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Abstract

We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of
modal logic S4 in which the assertion �A is replaced by [[s]]A whose intended reading is “s is a proof of A”.
We first introduce a natural deduction presentation based on hypothetical judgements and then its term
assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is
part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore
its applications in programming languages.
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1 Introduction

This paper is part of our ongoing exploration of the applications of Sergei Artemov’s

Logic of Proofs LP [2,4] in foundations of programming languages and type theory

by means of the Curry-de Bruijn- Howard isomorphism. LP is a refinement of S4 in

which �A is replaced by [[s]]A and whose intended reading is “s is a proof of A”. It

has its roots in Provability Logic, and is one possible approach to the formalisation

of the BHK interpretation of Intuitionistic Logic given that (1) it realizes all S4
theorems; and (2) is arithmetically sound and complete. One interesting feature of

LP is that it is capable of reflecting its own derivations in the sense that if a formula

A is provable, then [[s]]A is also provable, where s encodes a derivation of A. The
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aforementioned exploration aims at proposing natural deduction presentations of LP
and their corresponding term assignment, with the hope of obtaining computational

formalisms that cater both for terms and type derivations in a unified setting.

This work adds to previous results that we have developed [6,10,12]. Here we

propose a natural deduction presentation of ILP, an intuitionistic fragment of LP,
based on a judgemental analysis of modal logic [15,16,21] which includes the plus

proof polynomial constructor of LP and also explore a variant of the term assignment

of [6]. Judgements of ILP take the form Θ; Γ � A | s (read “A is true with proof

witness s under truth hypotheses Θ and validity hypotheses Γ”). Their meaning is

given by appropriate axiom and inference schemes.

The paper is structured as follows. Sec. 2 introduces IHLP, a natural deduction

presentation of ILP. We then study the correspondence with ILP in Sec. 3. Sec. 4

presents the term assignment, λIHLP, and then shows subject reduction, strong nor-

malisation and confluence. Sec. 5 discusses related work. Finally, we conclude and

suggest avenues for further research. For further details please consult [25].

2 IHLP

Formulae and proof witnesses of IHLP are given by the following grammar:

A,B ::=P |A⊃B |A ∧B |A ∨B | [[s]]A
r, s, t ::= xA | vA |λxA.s | s · t | 〈s, t〉 | fst(s) | snd(s)

| inl(s) | inr(s) | case r [xA].s [yB].t | !s |LetB vA be r, s in t | s+ t

where P,Q, . . . ranges over a set of propositional variables, xA, yA, zA, . . . over a set

of truth variables and uA, vA, . . . over a set of validity variables. A formula may

either be a propositional variable, an implication A ⊃ B, a conjunction A ∧ B, a

disjunction A ∨ B or a modality [[s]]A. A proof witness may either be a truth or

validity variable, an abstraction λxA.s, an application s · t, a pair 〈s, t〉, projections
fst(s) and snd(s), injections inl(s) and inr(s), a case case r [xA].s [yB].t, a bang !s, an

unbox LetB vA be r, s in t or a plus s+ t. We write A{xA:= r} (resp. A{vA:= r})
for the capture-avoiding substitution of truth (resp. validity) variables for proof

witnesses in formulae; similarly for substitution of truth/validity variables in proof

terms s{xA:= t} (resp. s{vA:= t}).
Free variables of validity FVV(s) and truth FVT(s) over a proof witness s are

as expected. Some sample defining clauses are illustrated below, where FVT(t, s)
abbreviates FVT(t) ∪ FVT(s). These definitions extend in the obvious way to for-
mulae.

FVT(xA)
def
= {xA}

FVT(vA)
def
= ∅

FVT(!s)
def
= FVT(s)

FVT(LetB vA beu,s in t)
def
= FVT(t, s)

FVT(λxA.s)
def
= FVT(s) \ {xA}

FVV(xA)
def
= ∅

FVV(vA)
def
= {vA}

FVV(!s)
def
= FVV(s)

FVV(LetB vA beu,s in t)
def
= (FVV(t) \ {vA}) ∪ FVV(s)

FVV(λxA.s)
def
= FVV(s)

Judgements take the form Θ;Γ � A | s with validity context Θ =

v1
A1 , . . . , vm

Am , truth context Γ = x1
B1 , . . . , xn

Bn , A a formula, and s a proof

witness. We write “·” for empty contexts. In a judgement, in addition to the
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Var
Θ;Γ, xA � A |xA

