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This work explores the idea that intersection types may be seen as a standardised
representation of reduction sequences to normal form within the context of different reduction
strategies. We propose two non-idempotent intersection type systems: one for weak call-
by-name and another one for weak and closed call-by-value. The key feature of both type
systems is that the type of a term is given by its normal form. As a main result, we show
there is a one-to-one correspondence between typing derivations and reduction sequences
to normal form. Specifically, we demonstrate that each reduction to a normal form N
corresponds to a typing derivation which has N as its type, and that the converse holds.
This result refines the characterisation of normalisation via intersection types.

1 Introduction

The goal of this work is to show that typing derivations can be used as a notation for
reduction sequences to normal form1, by typing any normalising term with its normal
form. Hence the name “evaluation type systems”. Schematically speaking, we establish a
one-to-one correspondence between reductions t →∗ s and derivations ⊢ t : s, where s is a
normal form.

We assume the reader has some familiarity with intersection types (IT), which is the
technical tool used in this work, as IT characterise (strong) normalisation [6]. Our starting
point are non-idempotent IT [8, 5], where typing derivations and reduction sequences
to normal form become more closely related in such type systems; e.g. lengths of
normalisation sequences can be measured exactly [1]. Moreover, since we establish a one-
to-one correspondence between typing derivations and normalisation sequences, our result
refines the characterisation of normalisation mentioned above, and it is done in the context
of weak call-by-name (CBN) and weak and closed call-by-value (CBV).

Several works have explored non-idempotent IT in the context of CBN [4, 2] and
CBV [7, 9]. So far, we are unaware of existing intersection type systems explicitly typing
a term with its normal form. However, Bernadet and Graham-Lengrand’s type system for
strong CBN in [3] types terms with the structure2 of their corresponding normal form.
Their work differs from ours in the sense that they focus on the quantitative information
that can be derived from the type system. In our case, we want to refine the gap between
typing and computation, using a type system as a notation for reduction in the context of
two different reduction strategies.

‡ This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No 945332.

§Work by this author was partially supported by Instituto de Ciencias de la Computación, UBA, Argentina.
1Also named normalisation sequences.
2The structure of a term is given by its shape, forgetting all variable names.
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2 Call-by-Name

In this section, we provide the common syntax we use in the document. Then we recall
the operational semantics of CBN, and we propose an evaluation type system based on
non-idempotent IT. The main result is a one-to-one correspondence between the set of
typing derivations and the set of normalisation sequences (Theorem 2.3).

Given a denumerable set of variables (x, y, z, . . .), the sets of terms (t, s, . . .) and
answers (a, b, . . .) are given by the grammar:

t, s ::= x | λx. t | t s a ::= λx. t | x t1 . . . tn

Intuitively, the set of answers is the set of normal forms. Capture-avoiding substitution of
free occurrences of x in t by s is written t{x := s}. CBN reduction is given by the rules:

β
(λx. t) s →name t{x := s}

t →name t
′

µ
t s →name t

′ s

The sets of types (A,B, . . .) and multitypes (M,N, . . .) are given by the grammar:

A ::= a answer types
| t.M → A arrow types

M ::= [A1, . . . , An] (n ≥ 0)

where multitypes are multisets of types. Intuitively, an answer type a corresponds to
the normal form of the term being typed. Meanwhile, an arrow type t.M → A can be
associated with an abstraction λx. s such that the free occurrences of x in s shall become
bound to t, where in turn t is assigned the multitype M .

If x is a variable and t is a term, we write x : t to denote the association of x to t.
Substitutions (σ, σ′, . . .) are finite sets of associations of the form (x1 : t1, . . . , xn : tn),
such that xi ̸= xj for all i ̸= j. If σ = (x1 : t1, . . . , xn : tn), its domain is dom(σ) :=
{x1, . . . , xn}, and we write σ(x) to denote the substitution of x by σ, defined by declaring
that σ(xi) := ti for all i ∈ 1..n and σ(y) = y for every other variable. The capture-
avoiding substitution of each free occurrence of every variable x ∈ dom(σ) in t by σ(x) is
written tσ, and defined recursively, taking as base case xσ := σ(x). A substitution σ is
idempotent if (tσ)σ = tσ holds for any term t. A substitution σ is strictly idempotent
if it is idempotent and σ(x) ̸= x holds for every variable x ∈ dom(σ). Henceforth, as a
convention, when referring to σ, σ′, etc., we assume that they stand for strictly idempotent
substitutions. We write ∅ for the empty substitution, and σ, x : t for the extension of σ
with the association x : t.

