Proof. Immediate from the definition of S
�j⇒T and S

�j⇒¬T . �
Lemma 4.10
Let A be an axiom of EFOLP and let xB be a variable. Then AxB is an axiom of EFOLP.

Proof. We consider each axiom scheme.

• A1. A is one of the following

A1a. A⊃B⊃A
A1b. (A⊃B⊃C)⊃(A⊃B)⊃A⊃C
A1c. ¬¬A⊃A
A1d. (∀i.A)⊃A{i←E}
A1dd. (∀�j.∀�i.A)⊃∀�j.(A{�i←�E})
A1e. (∀i.(A⊃B))⊃(∀i.A)⊃∀i.B
A1f. A⊃∀i.A, if i �∈FIV(A)
A1ff. ∀�j.A⊃∀�j.∀i.A, if i �∈FIV(A)
A1g. ∀�i.A⊃∀�j.A, if �j is a permutation of �i
A1h. ∀�i.A⊃∀�j.A, FIV(A)

�j⇒�i
A1i. ∀�i.(A⊃B)⊃∀�j.A⊃∀�k.B if FIV(A)

�j⇒�i,FIV(B)
�k⇒�i,(FIV(A)∩FIV(B))

�k⇒�j.
These cases are all immediate except for those that include side conditions on free individual
variables, namely A1ff, A1h and A1i. For the former we proceed as follows. First note that AxB

is of the form ∀j.A′⊃∀j.∀i.A′, for A′ =AxB . Thus we must check that i /∈FIV(A′). This follows
from Lemma 4.8 and i /∈FIV(A). A1h is similar, except that we resort to both Lemma 4.8 and
Lemma 4.9(1).
In A1i, AxB is of the form ∀�i.(A′⊃B′)⊃∀�j.A′ ⊃∀�k.B′. This is an instance of A1i. The

associated conditions follow from FIV(A)
�j⇒�i, FIV(B)

�k⇒�i, (FIV(A)∩FIV(B))
�k⇒�j, Lemma 4.8

and Lemma 4.9(1).
• A2. A is [[t]]�,iA⊃[[t]]�A, where i �∈FIV(A). In this case AxB must be of the one of the forms

– [[t]]�,iA′⊃[[t]]�A′. This is an instance of A2, given that i /∈FIV(A′) as follows from
Lemma 4.8.

– ∀�j.A′⊃∀�j.A′. Note that here we have the same prefix ∀�j to the left and right of⊃ given that
i �∈FIV(A). This formula is an instance of A4.

• A3. A is [[t]]�A⊃[[t]]�,iA. In this case AxB must be of one of the forms

– [[t]]�A′⊃[[t]]�,iA′. This is an instance of A3.
– ∀�j.A′⊃∀�j.A′, with i∈�. This is an instance of A4.
– ∀�j1,i, �j2.A′⊃∀�j1, �j2.A′, where i /∈� and i∈FIV(A). This is an instance of A1d.
– ∀�j.A′⊃∀�j.A′ assuming i /∈� and i /∈FIV(A). This is an instance of A4.
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• A4. A is A⊃A. In this case, AxB is an instance of A4 itself.
• A5. A is A⊃([[t]]�B⊃B). In this case, AxB is of one of the forms

– A′⊃([[t]]�B′⊃B′). This is an instance of A5.
– A′⊃(∀�i.B′⊃B′), where �i=FIV(B)\�. This formula is an instance of A6.

• A6. A is A⊃(∀�i.B⊃B). In this case, AxB is of the form A′⊃(∀�i.B′⊃B′) and hence an instance
of A6 itself.

• A7. A is ∀�i.(A⊃B)⊃[[s]]�A⊃∀�k.B, with FIV(B)
�k⇒�i,FIV(B)

�k⇒¬� and FIV(A)\�⊆�i. In this
case, AxB is of one of the forms

– ∀�i.(A′⊃B′)⊃[[s]]�A′ ⊃∀�k.B′. To verify that this is an instance of A7, we must check

the conditions FIV(B′)
�k⇒�i,FIV(B′)

�k⇒¬� and FIV(A′)\�⊆�i. They all follow from the
hypotheses and Lemma 4.8.

– ∀�i.(A′⊃B′)⊃∀�j.A′ ⊃∀�k.B′, where �j=FIV(A)\�. This is an instance of A1i. For this we

must verify that FIV(A′)
�j⇒�i, FIV(B′)

�k⇒�i and (FIV(A′)∩FIV(B′))
�k⇒�j. The first condition

follows from the definition of �j (recall from above that �j=FIV(A)\�), the hypothesis

FIV(A)\�⊆�i and Lemma 4.8. The second condition follows from FIV(B′)
�k⇒�i and

Lemma 4.8. The last condition follows from the definition of�j, the hypothesis FIV(B)
�k⇒¬�

– since �k∩FIV(B)∩FIV(A)⊆FIV(A) – and Lemma 4.8.

• A8. A is [[s]]�A⊃∀�i.A, where FIV(A)
�i⇒¬�. In this case, AxB is of one of the forms

– [[s]]�A′⊃∀�i.A′. This is an instance of A8 as follows from Lemma 4.8, Lemma 4.9(2) and

FIV(A)
�i⇒¬�.

– ∀�j.A′⊃∀�i.A′, where �j=FIV(A)\�. This formula is an instance of A1h. In order to verify

FIV(A′) �i⇒�j, assume k∈FIV(A′)∩�i. Then k∈FIV(A) from Lemma 4.8. From the condition

FIV(A)
�i⇒¬�, we deduce k /∈�. Finally, the definition of �j yields k∈�j, as required.

• A9. A is [[s]]�(A⊃B)⊃∀�j.A⊃∀�k.B where FIV(A)
�j⇒¬�, FIV(B)

�k⇒¬� and

(FIV(A)∩FIV(B))
�k⇒�j. In this case, AxB if of one of the forms:

– [[s]]�(A′⊃B′)⊃∀�i.A′ ⊃∀�j.B′. This is an instance of A9. Indeed, the conditions FIV(A′)
�j⇒

¬�, FIV(B′)
�k⇒¬� and (FIV(A′)∩FIV(B′))

�k⇒�j follow from Lemma 4.8 and Lemma 4.9(2).
– ∀�i.(A′⊃B′)⊃∀�j.A′ ⊃∀�k.B′, where �i=FIV(A⊃B)\�. To verify that this formula is an

instance of A1i, we must check that FIV(A′)
�j⇒�i, FIV(B′)

�k⇒�i and (FIV(A′)∩FIV(B′))
�k⇒�j.

This follows from FIV(A)
�j⇒¬�, FIV(B)

�k⇒¬�, (FIV(A)∩FIV(B))
�k⇒�j and Lemma 4.8.

• B1. A is [[t]]�A⊃A. In this case, AxB is of one of the forms

– [[t]]�A′⊃A′ or
– ∀�i.A′⊃A′, where �i=FIV(A)\�. This formula is an instance of A1dd.

• B2. A is [[s]]�(A⊃B)⊃[[t]]�A⊃[[s ·t]]�B. In this case, AxB is of one of the following forms
where �i=FIV(A⊃B)\�, �j=FIV(A)\� and �k=FIV(B)\�.
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– [[s]]�(A′⊃B′)⊃[[t]]�A′ ⊃[[s ·t]]�B′. This formula is an instance of B2.
– ∀�i.(A′⊃B′)⊃[[t]]�A′ ⊃∀�k.B′, with�i=FIV(A⊃B)\� and �k=FIV(B)\�. This formula is an

instance of A7. For that we must verify FIV(B′)
�k⇒�i,FIV(B′)∩�k∩�=∅ and FIV(A′)\�⊆�i.

The first two conditions follow from Lemma 4.8 and the definitions of �i and �k. The latter
follows from Lemma 4.8 and the definition of �i.

– [[s]]�(A′⊃B′)⊃∀�j.A′ ⊃∀�k.B′, with �j=FIV(A)\� and �k=FIV(B)\�. This is an instance

of A9. We verify the associated conditions: FIV(A′)
�j⇒¬�, FIV(B′)

�k⇒¬� and

(FIV(A′)∩FIV(B′))
�k⇒�j. They all follow from Lemma 4.8 and the definitions of �j and �k.