VarM
Θ, vA; Γ � A | vA

Θ;Γ, xA � B | s
⊃ I

Θ;Γ � A⊃B |λxA.s

Θ;Γ � A⊃B | s Θ;Γ � A | t
⊃E

Θ;Γ � B | s · t

Θ;Γ � A | s Θ;Γ � B | t
∧I

Θ;Γ � A ∧B | 〈s, t〉

Θ;Γ � A ∧B | s
∧E1

Θ;Γ � A | fst(s)

Θ; Γ � A ∧B | s
∧E2

Θ;Γ � B | snd(s)

Θ; Γ � A | s
∨I1

Θ;Γ � A ∨B | inl(s)

Θ; Γ � B | s
∨I2

Θ;Γ � A ∨B | inr(s)

Θ; Γ � A ∨B | r Θ;Γ, xA � C | s Θ;Γ, yB � C | t
∨E

Θ;Γ � C | case r [xA].s [yB ].t

Θ; · � A | s Θ; · � s≡ t : A
�I

Θ;Γ � [[t]]A | !t

Θ;Γ � [[r]]A | s Θ, vA; Γ � C | t
�E

Θ;Γ � C{vA:= r} |LetB vA be r, s in t

Θ;Γ � A | s
PlusL

Θ;Γ � A | s+ t

Θ;Γ � A | t
PlusR

Θ;Γ � A | s+ t

Fig. 1. Axiom and inference schemes of IHLP (1/2)

requirement that the vAi
i and xBi

i be distinct, we also require that they be fresh (i.e.

that they do not occur in the A1, . . . , Am and B1, . . . , Bn).

A judgement is said to be derivable if it may be inferred using the axiom and

inference schemes of Fig. 1. Note that if a derivation π of a judgement Θ; Γ � A | s
is obtained using these axioms and inference schemes, then s does not necessarily

determine π (due to �I, PlusL and PlusR). Most of these axioms and inference

schemes are self-explanatory. For example, the axiom VarM states that if A is

assumed valid, then we can conclude that A is true. The salient schemes are �I
and those for plus. The former is a generalization of the following simpler one,

which is a natural explicit counterpart of the standard introduction scheme for the

� modality in the judgemental setting [15,16,21].

Θ; · � A | s
�I0

Θ;Γ � [[s]]A | !s
Although sound, �I0 is not satisfactory from the point of view of normalisation

of derivations. For example, consider the derivation on the left in Fig. 2, where

π1,2 are derivations of Θ;xA � B | s and Θ; · � A | t, resp. and π3 is obtained

from an appropriate substitution principle. A normalisation step would produce

the one on the right. However, this derivation is not valid since the proof witness

in the hypothesis of �I0 must be identical to the one in the argument of “!” in the

judgement in the conclusion. Indeed this is not the case, since on one hand we have

s{xA:= t}, while on the other we have (λxA.s) · t. The introduction scheme �I for
the modality remedies this situation by obtaining the derivation:
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π1

Θ;xA � B | s ⊃ I
Θ; · � A⊃B |λxA.s

π2

Θ; · � A | t ⊃E
Θ; · � B |Θ; · � B | (λxA.s) · t

�I0
Θ;Γ � [[(λxA.s) · t]]B | !((λxA.s) · t)

→
π3

Θ; · � B | s{xA:= t}
�I0

Θ;Γ � [[(λxA.s) · t]]B | !((λxA.s) · t)

Fig. 2. Failure of SR in the presence of �I0

Θ;Γ, xA � B | s Θ;Γ � A | t
Eq-β

Θ;Γ � (λxA.s) · t≡s{xA := t} : B

Θ; · � A | s Θ, vA; Γ � C | t
Eq-γ

Θ;Γ � LetB vA be s, (!s) in t≡ t{vA := s} : C{vA := s}

Θ;Γ � A⊃B | r Θ;Γ � A | t
Eq-ψL

Θ;Γ � (r + s) · t≡(r · t) + s : B

Θ;Γ � A⊃B | s Θ;Γ � A | t
Eq-ψR

Θ;Γ � (r + s) · t≡r · (s+ t) : B

Θ;Γ � [[r]]A | s Θ, vA; Γ � C | q
Eq-φL

Θ;Γ � LetB vA be r, (s+ t) in q≡LetB vA be r, s in q + t : C{vA := r}

Θ;Γ � [[r]]A | t Θ, vA; Γ � C | q
Eq-φR

Θ;Γ � LetB vA be r, (s+ t) in q≡s+ LetB vA be r, t in q : C{vA := r}

Fig. 3. Axiom and inference schemes of IHLP (2/2)

π3

Θ; · � B | s{xA:= t} Θ; · � s{xA:= t}≡(λxA.s) · t : A
�I

Θ;Γ � [[(λxA.s) · t]]B | !((λxA.s) · t)
A sample of the axiom and inference schemes defining the judgement Θ; Γ � s≡

t : A are depicted in Fig. 3 (see [25] for the full set). These schemes are closely

tied to the normalisation relation on derivations. Indeed, since LP is capable of

reflecting its own derivations and these derivations are equated by normalisation,

the induced relation between derivations must also be formalised in the logic itself.