Typing contexts (Γ,Γ′, . . .), are functions mapping each variable to a multitype,
in such a way that only finitely many variables are assigned a non-empty multitype. The
domain of a typing context Γ is denoted dom(Γ) and is defined as the finite set of variables
assigned to a non-empty multitype, expressed as dom(Γ) := {x | Γ(x) ̸= [ ]}. If M1

and M2 are multitypes, its sum M1 + M2 is defined as the additive union of multisets:
[A1, . . . , An] + [B1, . . . , Bm] := [A1, . . . , An, B1, . . . , Bm]. If Γ1,Γ2 are typing contexts, its
sum Γ1 + Γ2 is defined as the point-wise sum: (Γ1 + Γ2)(x) := Γ1(x) + Γ2(x). We write
Γ+n

i=1 ∆i for the sum Γ+∆1 + . . .+∆n, and similarly for multitypes. We write x : M for
the typing context such that dom(x : M) = {x} and (x : M)(x) = M . Sometimes we write
Γ,∆ for the disjoint sum of typing contexts, when dom(Γ) ∩ dom(∆) = ∅. Since the
domain of a typing context is finite, we can always write a typing context as of the form
x1 : M1, . . . , xn : Mn using the grammar Γ ::= ∅ | Γ, x : M .

Typing judgements are of the form σ ;Γ ⊢ t ⇓name A, where we recall that σ is always
assumed to be a strictly idempotent substitution. Derivability of typing judgements is
defined inductively by the following rules:

x /∈ dom(σ)
n-var1

σ ;∅ ⊢ x ⇓name x

x ∈ dom(σ) fv(A) # dom(σ)
n-var2

σ ;x : [A] ⊢ x ⇓name A
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n-lam1
σ ;∅ ⊢ λx. t ⇓name λx. t

σ

σ, x : s ;Γ, x : M ⊢ t ⇓name A
n-lam2

σ ;Γ ⊢ λx. t ⇓name s.M → A

σ ;Γ ⊢ t ⇓name x t1 . . . tn
n-app1

σ ;Γ ⊢ t s ⇓name x t1 . . . tn sσ

σ ;Γ ⊢ t ⇓name s
σ.[A1, . . . , An] → B (σ ;∆i ⊢ s ⇓name Ai)

n
i=1

n-app2
σ ;Γ +n

i=1 ∆i ⊢ t s ⇓name B

A typing derivation is a tree obtained from the rules above. We write D � σ ;Γ ⊢
t ⇓name A if D is a typing derivation concluding with the judgement σ ;Γ ⊢ t ⇓name A.

There are two rules for typing each term in the syntax, depending on its role in the
computation. A variable x may be typed using either n-var1 or n-var2, depending on
whether it will be substituted by another term or not. For instance, consider the term
t := (λx. x) y, which reduces in one β-step to y, substituting x by y. We type t as follows:

x ∈ {x} {y} # {x}
n-var2

x : y ;x : [y] ⊢ x ⇓name y
n-lam2

∅ ;∅ ⊢ λx. x ⇓name y.[y] → y

y /∈ dom(∅)
n-var1

∅ ;∅ ⊢ y ⇓name y

n-app2
∅ ;∅ ⊢ (λx. x) y ⇓name y

The variable y is typed with the rule n-var1 as it is not substituted during the computation
of t. On the contrary, x is substituted in the body of λx. x by y, and it is typed with rule
n-var2. Furthermore, in the premise of rule n-lam2, the empty substitution is expanded
with the association x : y. An abstraction can be typed with rule n-lam1 if it will not
be applied to an argument during the computation of the top-level term. Otherwise, it
is typed using rule n-lam2, as seen in the typing derivation of t. For applications, there
are two possibilities as well: either the normal form of t in t s is of the form x t1 . . . tn, in
which case it is typed with rule n-app1, or t is a redex, i.e., of the form (λy. t′) s1 . . . sm,
in which case it is typed with rule n-app2.