– ∀�i.(A′⊃B′)⊃∀�j.A′ ⊃∀�k.B′. This is an instance of A1i. The associated conditions,

FIV(A′)
�j⇒�i, FIV(B′)

�k⇒�i and (FIV(A′)∩FIV(B′))
�k⇒�j, follow from the definitions of �i, �j

and �k.

• B3a. A is [[s]]�A⊃[[(s+t)]]�A. In this case, AxB is of one of the forms:

– [[s]]�A′⊃[[(s+t)]]�A′. This is an instance of B3a.
– [[s]]�A′⊃∀�i.A′, where �i=FIV(A)\�. This is an instance of A8. Note that the associated

condition FIV(A′) �i⇒¬� follows immediately from the definition of �i.
– ∀�i.A′⊃∀�i.A′. This formula is an instance of A4.

• B3b. A is [[t]]�A⊃[[(s+t)]]�A. In this case, AxB is either of the form

– [[t]]�A′⊃[[(s+t)]]�A′ or
– [[t]]�A′⊃∀�i.A′, where �i=FIV(A)\�, or
– ∀�i.A′⊃∀�i.A′.

These are dealt with in a similar way to the previous case.
• B4. A is [[t]]�A⊃[[!t]]�[[t]]�A. In this case, AxB is of one of the forms

– [[t]]�A′⊃[[!t]]�[[t]]�A′. This formula is an instance of B4.
– ∀�i.A′⊃∀�i.A′. This formula is an instance of A4.

• B5. A is [[t]]�A⊃[[geni(t)]]�∀i.A where i �∈�. In this case, AxB is of one of the forms

– [[t]]�A′⊃[[geni(t)]]�∀i.A′. This formula is an instance of B5.
– ∀�j.A′⊃∀�k.∀i.A′, where �j=FIV(A)\� and �k=FIV(∀i.A)\�. We consider two cases.

∗ First suppose i∈FIV(A′). Then since i∈FIV(A) (by Lemma 4.8), from the definitions
of �j and �k we deduce {�j}={�k,i}. Thus we have an instance of A1g.

∗ Suppose now that i /∈FIV(A′). Then �j=�k and the second case is an instance of A1ff.

�
Lemma 4.11 (Stripping)
Suppose π is a EFOLP-derivation of �,x[[yA]]�A�B, yA /∈�. Then there is a EFOLP-derivation π ′
of �,yA�ByA .

Proof. By induction on π .

• If B=[[yA]]�A and π is obtained by using the hypothesis x[[yA]]�A, then ByA=A and π ′ is the

derivation of �,yA�A obtained by using the hypothesis yA.
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• If π is obtained by using a hypothesis zB∈�, then there is a derivation of ��B which uses
neither x[[yA]]A nor yA. We obtain π ′ from this derivation by Weakening, and ByA=B.

• If π is obtained by using an axiom, then by Lemma 4.10, ByA is also an axiom.
• If π is obtained by applying MP:

···
�,x[[yA]]�A�D⊃B

···
�,x[[yA]]�A�D

MP
�,x[[yA]]�A�B

By the induction hypothesis, we have derivations of �,yA�DyA⊃ByA and �,yA�DyA .

Therefore, by MP, we obtain a derivation of �,yA�ByA .

• If π is obtained by applying Gen, then B is of the form ∀i.D with i �∈FIV(�,x[[yA]]�A), and there
is a derivation of�,x[[yA]]�A�DyA . By the induction hypothesis we can derive�,yA�DyA .And,

since FIV(A)⊆�, then i �∈FIV(�,yA). The result is obtained by Gen.
• If π is obtained by applying Nec, then B is of the form [[c]]D with c a proof constant and D

is an instance of an axiom. By Lemma 4.10, DyA is also an instance of an axiom. Therefore,
[[c]]DyA is derivable. Note that here the same constant has been used despite the fact that D
and DyA may be instances of different axioms.

�
Lemma 4.12 (λ-Abstraction)
If �EFOLP [[�u]] ���,y[[x

A]]FIV(A)A�[[s(�u,xA)]]FIV(B)B with xA �∈� and xA �∈FV(B), then there exists a

proof term tA⊃B
λ such that �EFOLP [[�u]] ����[[tA⊃B

λ ]] ��∩FIV(A⊃B)(A⊃B).

Proof. W.l.o.g. we may assume that xA∈s(�u,xA). Indeed, if this were not the case, then we could
add it as follows:

(a) [[�u]] ���,y[[x
A]]FIV(A)A�[[c]](B⊃A⊃B) (A1a,Nec)

(b) [[�u]] ���,y[[x
A]]FIV(A)A�[[c]]FIV(A)∪FIV(B)(B⊃A⊃B) (a,A3∗,MP∗)

(c) [[�u]] ���,y[[x
A]]FIV(A)A�[[s(�u,xA)]]FIV(B)B (Hypothesis)

(d) [[�u]] ���,y[[x
A]]FIV(A)A�[[s(�u,xA)]]FIV(A)∪FIV(B)B (c,A3∗,MP∗)

(e) [[�u]] ���,y[[x
A]]FIV(A)A�[[c ·s(�u,xA)]]FIV(A)∪FIV(B)(A⊃B) (b,d,B2,MP∗)

(f ) [[�u]] ���,y[[x
A]]FIV(A)A�[[xA]]FIV(A)A (using y[[xA]]FIV(A)A)

(g) [[�u]] ���,y[[x
A]]FIV(A)A�[[xA]]FIV(A)∪FIV(B)A (f ,A3∗,MP∗)

(h) [[�u]] ���,y[[x
A]]FIV(A)A�[[c ·s(�u,xA)·xA]]FIV(A)∪FIV(B)B (e,g,B2,MP∗)

(i) [[�u]] ���,y[[x
A]]FIV(A)A�[[c ·s(�u,xA)·xA]]FIV(B)B (h,A2∗,MP∗)

∗As many times as required.
We reason as follows:

[[�u]] ���,y[[x
A]]FIV(A)A�[[s(�u,xA)]]FIV(B)B (Hypothesis)

[[�u]] ���,xA�B (Stripping, xA∈s(�u,xA), xA �∈�, FIV(B)\FIV(B)=∅)
[[�u]] ����A⊃B (Deduction for EFOLP)

[[�u]] ����[[r ��,A⊃B]] ��∩FIV(A⊃B)(A⊃B) (Corollary 4.6)

Take tA⊃B
λ =r ��,A⊃B. �
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Corollary 4.13 (μ-Abstraction)
Suppose �EFOLP [[�u]] ���,y[[α

¬A]]FIV(A)¬A�[[s(�u,α¬A)]]⊥ with α¬A /∈�. Then [[�u]] ����
[[tA
μ]] ��∩FIV(A)A, where tA

μ�c ·t¬¬A
λ .

Proof. We reason as follows:

[[�u]] ����[[t¬¬A
λ ([[�u]] ���)]] ��∩FIV(A)(¬¬A) (λ-Abstraction)

[[�u]] ����[[c]](¬¬A⊃A) (A1c, Nec)
[[�u]] ����[[c]] ��∩FIV(A)(¬¬A⊃A) (A3 and MP as many times as needed)

[[�u]] ����[[c ·t¬¬A
λ ([[�u]] ���)]] ��∩FIV(A)A (B2, MP twice)

�
Lemma 4.14 (!-Abstraction)
Suppose �EFOLP [[�u]] ����[[s]] ��∩FIV(A)A. Then there exists a proof term t�,A! such that

�EFOLP [[�u]] ����[[t�,A! ]] ��∩�[[s]]�A, for any � such that ��∩FIV(A)⊆�.

Proof. We reason as follows:

[[�u]] ����[[s]] ��∩FIV(A)A (Hypothesis)

[[�u]] ����[[s]]�A (A3*, MP*, ��∩FIV(A)⊆�)

[[�u]] ����[[r ��,[[s]]�A]] ��∩�[[s]]�A (Corollary 4.6)

* As many times as required. Take t�,A! =r ��,[[s]]�A.

Note: if�⊆ ��, then we can take t�,A! =!s and the result holds by B4 instead of Corollary 4.6. �
Lemma 4.15 (Substitution)
��[[s]]�A, �,y[[xA]]�′A�B, �∩FIV(A)⊆�′ and xA /∈FVT(�) implies ��B{xA←s}.