It should be noted that LP was originally formulated in a Hilbert-style presentation,

which does not allow such an observation to be made.

Regarding the schemes for plus, they are a consequence of the fact that LP is a

multi-conclusion logic in the sense that a proof witness may prove more than one

formula. Indeed, note that the following holds in LP: [[s]]A∧ [[t]]B ⊃ [[s+ t]]A∧ [[s+t]]B

and hence s+ t proves both A and B. In the particular case that A and B coincide,

s + t denotes two proofs of A. This non-deterministic conjunction of proofs is

necessary to be able to realize all theorems of IS4 (cf. Sec 5). By realize [4, Def.9.2]

we mean decorate the boxes of IS4 theorems so that the resulting formulae are

provable in ILP. As an example, we show how the IS4 theorem �A∨�B ⊃ �(A∨B)

may be realized in IHLP as [[s]]A ∨ [[t]]B ⊃ [[inl(s) + inr(t)]](A ∨B), for any s and t.
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Example 2.1 Let Θ1
def
= vA, Θ2

def
= uB, Γ

def
= z[[s]]A∨[[t]]B Γ1

def
= z[[s]]A∨[[t]]B, x[[s]]A and

Γ2
def
= z[[s]]A∨[[t]]B, y[[t]]B in the following two derivations π1,2:

·; Γ1 � [[s]]A |x[[s]]A

Θ1; · � A | vA

Θ1; · � A ∨B | inl(vA)
PlusL

Θ1; · � A ∨B | inl(vA) + inr(t)
�I

Θ1; Γ1 � [[inl(vA) + inr(t)]](A ∨B) | !(inl(vA) + inr(t))
�E

·; Γ1 � [[inl(s) + inr(t)]](A ∨B) |LetB vA be s, x[[s]]A in !(inl(vA) + inr(t))

·; Γ2 � [[t]]B | y[[s]]B

Θ2; · � B |uB

∨I2

Θ2; · � A ∨B | inr(uB)
PlusR

Θ2; · � A ∨B | inl(s) + inr(uB)
�I

Θ2; Γ2 � [[inl(s) + inr(uB)]](A ∨B) | !(inl(s) + inr(uB))
�E

·; Γ2 � [[inl(s) + inr(t)]](A ∨B) |LetB vA be t, y[[s]]B in !(inl(s) + inr(uB))

Finally, for π3 below consider the definitions

r1
def
= LetB vA be s, x[[s]]A in !(inl(vA) + inr(t)),

r2
def
= LetBuB be t, y[[t]]B in !(inl(s) + inr(uB)), and

r3
def
= case z[[s]]A∨[[t]]B [xA].r1 [y

B].r2.

·; Γ�[[s]]A∨[[t]]B | z[[s]]A∨[[t]]B
π1

·; Γ1�[[inl(s)+inr(t)]](A∨B) | r1
π2

·; Γ2� [[inl(s)+inr(t)]](A∨B) | r2 ∨E

·; Γ � [[inl(s)+inr(t)]](A∨B) | r3
Note that the use of PlusL in π1 and PlusR in π2 is required in order to concate-

nate the two alternative proofs of A∨B into a unique non-deterministic proof, and

allow the application of ∨E in π3.

Remark 2.2 One may wonder whether, for the implicative fragment, the plus may

be dispensed with while still maintaining realization of all S4 theorems. This is the

case if, in the terminology of LP, so called non-injective specification sets and non-

normal realizations are allowed (see [18] and also [5, Sec.11.2]).

The following basic results are proved by induction on the derivation.

Lemma 2.3

• (Weakening) If the judgement Θ;Γ � A | s is derivable, then so is Θ∪Θ′; Γ∪Γ′ �
A | s.

• (Strengthening) If the judgement Θ;Γ � A | s is derivable, then so is the judgement

Θ ∩ FVV(s); Γ ∩ FVT(s) � A | s.
• (Substitution of Truth Variables) If Θ;Γ, xA � B | s and Θ;Γ � A | t are derivable,

then so is Θ;Γ � B | s{xA := t}.
• (Substitution of Validity Variables) If Θ, vA; Γ � B | s and Θ; · � A | t are deriv-

able, then so is Θ;Γ � B{vA := t} | s{vA := t}.
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3 Relating ILP and IHLP

This section addresses the relation between ILP and IHLP. We begin by recalling

the definition of ILP and then state the required results, restricting our attention to

the implicative fragment. Then we show that all ILP theorems are derivable in IHLP
(Prop. 3.1) and conversely that all judgements derivable in IHLP may be translated

to judgements derivable in ILP (Prop. 3.9).