In what follows, we mention two properties the type system enjoys: Weighted Subject
Reduction and Subject Expansion.

In order to state the Weighted Subject Reduction lemma, the notion of weight of a
derivation must be considered. Given a derivation D� σ ;Γ ⊢ t ⇓name A, the weight of D
is written W (D) and corresponds to the number of typing rules used in D.

Lemma 2.1 (Weighted Subject Reduction). If t →name t
′ and D� σ ;Γ ⊢ t ⇓name A, then

there exists a derivation D′ � σ ;Γ ⊢ t′ ⇓name A such that W (D) > W (D′).

Lemma 2.2 (Subject Expansion). If t →name t′ and D′ � σ ;Γ ⊢ t′ ⇓name A, then there
exists a derivation D such that D� σ ;Γ ⊢ t ⇓name A.

The proofs of both lemmas are by induction on the reduction step, employing
techniques known by the community using the lemmas of Weighted Substitution and Anti-
Substitution.

We define CBN evaluation contexts N with the following grammar: N ::= 2 | N t,
and we write N⟨t⟩ for the substitution of 2 in N by t. Then, CBN normalisation
sequences (R,R′, . . .) are defined by: R ::= ϵa | N⟨(λx.t) s⟩ ; R.

CBN normalisation judgements are written R� t ↠name a, and are defined as:

ϵa � a ↠name a

R� N⟨t{x := s}⟩ ↠name a

(N⟨(λx.t) s⟩ ; R)� N⟨(λx. t) s⟩ ↠name a

For instance, we have that ((λx.λy. x) z w ; (λy.z)w ; ϵz)� (λx. λy. x) z w ↠name z.
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The sets of CBN derivations Dname and CBN reductions to normal form Rname

are defined by:

Dname := {D | ∃t, a. D�∅ ;∅ ⊢ t ⇓name a} Rname := {R | ∃t, a. R� t ↠name a}

We now state the main result of this section, which establishes a one-to-one
correspondence between the sets of typing derivations and normalisation sequences:

Theorem 2.3 (Correspondence between typing derivations and normalisation sequences).
There exist mappings f : Dname → Rname and g : Rname → Dname such that:

1. If D�∅ ;∅ ⊢ t ⇓name a then f(D)� t ↠name a.

2. If R� t ↠name a then g(R)�∅ ;∅ ⊢ t ⇓name a.

Furthermore, f and g are mutual inverses.

Proof. The proof relies on Weighted Subject Reduction and Subject Expansion. Moreover,
we also need to prove the following auxiliary result:

Lemma 2.4 (Typing answers). Let D�∅ ;∅ ⊢ a ⇓name A. Then:

1. If a is an abstraction and A is an answer, then A = a.

2. If a is not an abstraction, then A is an answer and A = a.

Furthermore, in both cases, D uses only instances of rules n-var1, n-lam1, and n-app1.

3 Closed Call-by-Value

In this section, we present the operational semantics of closed CBV. Then, we propose a
type system based on non-idempotent IT. The main result is a one-to-one correspondence
between the set of typing derivations and the set of normalisation sequences (Theorem 3.3).

We start by defining the set of values (v, w, . . .) with the grammar v ::= λx. t. The
following rules inductively define CBV reduction:

βv

(λx. t) v →value t{x := v}

t →value t
′

µ
t s →value t

′ s

t →value t
′

ν
v t →value v t

′

The sets of types (A,B, . . .) and multitypes (M,N, . . .) are given by the grammar:

A ::= v.M → w.N
M ::= [A1, . . . , An] (n ≥ 0)

A type of the form v.M → w.N corresponds to the type of a function that is applied
to a value v, and return a value w as its result, where v and w have multitypes M and
N respectively. The cardinality of a multitype corresponds to the number of times the
term is used within its evaluation context. Specifically, a term is used in our closed CBV
reduction if it is applied to a value. For instance, consider s := (λx. x)λx. x. In this
example, the identity function on the left is used once, as it is applied to a value, whereas
the one on the right is not used at all. We shall return to this later.