4.2.2 Translation from FOHLP to EFOLP
We now address the main result of this section, namely the translation of formulas provable in FOHLP
into formulas provable in EFOLP. We proceed in two stages: first we shall define the translation
between formulas in both languages and then we prove the main result, namely:

Proposition 4.16
If �FOHLP�;�;��D|s, then �EFOLP�

�∪��∪���[[s�]]FIV(H�)∩FIV(D�)D
�.

For the first stage, we introduce the defining clauses of the translation in a step-by-step manner
until we obtain the complete definition. We begin by showing how to translate formulas, contexts and
proof terms without considering the proof terms constructors lambda and name abstractions, unbox
and bang. We the add clauses for lambda and name abstraction. Finally, we add clauses for bang.

For the second stage, the proof of Proposition 4.16 itself, we shall proceed by induction
on derivations in FOHLP. We assume that derivations in FOHLP use the more simple modal
introduction scheme �I′ (cf. Remark 3.5) instead of �I. A consequence of this is that if
�FOHLP�;�;��A|s, then we may assume that the derivation does not make use of the equivalence
rules. That we may adopt this assumption without loss of generality follows from Lemma 3.11 (whose
proof resorts to �I′ rather than �I).normal form.
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Translating formulas, contexts and judgements. The translation •� from FOHLP to FOLP is
defined as follows for formulas and contexts:

P(E1,...,En)� � P(E1,...,En)
⊥� � ⊥

(A⊃B)� � A�⊃B�

∀i.A� � ∀i.A�
[[s]]�A� � [[s�]]�A�

·� � ·
(�,vA

�)
� � ��,[[vA� ]]�A�

(�,xA)
� � ��,[[xA� ]]FIV(A�)A

�

(�,αA)
� � ��,[[α¬A� ]]FIV(A�)¬A�

Remark 4.17
For every formula A, FIV(A)=FIV(A�). Note that FOHLP-proof witnesses and FOLP-proof terms
play no role in the definition of the free individual variables of a formula.

The translation of a FOHLP-judgement �;�;��A|s is defined as:

(�;�;��A|s)����,��,���[[s�]]FIV(��∪��∪��)∩FIV(A�)A
�

Towards translation of proof witnesses. For proof witnesses (disregarding lambda and name
abstractions, unbox and bang) we have:

(xA)
� � xA�

(vA
�)
� � vA�

(s ·t)� � s� ·t�
([αA]s)

� � α¬A� ·s�

(s+t)� � s�+t�

geni(s)� � geni(s
�)

insE
i (s)

� � c ·s�

In the clause for insE
i (s) we assume [[c]]∅A∈C, for all formulas A which are instances of axiom

scheme A1dd (which we recall is (∀�j.∀�i.A)⊃∀�j.(A{�i←�E})).
Translating lambda and name abstraction. We now explain how we address lambda abstraction
(name abstraction is addressed similarly). Suppose that the last scheme applied in the derivation π
of a judgement �;�;��C |s is:

�;�,xA;��B|s
⊃I

�;�;��A⊃B|λxA.s
.

The induction hypothesis of our forthcoming proof (Proposition 4.16) will yield derivability in
EFOLP of:

��∪��,[[xA� ]]FIV(A�)A
�∪���[[s�]]FIV(��∪��∪��)∩FIV(B�)B

�. (3)

However, we are after derivability of ��∪��∪���[[t]]FIV(��∪��∪��)∩FIV(A�⊃B�)(A
�⊃B�), for an

appropriate proof term t. Building a derivation of this judgement requires three steps:

(1) We first need to ‘drop’ the outermost modalities of [[xA� ]]FIV(A�)A
� and

[[s�]]FIV(��∪��∪��)∩FIV(B�)B
� from (3). This is achieved via the Stripping Lemma

(Lemma 4.11).
(2) This allows us then to resort to the standard Deduction Theorem to deduce A�⊃B�.
(3) Finally, we resort to the reflective capabilities of EFOLP in order to deduce the appropriate

proof term t. This is achieved via the Internalization Lemma (Lemma 4.5).

These three steps conform the content of the λ-Abstraction Lemma (Lemma 4.12). Note that t
is thus a function of the original EFOLP derivation of (3). In turn, (3) is obtained from analysing
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the FOHLP derivation π , and may contain multiple FOHLP derivations of an FOHLP judgement.7

Thus we shall assume in our proof of Proposition 4.16 (and Corollary 4.18) that π is canonical in
the sense that multiple occurrences of a judgement in π all have the exact same proof. The clauses
defining the translation of lambda (λxA.s)

�
and name abstraction (μαA.s)

�
, are as follows:

(λxA.s)
� � tA�⊃B�

λ , if there exists a EFOLP-context [[�u]] ���, a formula B and a fresh

y[[xA� ]]FIV(A)A� s.t. �EFOLP [[�u]] ���,y[[x
A� ]]FIV(A)A� �[[s�]]FIV([[�u]] ���)∩FIV(B�)B

�.

(λxA.s)
� � d ·d, otherwise.

(μαA.s)
� � tA�

μ , if there exists a EFOLP-context [[�u]] ��� and a fresh y[[α¬A� ]]FIV(A�)A
�

s.t.

�EFOLP [[�u]] ���,y[[α
¬A� ]]FIV(A�)A

� �[[s�]]∅⊥.
(μαA.s)

� � d ·d, otherwise.

Here we assume [[d]]∅A∈C, for all formulas A which are instances of axiom scheme A1c, the axiom
scheme of classical logic ¬¬A⊃A. In our use of this translation (Proposition 4.16) the conditions
of the first and third clauses shall be met when dealing with modalities that are introduced using �I
and in which the translated abstraction that occurs in the internalized proof witness is proved in π
itself; the second and fourth cases are used when these abstractions that occur in modalities do not
represent valid proofs.8 The proof terms defined by the first and third clauses all depend on the form
that the assumed EFOLP derivation takes. Since there are non-linear constraints in our terms (cf.⊃E
in Figure 2 has A in positive and negative positions), hence the reason for the assumption that π be
canonical.

Translating bang. Regarding the clause for (!t)�, defining it simply as !t� presents technical
difficulties when addressing the case �I′. Indeed, suppose the FOHLP derivation ends in:

�;·;·�A|t FIV(�)∩FIV(A)⊆�
�I′

�;�;��[[t]]�A|!t
.

The induction hypothesis yields:

���[[t�]]FIV(��)∩FIV(A�)A
�

from which we can obtain the following, given the condition FIV(�)∩FIV(A)⊆� of �I′:

���[[t�]]�A�

But then B4 yields:

���[[!t�]]�[[t�]]�A�

However we are after:

���[[!t�]]FIV(��∪��∪��)∩�[[t�]]�A�

Unfortunately, it is not sound to simply discard the variables in � in order to obtain FIV(��∪��∪
��)∩�. A similar situation arises if we define t〈vA

�:=r,s〉 as t�{vA�←r�}. We thus define (!t)� and

7Since we assume �I′ rather than �I, the sole source of this multiplicity is PlusL and PlusR.
8For example, ·;x[[λzA .z·z]]�B;·�[[λzA.z ·z]]�B|x[[λzA .z·z]]�B.
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(t〈vA
�:=r,s〉)� as follows:

(!t)� � t�,A
�

! , if there exists a EFOLP-context [[�u]] ��� and a formula A s.t.
�EFOLP [[�u]] ����[[t�]]FIV([[�u]] ���)∩FIV(A�)A

� and
FIV([[�u]] ���)∩FIV(A�)⊆�.

(!t)� � !t�, otherwise.

(t〈vA
�:=r,s〉)� � r ��,C�{vA�←r�}, if there exists a EFOLP-context [[�u]] ��� and a formula C s.t.

�EFOLP [[�u]] ����[[t�{vA�←r�}]](FIV([[�u]] ���)∪�)C
�{vA�←r�}.

(t〈vA
�:=r,s〉)� � t�{vA�←r�}, otherwise.

This completes the definition of the translation. We now focus on the proof of Proposition 4.16
whose statement, we recall from above, reads:

If �FOHLPH�D|s, then �EFOLPH��[[s�]]FIV(H�)∩FIV(D�)D
�, where H� is shorthand for ��∪

��∪��.
Proof. By induction on the derivation of H�D|s. As mentioned in the beginning of this subsection,
we assume that the derivation does not resort to proof witness equivalence. We analyze the last rule
used.