Assume given a set of proof constants C and c ∈ C. The formulae of ILP are

those of IHLP except that the proof witnesses encode Hilbert-style proofs and are

called proof polynomials [2,4]:

s, t ::= xA | c | s · t | !s | s+ t

The axioms and inference schemes of ILP are as follows, where a context Γ is

a set of hypotheses of the form xA and we assume 4 that C includes at least one

constant for each instance of an axiom scheme A0-A5:

A0. Axioms of minimal propositional logic in the language of ILP.

A1. [[t]]A⊃A

A2. [[s]](A⊃B) ⊃ ([[t]]A ⊃ [[s · t]]B)

A3. [[t]]A ⊃ [[!t]][[t]]A

A4. [[s]]A ⊃ [[s+ t]]A

A5. [[t]]A ⊃ [[s+ t]]A

R1. Γ � A⊃B and Γ � A implies Γ � B. (MP)

R2. If A is an axiom A0-A5, and c ∈ C corresponds to A, then Γ � [[c]]A. (Neces-

sitation)

The translation • from ILP formulae and proof polynomials to IHLP formulae

and proof witnesses is simply the structure preserving mapping that replaces all

occurrences of proof constants by IHLP proof witnesses that prove the corresponding

axioms (cf. [25]). Some sample defining clauses are:

cA0A,B
def
= (λxA.λyB.x)

cA1t,A
def
= λx[[t]]A.LetB vA be t, x in v

cA2s,t,A,B
def
= λx[[s]]A⊃B.λy[[t]]A.LetB vA be t, y inLetBwA⊃B be s, x in !(w · v)

cA3s,A
def
= λx[[s]]A.LetB vA be s, x[[s]]A in !!vA

cA4s,t,A
def
= λx[[s]]A.LetB vA be s, x in !(v + t)

It extends naturally to contexts of hypotheses Γ
def
= {xA s.t. xA ∈ Γ}.

Proposition 3.1 If Γ � F is derivable in ILP, then so is ·; Γ � F | s in IHLP for

some proof witness s.

4 More general assumptions are possible. See [2,4].
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Remark 3.2 In PlusL, no requirements on the truth or validity variables of t are

assumed in relation to the contexts Θ and Γ. An alternative inference scheme for

PlusL (and similarly for PlusR) might be:

Θ; Γ � A | s FVV(t) ⊆ Θ FVT(s) ⊆ Γ
PlusL

Θ;Γ � A | s+ t

However, this scheme does not allow the proof of proposition 3.1 to go through in

the case of axiom A4, since no restriction is a priori placed on t in that axiom, and

�I requires that there be no truth dependencies. It may be possible to retain the

alternative scheme proposed above, by drawing ideas from Contextual Modal Type

Theory [19].

Suppose Γ is the context {xA1
1 , . . . , xAn

n } and s = s1, . . . .sn. Then we write [[s]]Γ

for the context {x[[s1]]A1

1 , . . . , x
[[sn]]An
n }.

Definition 3.3 Let π be a derivation in ILP of [[s]]Γ � F . The extracted witness

of π, denoted r below, is defined by induction on the length n of π. Suppose that

n = 1. Then either F is an instance of an axiom or is a hypothesis in Γ. In the

former we analyse each case:

• F = A ⊃ B ⊃ A or F = (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C, then r
def
= cA0A,B or

r
def
= cA0A,B,C , resp.

• F = [[t]]A⊃A, then r
def
= cA1t,A.

• F = [[s]](A⊃B) ⊃ ([[t]]A ⊃ [[s · t]]B), then r
def
= cA2s,t,A,B.

• F = [[t]]A ⊃ [[!t]][[t]]A, then r
def
= cA3t,A.

• F = [[s]]A ⊃ [[s+ t]]A, then r
def
= cA4s,t,A.

• F = [[t]]A ⊃ [[s+ t]]A, then r
def
= cA5s,t,A.

In the latter case (i.e. F is a hypothesis, say [[s]]B in [[s]]Γ), we set r
def
=!s. For the

inductive case, we consider each possible case for the last step:

• It is an axiom or a hypothesis, then we proceed as above.

• F is obtained from formulae F1,2 using MP. Let r1,2 be the witnesses extracted

from the derivations ending in F1,2. Set r
def
= r1 · r2.