Regarding substitutions (σ, σ′, . . .), they follow a definition akin to those in CBN, but
CBV substitutions bind variables to values. Specifically, substitutions are finite sets of
the form (x1 : v1, . . . , xn : vn), and we assume them to be strictly idempotent. On the
other hand, typing contexts are defined as those for CBN: functions with finite domain,
mapping each variable to a multitype.
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Typing judgements can be of the form σ ;Γ ⊢ v ⇓value A and σ ;Γ ⊢ t ⇓value v.M .
Derivability of typing judgements is defined inductively by the following rules:

x ∈ dom(σ)
v-var

σ ;x : M ⊢ x ⇓value σ(x).M

σ, x : v ;Γ, x : M ⊢ t ⇓value w.N
v-lam

σ ;Γ ⊢ λx. t ⇓value v.M → w.N

σ ;Γ ⊢ t ⇓value v.[w.M → u.N ] σ ;∆ ⊢ s ⇓value w.M
v-app

σ ;Γ +∆ ⊢ t s ⇓value u.N

(σ ;Γi ⊢ λx. t ⇓value Ai)
n
i=1

v-many
σ ;+n

i=1Γi ⊢ λx. t ⇓value (λx. t
σ).[A1, . . . , An]

We define (typing) derivations as in CBN. Note that abstractions can be typed in
two ways: either with multitypes, as per rule v-many, or with types using rule v-lam. When
an abstraction is consuming, i.e. when one of its descendants is the head of a βv-redex,
it is associated with a multitype whose cardinality is greater than 0, indicating there is
at least one premise, that in turn is derived by rule v-lam. Conversely, if an abstraction
is persistent, it is typed with the empty multitype. To illustrate this, we take the term t
defined above, which reduces in one βv-step to λx. x. Abbreviating the second identity as
id, and v-many as v-m, we type s as follows:

x ∈ {x}
v-var

x : id ;x : [ ] ⊢ x ⇓value id.[ ]
v-lam

∅ ;∅ ⊢ λx. x ⇓value id.[ ] → id.[ ]
v-m

∅ ;∅ ⊢ λx. x ⇓value id.[id.[ ] → id.[ ]]

v-m
∅ ;∅ ⊢ id ⇓value id.[ ]

v-app
∅ ;∅ ⊢ (λx. x) id ⇓value id.[ ]

This type system enjoys the properties of Weighted Subject Reduction and Subject
Expansion:

Lemma 3.1 (Weighted Subject Reduction). Let t →value t′ and let D be a derivation. If
D � σ ;Γ ⊢ t ⇓value v.M then there exists a derivation D′ � σ ;Γ ⊢ t′ ⇓value v.M such that
W (D) > W (D′).

Lemma 3.2 (Subject Expansion). Let t →value t′. If σ ;Γ ⊢ t′ ⇓value v.M , then σ ;Γ ⊢
t ⇓value v.M .

We define CBV evaluation contexts V with the following grammar: V ::= 2 |
V t | vV, and we write V⟨t⟩ for the substitution of 2 in V by t. CBV normalisation
sequences (R,R′, . . .) are defined by: R ::= ϵv | V⟨(λx.t) v⟩ ; R. CBV normalisation
judgements are written R� t ↠value v, and are defined as follows:

ϵv � v ↠value v

R� V⟨t{x := v}⟩ ↠value w

(V⟨(λx.t) v⟩ ; R)� V⟨(λx. t) v⟩ ↠value w

The sets of CBV derivations Dvalue and CBV reductions to normal form Rvalue

are defined by:

Dvalue := {D | ∃t, v. D�∅ ;∅ ⊢ t ⇓value v.[ ]} Rvalue := {R | ∃t, v. R� t ↠value v}

Now we can establish the main result of this section:

Theorem 3.3 (Correspondence between typing derivations and reduction sequences).
There exist mappings f : Dvalue → Rvalue and g : Rvalue → Dvalue such that:

1. If D�∅ ;∅ ⊢ t ⇓value v.[ ] then f(D)� t ↠value v.

2. If R� t ↠value v then g(R)�∅ ;∅ ⊢ t ⇓value v.[ ].

Furthermore, f and g are mutual inverses.
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