• Case Var. H�D|s is �;�′,xA;��A|xA. Trivially �EFOLP�
�∪��∪���[[xA� ]]FIV(A�)A

�.

Since [[xA� ]]FIV(A�)A
�∈��, then FIV(H�)∩FIV(A�)=FIV(A�).

• Case VarM. In this case s=vD
�, �=�′,vD

� and hence H=�′,vD
�;�;�. H��[[vD� ]]�D� is

derivable in EFOLP since vD� ∈H�. Note also that FIV(H�)∩FIV(D�)=FIV(D�). We can use
A2 and A3 as necessary (along with MP) to derive H��[[vD� ]]FIV(D�)D

�.
• Case ⊃I. The derivation ends in:

�;�,xA;��B|t
⊃I

�;�;��A⊃B|λxA.t
.

By the induction hypothesis we can derive:

��∪��,[[xA� ]]FIV(A)A
�∪���[[s�]]FIV(H�)∩FIV(B�)B

�. (4)

Thus, our translation requires that we prove:

H��[[tA�⊃B�
λ ]]FIV(H�)∩FIV(A�⊃B�)(A

�⊃B�). (5)

in EFOLP in order to conclude. From (4) and possibly multiple uses of A2, A3 and MP:

��∪��,[[xA� ]]FIV(A�)A
�∪���[[s�]]FIV(B�)B

�.

By our freshness convention, we know that xA /∈H and xA /∈FVT(B). Therefore, xA� /∈H� and
xA� /∈FV(B�). We then resort to the λ-Abstraction Lemma (4.12) to obtain tA�⊃B�

λ s.t.

�EFOLPH��[[tA�⊃B�
λ ]]FIV(H�)∩FIV(A�⊃B�)(A

�⊃B�).

• Case ⊃E. The derivation ends in:

�;�;��A⊃B|s �;�;��A|t
⊃E

�;�;��B|s ·t
.
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By the induction hypothesis both of the following judgements are derivable in EFOLP:

(1) H��[[s�]]FIV(H�)∩FIV(A�⊃B�)(A⊃B)� and
(2) H��[[t�]]FIV(H�)∩FIV(A�)A

�

We can derive H��[[t�]]FIV(H�)∩FIV(A�⊃B�)A
� by using A3 and MP as many times as required

(keep in mind that FIV(A)=FIV(A�)⊆FIV(A�⊃B�)). Then, using B2 and MP twice, we derive
H��[[(s� ·t�)]]FIV(H�)∩FIV(A�⊃B�)B

�.
Note that A� is the same on both sides, since we are assuming canonical derivations and thus
translations are unique.

• Case �I′. In this case D=[[t]]�A and the derivation ends in:

�;·;·�A|t FIV(�)∩FIV(A)⊆�
�I′

�;�;��[[t]]�A|!t
.

We reason as follows, where * in step (c) means A3 and MP are used possibly multiple times:

(a) ���[[t�]]FIV(��)∩FIV(A�)A
� (IH)

(b) ���[[t�,A�! ]]FIV(��)∩�[[t]]�A� (Lemma 4.14, FIV(��)∩FIV(A�)⊆�)
(c) ��∪��∪���[[t�,A! ]]FIV(H�)∩�[[t�]]�A� (A3 and MP)*

We know that t�,A! is the correct for translation for !t, since
�EFOLP�

��[[t�]]FIV(��)∩FIV(A)A
� and FIV(��)∩FIV(A)⊆�.

• Case �E. The derivation ends in:

�;�;��[[r]]�A|s′ �,vA
�′ ;�;��C |t �∩FIV(A)⊆�′

�E
�;�;��C{vA

�′ ←r}|t〈vA
�′ :=r,s′〉

with D=C{vA
�′ ←r} and s= t〈vA

�′ :=r,s′〉.
By the induction hypothesis both of the following judgements are derivable in EFOLP:

(1) H��[[s′�]]FIV(H�)∩�[[r�]]�A�

(2) H�,[[vA� ]]�′A��[[t�]](FIV(H�)∪�′)∩FIV(C�)C
�

We now reason as follows:

(a) H�� ([[s′�]]FIV(H�)∩�[[r�]]�A�)⊃([[r�]]�A�) (B1)
(b) H��[[r�]]�A� ((a), MP)
(c) H��[[t�{vA�←r�}]]((FIV(H�)∪�′)∩FIV(C�))C

�{vA�←r�} (Lemma 4.15, (b), (2))
(d) H��C�{vA�←r�} (B1, MP)

(e) H��[[rFIV(H�),C�{vA�←r�}]](FIV(H�)∩FIV(C�))C
�{vA�←r�}(Corollary 4.6)

By Remark 2.4, FIV(C�)=FIV(C�{vA�←r�}).
We know that rFIV(H�),C�{vA�←r�} is the correct translation for t〈vA

�′ :=r,s′〉, since H��
[[t�{vA�←r�}]]((FIV(H�)∪�′)∩FIV(C�))C

�{vA�←r�} is derivable in EFOLP by (c), and therefore

so is H��[[t�{vA�←r�}]]FIV(H�)∪�′C�{vA�←r�}.
• Case PlusL (PlusR is similar and hence ommitted). The derivation ends in:

�;�;��A|s
PlusL

�;�;��A|s+t
.
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By the induction hypothesis �EFOLPH��[[s�]]FIV(H�)∩FIV(A�)A
�. Thus, by B3a and MP, also

�EFOLPH��[[s�+t�]]FIV(H�)∩FIV(A�)A
�.

• Case NAbs. The derivation ends in:

�;�;�,αA�⊥|s
NAbs

�;�;��A|μαA.s
.

By the induction hypothesis,�EFOLPH�,[[α¬A� ]]FIV(A�)A
��[[s�]]∅⊥, and thusμαA.s

�= tA�
μ =

cA1c
A� ·t¬¬A

λ . By our freshness convention, we know that αA /∈H, therefore α¬A� /∈H� and by the
μ-Abstraction Corollary (4.13), H��[[tA�

μ ]]FIV(H�)∩FIV(A�)A
� is derivable in EFOLP.

• Case Name. The derivation ends in:

�;�;�,αA�A|s
Name

�;�;�,αA�⊥|[αA]s
.

By the induction hypothesis, �EFOLPH�,x[[α¬A� ]]FIV(A�)¬A� �[[s�]]FIV(H�)∩FIV(A�)A
�.

Note that FIV(H�,x[[α¬A� ]]FIV(A�)¬A�)∩FIV(A�)=FIV(A�). We reason as follows:

(1) H�,x[[α¬A� ]]FIV(A�)¬A� �[[α¬A� ]]FIV(A�)¬A� (hypothesis x[[α¬A� ]]FIV(A�)¬A�)

(2) H�,x[[α¬A� ]]FIV(A�)¬A� �[[s�]]FIV(A�)A
� (IH)

(3) H�,x[[α¬A� ]]FIV(A�)¬A� �[[α¬A� ·s�]]FIV(A�)⊥ (B2 and MP twice)

(4) H�,x[[α¬A� ]]FIV(A�)¬A� �[[α¬A� ·s�]]⊥ (A2 and MP as required)

• Case ∀I. The derivation ends in:

�;�;��A|t i �∈FIV(�,�,�)
∀I

�;�;��∀i.A|geni(t)

with D=∀i.A and s=geni(t). By the induction hypothesis,
�EFOLPH��[[t�]]FIV(H�)∩FIV(A�)A

�. Since i �∈FIV(H), then i �∈FIV(H�), and thus we
can obtain the result by B5, A2, and MP (twice).

• Case ∀E. The derivation ends in:

�;�;��∀i.A|t
∀E

�;�;��A{i←E}|insE
i (t)

with D=A{i←E} and s= insE
i (t). Let �=FIV(H�)∩FIV(∀i.A�) and �′ =FIV(H�)∩

FIV(A�{i←E}). By the induction hypothesis, �EFOLPH��[[t�]]�∀i.A�.
Since FIV(∀i.A�)⊆FIV(A�{i←E}), then �EFOLPH��[[t�]]�′∀i.A� by using A3 and MP as
many times as required.
We reason as follows, where * indicates multiple uses of an axiom:

(a) H��∀i.A�⊃A�{i←E} (A1d)
(b) H��[[cA1d

A�,i,E]]∀i.A�⊃A�{i←E} (Nec)
(c) H��[[cA1d

A�,i,E]]�′ ∀i.A�⊃A�{i←E} (A3*,MP*)
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(d) H��[[cA1d]]�′∀i.A�⊃A�{i←E}⊃[[t�]]�′∀i.A�⊃[[(cA1d ·t�)]]�′A�{i←E} (B2)
(e) H��[[t�]]�′∀i.A�⊃[[(cA1d ·t�)]]�′A�{i←E} (MP)
(f) H��[[cA1d ·t�]]�′A�{i←E} (MP)

�
Corollary 4.18
If �FOHLP ·;·;·�A|s, then �EFOLP ·�[[s�]]FIV(A)A

� and �EFOLP ·�A�.

5 Term assignment

The λFOLP-calculus, our proposed term assignment for FOHLP, consists of a grammar that
describes the valid terms (Definition 5.1), the typing rules (Definition 5.3) and the reduction rules
(Definition 5.11).

The proof witnesses of FOHLP do not encode derivations unequivocally. For instance, the proof
witness xA+yA ensures that A is true if we assume both xA and yA, but it does not tell us which
hypothesis was used in order to derive it. Similarly, !vA

� can be used to verify that [[vA
�]]�′A is true

assuming vA
� as a validity hypothesis, but this may have been derived in an infinite number of ways,

using �I with any witness which is equivalent to vA
� (e.g., vA

� itself, (λxA.xA)·vA
�, μαA.[αA]vA

�, etc.).
So we introduce further information into proof witnesses to obtain λFOLP-terms.

Definition 5.1
The terms of λFOLP are given by the following grammar:

M,N ::= xA

| vA
�

| (λxA.MB)A⊃B

| (MA⊃BNA)B

| (!MA)[[s]]�A

| (MB〈vA
�′ :=r,N [[r]]�A〉)B{vA

�′←r}

| ([αA]MA)⊥

| (μαA.M⊥)A

| (MA+Ls)A

| (s+RNB)B

| (geni(M
A))∀i.A

| (insE
i (M∀i.A))A{i←E}

The connection between λFOLP-terms and FOHLP-derivations should be clear from the notation.
The term (MA+Ls)A encodes a proof of A which appends the witness s to a previous proof of
A—encoded by MA—by using PlusL. Analogously, (s+RMA)A encodes the proof which results
from appending s to a proof of A by PlusR. Also the terms (!vA

�)[[vA
�]]�A, (!vA

�)[[(λxA.xA)·vA
�]]�A and

(!vA
�)[[vA

�]]�∪�′A encode different derivations, in which �I is used in different ways to prove different
formulas. We often drop superindices in terms for the sake of readability.
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Figure 8. Typing rules for λFOLP.

Remark 5.2
Some information regarding the derivations these terms encode is still left out, since our terms do
not encode the equivalence rules used to derive the second premise of T-�I, nor the contexts used
in the derivations (we may have assumed additional hypotheses which were never used). However,
these terms provide us with enough information to reason about the proof normalization process and
other properties of the metatheory. A term assignment where complete information is recorded in the
terms may be consulted in [10].

Free variables of validity (FVV(•)), truth (FVT(•)) and falsehood (FVF(•)), as well as free
individual variables over terms are defined analogously to those for proof witnesses, and the notational
conventions extend to terms as expected.

Definition 5.3
Typing judgements in λFOLP take the form�;�;��MA |s. The typing rules that define which such
judgements are derivable are given in Figure 8. They arise from the inference schemes of FOHLP of
Figure 2; hence every well-typed term encodes a derivation in FOHLP modulo the equivalence rules,
and every FOHLP-derivation can be encoded by a term. In particular, note that if �;�;��MA |s
is derivable with the typing rules of λFOLP, then �;�;��A|s is derivable in FOHLP. We write
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H�MA |s to abbreviate �;�;��MA |s. Also, we write �λFOLP�;�;��MA |s to indicate that the
typing judgement �;�;��MA |s is derivable.

We now list some substitution principles.

Lemma 5.4 (Validity Variable Substitution)
(1) If both �λFOLP�,vA

�;�;��MB |s and �λFOLP�;·;·�NA |t, then

�λFOLP�;�;��M{vA
�←NA,t}B{vA

�←t} |s{vA
�← t}.

(2) If both �FOHLP�,v
A
�;�;�� s≡r :B and �λFOLP�;·;·�NA |t, then

�FOHLP�;�;�� s{vA
�← t}≡r{vA

�← t}:B{vA
�← t}.

Lemma 5.5 (Validity Variable Substitution with Equivalence)
If

(1) �λFOLP�,vA
�;�;��MB |s;

(2) �λFOLP�;·;·�NA |r; and
(3) �FOHLP�;·;·� r≡t :A,

then there exists s′ such that:

(1) �λFOLP�;�;��MB{vA
�←NA,t}B{vA

�←t} |s′; and
(2) �FOHLP�;�;�� s′≡s{vA

�← t}:B{vA
�← t}.

Lemma 5.6 (Individual Variable Substitution)
(1) If �λFOLP�;�;��MD |r, then

�λFOLP�{i←E};�{i←E};�{i←E}�M{i←E}D{i←E} |r{i←E}.
(2) If �FOHLP�;�;�� r1≡r2 :D, then

�FOHLP�{i←E};�{i←E};�{i←E}� r1{i←E}≡r2{i←E}:D{i←E}.
Lemma 5.7 (Truth Variable Substitution)
If �λFOLP�;�,yA;��MB |s and �λFOLP�;�;��NA |t, then

�λFOLP�;�;��M{yA←NA}B |s{yA← t}.
Lemma 5.8 (Falsehood Variable Renaming)
If �λFOLP�;�;�,αA,βA�MB |s, then we also have

�λFOLP�;�;�,βA�M{αA←βA}B |s{αA←βA}.
Lemma 5.9 (Structural Substitution)
If �λFOLP�;�;�,αA⊃B�MD |s and �λFOLP�;�;��NA |t, then

�λFOLP�;�;�,βB�M(|[αA⊃B](•)←[βB](•)NA |)D |s(|[αA⊃B](•)←[βB](•)t |).
Lemma 5.10 (Inversion)
Suppose �λFOLP�;�;��ND |r.

• If ND=xA, then xA∈�, r=xA and D=A;
• If ND=vA

�, then vA
�∈�, r=vA

� and D=A;
• If ND= (λxA.MB)A⊃B, then �λFOLP�;�,xA;��MB |s for some s, r=λxA.s and D=A⊃B;
• If ND= (MA⊃B

1 MA
2 )B, then both �λFOLP�;�;��MA⊃B

1 |s and �λFOLP�;�;��MA
2 |t for some

s and t, r=s ·t and D=B;
• If ND= (!MA)[[t]]�A, then both �λFOLP�;·;·�MA |s and �FOHLP�;·;·� s≡t :A, for some s,

FIV(�)∩FIV(A)⊆�, r=!t and D=[[t]]�A;
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• If ND= (MB
2 〈vA

�′ :=r′,M[[r
′]]�A

1 〉)B{vA←rA}, then both �λFOLP�;�;��M[[r
′]]�A

1 |s and
�λFOLP�,vA

�′ ;�;��MB
2 |t for some s and t, r= t〈vA

�′ :=r,s〉, �∩FIV(A)⊆�′ and
D=B{vA←rA};

• If ND= ([αA]MA)⊥, then ∃ �′, s s.t. �=�′,αA, �λFOLP�;�;�′,αA�MA |s, r=[αA]s, and
D=⊥;

• If ND= (μαA.M⊥)A, then �λFOLP�;�;�,αA�M⊥|s for some s, r=μαA.s, and D=A;
• If ND= (MA+Lt)A, then �λFOLP�;�;��MA |s for some s, r=s+t, and D=A;
• If ND= (s+RMB)B, then �λFOLP�;�;��MB |t for some t, r=s+t, and D=B;
• If ND= (geni(M

A))∀i.A, then �λFOLP�;�;��MA |s for some s, i �∈FIV(�,�,�), r=geni(s)
and D=∀i.A;

• If ND= (insE
i (M∀i.A))A{i←E}, then �λFOLP�;�;��M∀i.A |s for some s, r= insE

i (s)
and D=A{i←E}.

Definition 5.11
Reduction in λFOLP, denoted→, is defined as the compatible closure of the following two groups
of rules:

• Principal rules:

β : (λxA.MB)NA → MB{xA←NA}
μ : [βA]μαA.M⊥ → M⊥{αA←βA}
ζ : (μαA⊃B.M⊥)NA → μβB.M⊥(|[αA⊃B](•)←[βB](•)NA |)
θ : μαA.[αA]MA → MA, if αA �∈FVF(MA)
γ : MB〈vA

�:=r,!NA〉 → MB{vA
�←NA,r}, if FVT(NA)=FVF(NA)=∅

ξ : insE
i (geni(M

A)) → (MA){i←E}

• Permutative rules:

ψL : (MA⊃B+Lt)A⊃BNA → (MA⊃BNA)B+Lt
ψR : (s+RMA⊃B)A⊃BNA → s+R(MA⊃BNA)B

χL : [βA](MA+Lt)A → ([βA]MA)⊥+Lt
χR : [βB](s+RNB)B → s+R([βB]NB)⊥

φL : MB〈vA
�′ :=r,(N [[r]]�A+Lt)〉 → (MB〈vA

�′ :=r,N [[r]]�A〉)B{vA
�′←rA}+Lt

φR : MB〈vA
�′ :=r,(s+RN [[r]]�A)〉 → s+R(MB〈vA

�′ :=r,N [[r]]�A〉)B{vA
�′←rA}

εL : insE
i (M∀i.A+Lt) → insE

i (M∀i.A)+Lt
εR : insE

i (s+RM∀i.A) → s+R insE
i (M∀i.A)

ιL : μαA.(M⊥+Lt)⊥ → (μαA.M⊥)+Lt, if αA �∈FVF(t)
ιR : μαA.(s+RN⊥)⊥ → s+R(μαA.N⊥), if αA �∈FVF(s)

The restrictions to rules γ , θ , ιL and ιR prevent the creation of free variables upon reduction. Bound
variables may be renamed before reduction to avoid capture. We write � for the reflexive-transitive
closure of→ and→+ for the transitive closure of→. Rules μ, ζ and θ are inherited from Parigot’s
λμ-calculus. Rules β, γ and ξ encode proof normalization steps. For example, the γ rule encodes
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the step in which the derivation:

π1

�;·;·�NA |r �;·;·� r≡t :A FIV(�)∩FIV(A)⊆�′
�I

H� (!NA)[[t]]�′A |!t
π2

H,vA
��MB |s �∩FIV(A)⊆�′

�E
H�MB〈vA

�:=t,!NA〉B{vA
�←t} |s〈vA

�:=t,!t〉
is transformed into the derivation given by the Validity Variable Substitution Principle (Lemma 5.4)
applied to π1 and π2:

H�M{vA
�←NA,t}B{vA

�←t} |s′,
where s′ is equivalent to s{vA

�← t}. The purpose of the permutative rules is to avoid operators ‘+L’and
‘+R’ from blocking reductions. They push the sums outside, unveiling inner redexes. For example:
((λxA.yB)A⊃B+Lt)A⊃BzA→ψL ((λxA.yB)A⊃BzA)B+Lt→β yB+Lt.

5.1 Basic results

The relation→ is confluent. This is a consequence of the fact that all critical pairs may be closed
(cf. [14], where confluence of the term assignment for LP is proved; note moreover that no new
critical pairs are added with respect to that system). Strong normalization of → is addressed in
Section 5.2 (cf. Proposition 5.25). We now focus on type preservation and consistency of ≡.

Lemma 5.12
If �;�;��MA |s is derivable, then FVT(s)⊆FVT(MA) and FVF(s)⊆FVF(MA).

Proof. By induction on the derivation of �;�;��MA |s. The T-Var and T-VarM cases are
straightforward. For T-�I, FVT(MA)=FVF(MA)=FVT(s)=FVF(s)=·. In all other cases, the result
is obtained by induction hypothesis and basic set operations. �
Lemma 5.13
If �λFOLP�;�;��MD |s and MD→ND by reducing a redex at the root of MD, then
�λFOLP�;�;��ND |s′ for some witness s′ such that �;�;�� s≡s′ :D.

Proof. By case analysis on the reduction rule that was used. We supply a sample case.

• γ : MD=MB
1 〈vA

�′ :=r,(!MA
2 )[[r]]�A〉, ND=MB

1 {vA
�′ ←MA

2 ,r} and FVT(MA
2 )=FVF(MA

2 )=∅.
By Inversion Lemma (twice), D=B{vA

�←r}, s=!r〈vA
�′ :=r,t〉 and there is a witness r′ such

that FIV(�)∩FIV(A)⊆�, �∩FIV(A)⊆�′, and �;·;·� r′≡r :A as well as �;·;·�MA
2 |r′ and

�,vA
�′ ;�;��MB

1 |t are derivable.

By Lemma 5.5, we can derive �;�;��MB
1 {vA

�′ ←MA
2 ,r}B{v

A
�′←r} |s′ and �;�;�� s′≡

t{vA
�′ ←r}:B{vA

�′ ←r} for some witness s′; and, by Eq-Symm, we derive �;�;�� t{vA
�′ ←

r}≡s′ :B{vA
�′ ←r}. By Eq-γ -since FIV(�)∩FIV(A)⊆�′-, we can derive�;�;�� s≡t{vA

�′ ←
r}:B{vA

�′ ←r}. And finally, by Eq-Trans, �;�;�� s≡s′ :B{vA
�′ ←r}.

Note that s and s′ are the same as the witnesses s and t for the corresponding equivalence rule from
Lemma 3.11. �
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Proposition 5.14 (Type Preservation)
If �λFOLP�;�;��MB |s and MB→NB, then there exists a proof witness s′ such that
�λFOLP�;�;��NB |s′ and �FOHLP�;�;�� s≡s′ :B.

Proof. By induction on MB. If the reduction takes place at the root, then the result holds by
Lemma 5.13. We illustrate a sample case of an internal reduction.

• If MB= (!MA
1 )[[r]]�A: in this case B=[[r]]�A, NB= (!NA

1 )[[r]]�A where MA
1→NA

1 and, by the
Inversion Lemma, there is a witness t such that both �;·;·�MA

1 |t and �;·;·� t≡r :A are
derivable, FIV(�)∩FIV(A)⊆� and s=!t.
By the induction hypothesis, we can derive �;·;·�NA

1 |t′ and �;·;·� t≡t′ :A.
By Eq-Symm and Eq-Trans, we obtain �;·;·� t′≡r :A. And, by T-�I, �;�;��
(!NA

1 )[[r]]�A |!r. �;�;�� t′≡r :A is obtained by Weakening.

�
Corollary 5.15
If �λFOLP�;�;�� (!MB)A |t and MB→NB, then �;�;�� (!NB)A |t is derivable.

Proof. By the Inversion Lemma, A=[[r]]�B, t=!r for some proof witness r, and there is an s
such that both �;·;·�MB |s and �;·;·� s≡r :B are derivable. By Proposition 5.14, there is an s′
such that both �;·;·�NB |s′ and �;·;·� s′≡s:B are derivable, and �∩FIV(A)⊆�. By Eq-Trans,
�;·;·� s′≡r :B is also derivable. And, by T-�I, so is �;�;�� (!NB)[[r]]�B |!r. �

We now address consistency of proof witness equality H� s≡t :A. For this we first define the
notion of proof witness associated with a term.

Definition 5.16
The proof witness associated with a term MA, denoted w(MA), is defined as follows:

w(xA) � xA

w(vA
�) � vA

�

w((λxA.MB)A⊃B) � λxA.w(MB)
w((MA⊃BNA)B) � w(MA⊃B)·w(NA)
w((!MA)[[s]]�A) � !s
w((MB〈vA

�′ :=r,N [[r]]�A〉)B{vA
�′←r}) � (w(MB)〈vA

�′ :=r,w(N [[r]]�A)〉)
w(([αA]MA)⊥) � [αA]w(MA)
w((μαA.M⊥)A) � μαA.w(M⊥)
w((MA+Lt)A) � w(MA)+t
w((s+RNB)B) � s+w(NB)
w((geni(M

A))∀i.A) � geni(w(MA))
w((insE

i (M∀i.A))A{i←E}) � insE
i (w(M∀i.A))

Remark 5.17
The proof witness w(MA) associated with a term MA is the only one such that the judgement�;�;��
MA |w(MA) is derivable for some �,�,�.

Lemma 5.18
If �λFOLP�;�;�� s≡t :B, then there are terms M1, M2, M3 s.t.:

(1) �λFOLP�;�;��MB
1 |s;
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(2) �λFOLP�;�;��MB
2 |t;

(3) M1 �M3; and
(4) M2 �M3.

Proof. Since there may be more than one candidate for M1 and M2, we will assume that the
derivations we are working with are canonical in the following sense:

• Whenever either (T-)PlusL or (T-)PlusR can be used to prove the same formula, we use
(T-)PlusL. This eliminates the possibility of two different terms encoding a proof with a
witness of the form s′+t′. (T-)PlusR may still be used to derive judgements of the form
�′;�′;�′ � (s′+RMA′ )A′ |s′+t′ when �′;�′;�′ �A′ |s′ is not derivable.

• We use (T-)�I’ instead of (T-)�I, in order to avoid the possibility of multiple (in fact infinite)
terms encoding a proof with a witness of the form !s′.

This way, if �FOHLP�
′;�′;�′ �A|r, there exactly one term M �′;�′;�′ �MA |r has a canonical

derivation (this is straightforward by induction on s, since canonical derivations are syntax-driven).
In order to preserve this invariant, we will ensure that the derivations we construct are also canonical
in this sense (by using T-�I’ instead of T-�I, and not using T-PlusR unless this rule was used in the
original derivation).
The proof is by induction on the derivation of �;�;�� s≡t :B. We exhibit a sample case.

• Eq-γ : s= t′〈vA
�:=s′,!s′〉, t= t′{vA

�←s′}, B=C{vA
�←s′}, both�;·;·�NA |s′ and�,vA

�;�;��
MC |t′ are derivable by hypothesis for some MC and NA, and FIV(�)∩FIV(A)⊆�.
Let �1=FIV(�). Since �1∩FIV(A)⊆�1, then by T-�I, we get �;�;�� (!NA)[[s′]]�1 A |!s′ –
note that we use the same proof witness s′ on both sides of the equivalence, which is the same
as using T-�I’, and thus the derivation is maintained canonical. Now, by T-�E, we can derive
�;�;��MC〈vA

�:=s′,(!NA)[[s′]]�1 A〉C{vA
�←s′} |t′〈vA

�:=s′,!s′〉.
Take M1=MC〈vA

�:=s′,(!NA)[[s′]]�1 A〉 and M2=M3=MC{vA
�←NA,s′}.

The judgement �;�;��M
C{vA

�←s′}
2 |t′{vA

�←s′} can be obtained from �,vA
�;�;��C |t′ and

the hypotheses by Lemma 3.9, and M1→γ M2.

�
Corollary 5.19
The ≡ theory for FOHLP is consistent.

Proof. Suppose that we can derive ·;{xA,yA};·� xA≡yA :A. By Lemma 5.18, there are M1, M2 and
M3 oth ·;{xA,yA};·�MA

1 |xA and ·;{xA,yA};·�MA
2 |yA are derivable, and M1 �M3 and M2 �M3.

By Remark 5.17, xA=w(M1) and yA=w(M2). By Definition 5.16, M1 can only be xA and M2
can only be yA. But both xA and M2 and yA are normal forms, so M3 cannot exist. Therefore,
·;{xA,yA};·� xA≡yA :A is not derivable. Since ·;{xA,yA};·�A|xA and ·;{xA,yA};·�A|yA are both
derivable (by Var), then the ≡ theory is consistent. �

5.2 Strong normalization

In order to prove strong normalization of term reduction, we follow our development for the
propositional setting [14]. This relies on mapping λFOLP-terms into terms of Parigot’s λμ-calculus
with unit type (λμ1) and then resorting to the known fact that λμ1 is SN. The reduction rules of
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λμ1 with unit type are the same as those of λμ (Section 1.3 plus β). λμ1-judgements take the form
M :���, with M a λμ1-term, � a truth context and � a falsehood context. The typing rules are
those introduced in Section 1.3 plus the axiom Unit that reads, unit:��1;�.

The mapping 〈|·|〉 associates types (formulas) and terms (proofs) in λFOLP with types and terms
in λμ1. The modal type [[s]]�A is mapped to a functional type whose domain is the unit type 1 and
whose co-domain is the mapping of A. Since λμ1 has truth and falsehood variables but not validity
variables, the mapping of validity variables will rely on a new set of truth variables in λμ1. Individual
variables and expressions are ignored.

Definition 5.20
We first translate types:

〈|P(E)|〉 � P
〈|⊥|〉 � ⊥

〈|A⊃B|〉 � 〈|A|〉⊃〈|B|〉
〈|[[s]]�A|〉 � 1⊃〈|A|〉
〈|∀i.A|〉 � 1⊃〈|A|〉.

For terms we translate as follows:

〈|xA|〉 � x〈|A|〉
〈|vA
�|〉 � (x1⊃〈|A|〉

v )unit
〈|(λxA.MB)A⊃B|〉 � λx〈|A|〉.〈|MB|〉
〈|(MA⊃BNB)B|〉 � 〈|MA⊃B|〉〈|NB|〉
〈|(!MA)[[s]]�A|〉 � λx1.〈|MA|〉x1, x1 fresh

〈|(MB〈vA
�′ :=r,N [[r]]�A〉)B{vA

�′←r}|〉 � (λx1⊃〈|A|〉
v .〈|MB|〉)〈|N [[r]]�A|〉

〈|([αA]MA)⊥|〉 � [α〈|A|〉]〈|MA|〉
〈|(μαA.M⊥)A|〉 � μα〈|A|〉.〈|M⊥|〉
〈|(MA+Lt)A|〉 � 〈|MA|〉
〈|(s+RMA)A|〉 � 〈|MA|〉
〈|geni(M

A)|〉 � λx1
i .〈|MA|〉

〈|insE
i (M∀i.A)|〉 � 〈|M∀i.A|〉unit.

The translation maps typable λFOLP-terms to typable λμ1-terms, as expected. This result is proved
by induction on the derivation of a given judgement �;�;��MA |s and relies on the fact that 〈|•|〉
commutes with the various notions of substitutions.

Lemma 5.21
If �λFOLP�;�;��MA |s, then 〈|M|〉: 〈|�|〉∪〈|�|〉�〈|A|〉,〈|�|〉 is derivable in λμ1.

Some sample cases of the proof are:

• Case T-VarM: M=vA
�, �=�′,vA

�, 〈|M|〉= (x1⊃〈|A|〉
v )unit and 〈|�|〉=〈|�′|〉,x1⊃〈|A|〉

v . We can
construct the following derivation in λμ1:

Ax
x1⊃〈|A|〉

v : 〈|�′|〉,x1⊃〈|A|〉
v ∪〈|�|〉�1⊃〈|A|〉,〈|�|〉

Unit
unit: 〈|�′|〉,x1⊃〈|A|〉

v ∪〈|�|〉�1,〈|�|〉
⊃E

(x1⊃〈|A|〉
v )unit: 〈|�′|〉,x1⊃〈|A|〉

v ∪〈|�|〉�〈|A|〉,〈|�|〉

 by guest on June 22, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[18:32 13/1/2016 exv090.tex] LogCom: Journal of Logic and Computation Page: 39 1–44

First-order hypothetical logic of proofs 39

• Case T-�I: M= (!NB)[[r]]�B, A=[[r]]�B, �=�1∪�2, 〈|M|〉=λx1.〈|NB|〉, 〈|A|〉=1⊃〈|B|〉 and,
by Weakening and the induction hypothesis, 〈|NB|〉: 〈|�|〉�〈|B|〉 is derivable in λμ1. We can
derive λx1.〈|NB|〉: 〈|�|〉�1⊃〈|B|〉 by Weakening and⊃I, and then obtain λx1.〈|NB|〉: 〈|�|〉∪〈|�|〉�
1⊃〈|B|〉,〈|�|〉 by Weakening.

• Case T-�E: (M=MC
1 〈vB

r :=�′,M[[r]]�B
2 〉)C{vB

�′←r}, A=C{vB
�′ ←r}, 〈|M|〉=

λx1⊃〈|B|〉
v .〈|M[[r]]�B

2 |〉〈|MC
1 |〉. Note that 〈|A|〉=〈|C|〉. This follows from the fact that

〈|C{vA
�←r}|〉=〈|C|〉. We can construct the following derivation: It may be proved by

exhibiting a polynomial interpretation over the non-negative integers that ensures that
reduction terminates.

Lemma 5.22
For all λFOLP-terms M and N , if M→N in λFOLP without the use of permutative rules, then
〈|M|〉→+ 〈|N |〉 in λμ1. That is, 〈|M|〉 reduces to 〈|N |〉 in 1 or more steps.

Lemma 5.23
For all λFOLP-terms M and N , if M→N in λFOLP using only permutative rules, then 〈|M|〉=〈|N |〉.

One last result before proceeding to the proof of SN. It may be proved by exhibiting a polynomial
interpretation over the non-negative integers that ensures that reduction terminates.

Lemma 5.24
Permutative reduction is SN.

Proposition 5.25
Every typable λFOLP-term is SN.

Proof. By contradiction. Assume that there is an infinite reduction sequence starting from a typable

λFOLP-term M0. We distinguish between principal reductions (
B→) and permutative reductions (

P→)
within this sequence. Since, by Lemma 5.24, permutative reduction is SN, our sequence must contain
an infinite number of principal reduction steps. Between any two principal steps, there may be 0 or
more permutative steps (always a finite number). Therefore, the reduction sequence has the form:

M0
P� M ′0

B→M1
P� M ′1

B→M2
P� M ′2

B→···
Additionally, by Lemma 5.23, 〈|Mi|〉=〈|M ′i |〉 for every i. Also, by Lemma 5.22, we know that for

every i, 〈|Mi|〉→+ 〈|Mi+1|〉 in λμ1. We can therefore construct an infinite λμ1-reduction sequence:

〈|M0|〉→+ 〈|M1|〉→+ 〈|M2|〉→+ ···
However, M0 is typable in λFOLP and, by Proposition 5.14, so is every Mi. Since the mapping

preserves typability (Lemma 5.21), then we have an infinite reduction sequence of typableλμ1-terms.
This is absurd, since reduction of typable λμ1-terms is SN. Therefore, there cannot be an infinite
reduction sequence starting from a typable λFOLP-term. �

6 Related work

Modal Logic. There are numerous efforts in uncovering computational interpretations of modal
logic. Among those we know of, we mention those we consider most relevant.
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In [20], Kripke models were given a process interpretation, in which models were viewed as
collections of computational states, and the binary relations as computational actions that transform
one state into another. This interpretation—along with the knowledge interpretation, among others—
is discussed further in [15].

[39] introduced λ→�, a proof term calculus for the intuitionistic modal logic S4, which was
further developed in [18, 19] to serve as a model for staged computation. Pfenning and Davies also
introduced a functional language based on λ→�, named Mini-ML�.

[29] introduced a set of modal typed λ-calculi, based on natural deduction presentations of positive
fragments of the modal logics K, K4, KT and S4. The authors proved the confluence and normalization
of the respective reductions.

In [41], a modal logic of belief is used as a base to construct models of distributed systems, where
axioms can be added to the logic and treated as trust specifications. Thus modal formulas are used
to model trust and security issues in a distributed system.

[31] provided a new interpretation of modal logic S4, in which the � and � modalities also describe
mobility and locality in a distributed computation. Based on Kripke’s ‘possible worlds’ semantics,
worlds are seen as processes in a spatially distributed configuration. Here necessity describes a
term that is well-typed anywhere, and possibility a term that is well-typed somewhere. This way,
typing is used to determine the permissible mobility of terms among processes. This type theory
characterizing the mobility and locality of program terms in a distributed computation was further
developed in [30]. A similar interpretation, based on S5, was used in [33] to introduce Lambda 5, a
foundational language for spatially distributed programming which also addresses both mobility of
code and locality of resources.

In [24], a new intuitionistic (hybrid) modal logic is defined, and its proofs are interpreted as
distributed programs. Their logic is used to model remote procedure calls, broadcast commands,
commands to use portable code, and invocation of agents which can find their way to safe locations
for their execution.

Logic of proofs. There is less work in the case of LP.
A lambda calculus where information on how a result is computed (cf. Lévy labelling [27]) rather

than just what the result is, dubbed the intensional lambda calculus, is explored in [5] via the
Curry–Howard methodology.

A calculus with computation trails [10, 11]. The judgement �;��s≡t :B is encoded and
reflected in the term assignment for �I and understood as a computation trail or computation
history with applications to modeling history-based access control [6] and history-based information
flow [12].

A calculus of certified mobile units which enriches mobile code with certificates (representing
type derivations) is presented in [13]. Such units take the form boxsM, s being the certificate
and M the executable. Composition of certified mobile units allows one to build mobile code
out of other pieces of mobile code together with certificates that are also composed out of other
certificates.

Also there is [25]. That work introduces a modal logic of interactive proofs with the purpose
of modelling communication within a multi-agent environment. In this setting, proofs are seen as
messages shared by agents with partial knowledge yet unlimited computing capabilities, each agent
serving as an oracle for the others, with only the communication medium having perfect knowledge.
Proofs depend on the agents’ knowledge, which is expanded through interaction with other agents.
All logical conclusions of known facts are assumed to be known. Variants of this logic are developed
in [26].
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7 Conclusions and future work

We have developed a presentation of FOLP based on hypothetical reasoning, dubbed FOHLP. The
work builds, on the one hand, on Parigot’s Classical Natural Deduction and, on the other, on prior work
on hypothetical presentations of (Propositional) LP [5, 10, 13, 14]. This yields a Natural Deduction
formalism for proving FOLP theorems. A term assignment is proposed whose reduction rules arise
from normalization of derivations in FOHLP: derivations are represented as terms and normalization
steps on derivations are encoded as reduction steps over terms. The resulting lambda calculus, the
λFOLP-calculus, is shown to enjoy Type Preservation and Strong Normalization. Regarding avenues
for further research, we mention the following.

LP and FOLP through Contextual Modal Type Theory. Inference schemes in Natural Deduction
presentations typically uphold the invariant that all free variables are declared in the hypotheses. The
PlusL scheme:

�;�;��A|s
PlusL

�;�;��A|s+t

fails in this respect. Although we have argued (cf. Section 3) that this is required in order to prove
all FOLP-theorems in FOHLP, it seems reasonable to explore truth dependent modalities [35] at
the possible cost of capturing a subset of LP-theorems. The modality �A is replaced by [�]A which
informally may be read as �(�⊃A). That is, validity of A is dependent on the truth of the hypotheses
in�.Asample of three inference schemes of the resulting Contextual Modal Logic [35] are as follows:

�;�1�A
�I

�;�2�[�1]A
�;�1�[�2]A �,v ::A[�2];�1�C

�Ev

�;�1�C

�1,v ::A[�1],�2;�2��1
mvar

�1,v ::A[�1],�2;�2�A

Rather than proving A4 (i.e. [[t]]A⊃[[s+t]]A) one would prove a formula of the form:

[[�,�.s]]A⊃[[�,�.s+t]]A
Note that t would be allowed to have free variables in �,�.

Logical framework based on FOHLP. It would be interesting to develop a logical framework
based on FOHLP. The Beluga framework [40] may provide relevant inspiration for this purpose,
since Beluga itself is based on [35], and it allows the use of multiple contexts as well as dependent
types.

Type inference techniques for realization. We think that a fresh look at the realization of S4 in
the setting of HLP [14] and FOHLP could be an interesting avenue for exploration. It should be
noted that this is a non-trivial problem in the presence of inference schemes which mix polarities
such as ⊃E, hence the reason why the first such proof [1, 3] relied on a cut-free sequent calculus
presentation of LP. Indeed, all known realization proofs, to the best of the authors’knowledge, rely on
presentations where related9 occurrences of a � do not occur both in positive and negative positions.
We think it could be interesting to put the well-developed type-inference technology to work but

9See notion of ‘family’ in [1].
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to infer the decorations of boxes rather than to infer types. We suspect relations with higher-order
unification may appear along the way.

Natural Deduction for other justification logics. Adapt the ideas of this article to other justification
logics.
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