• F is obtained from an application of Necessitation: F = [[c]]F1, where F1 is an

instance of an axiom A. Then we set r
def
=!cA.

The following result, proved by induction on [[s]]Γ � A, states that ILP can

internalise its own derivations.

Lemma 3.4 (Internalisation) Suppose [[s]]Γ � A is a derivable judgement in ILP
with a derivation π. Then [[s]]Γ � [[r]]A is derivable, where r is the proof witness

extracted from π.
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Let us write π(Γ � A) to denote that π is an ILP-derivation of Γ � A. The

following result shows how the deduction lemma can be internalized. Its proof

relies on a lemma called the Stripping Lemma, which is stated below.

Lemma 3.5 (λ-Abstraction) If [[u]]Γ, y[[x
A]]A � [[s(u, xA)]]B is derivable and

xA /∈ Γ, B, then there exists tA⊃Bλ ([[u]]Γ) such that [[u]]Γ � [[tA⊃Bλ ([[u]]Γ)]](A⊃B),

and tA⊃Bλ ([[u]]Γ) is an extracted witness of A⊃B in [[u]]Γ.

Lemma 3.6 (Stripping) Suppose π is an ILP-derivation of Γ, x[[y
A]]A � B and

yA /∈ Γ. Then there is a derivation of Γ, yA � B′, where B′ results from B, by

replacing all occurrences of [[t]]A by A for every proof term t containing yA (including

constants for instances of axioms containing yA).

One last result shall be required for the proof of our main result (Prop. 3.9).

Lemma 3.7 (Substitution) Γ � [[s]]A and Γ, y[[x
A]]A � B and xA /∈ Γ implies

Γ � B{xA := s}.
A proof witness s is provable if for some Θ, Γ and A, the judgement Θ; Γ � A | s is

derivable. The translation from IHLP formulae and proof witnesses to ILP formulae

and proof polynomials is as follows, where cA1 is the proof constant denoting any

instance of A1:

P � def
= P

(A⊃B)�
def
= A�⊃B�

([[s]]A)�
def
=

⎧⎨
⎩

[[s�]]A�, if s is provable

[[cA1 ·cA1]]A�, if s is not provable

xA
�def
= xA

�

vA
�def
= vA

�

(s+t)�
def
= s�+t�

(s · t)�def= s� · t�

(!s)�
def
= !(s�)

(LetB vA be r, s in t)
� def
= t�{vA�

:=r�}
(λxA.s)

� def
= tA

�⊃B�

λ (Θ� ∪ Γ�) if ∃Θ,Γ s.t. Θ; Γ �A⊃B |λxA.s derivable

·� def
= ·

(Θ, vA)
� def
= Θ�, [[vA

�
]]A�

(Γ, xA)
� def
= Γ�, [[xA

�
]]A�

(Θ; Γ � A | s)� def
= Θ� ∪ Γ� � [[s�]]A�

Remark 3.8 Sometimes there is more than one possible translation for a proof

witness or a formula (for instance, λxA.(yB + zB) and [[λxA.(yB + zB)]]A ⊃ B).

This happens only when the proof witness in question, or some witness within

the formula, contains abstractions. By Internalization, if Θ� ∪ Γ� � A� ⊃ B� is

derivable, then any extracted witness t of A�⊃B� in Θ� ∪ Γ� will suffice to derive

Θ� ∪ Γ� � [[t]]A� ⊃B�. This means that t can be chosen freely among all possible

extracted witnesses. So, whenever a formula or proof witness appears more than

once within a derivation and multiple translations exist for it, it is always possible
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to use the same translation in all cases by choosing the extracted witnesses in the

same way. If different contexts have been used to obtain the formula/proof witness

in each case, we can use Weakening to make the contexts coincide (by taking the

union of the contexts used in all cases).

Proposition 3.9 For every derivable judgement Θ;Γ � A | s in IHLP, the ILP-
judgement Θ� ∪ Γ� � [[s�]]A� is derivable in ILP.

Corollary 3.10 If ·; · � A | s is derivable in IHLP, then both · � [[s�]]A� and · � A�

are derivable in ILP.

4 λIHLP – Syntax and Semantics

We study a term assignment for IHLP, dubbed λIHLP, together with the reduction

rules over the set of terms which mimic normalisation of derivations in IHLP and

address subject reduction, strong normalisation (SN) and confluence.

The set of terms for IHLP is defined as follows:

M,N ::= xA | vA | (λxA.MB)A⊃B | (MA⊃BNA)B | (〈M,N〉)A∧B | fst(MA∧B)A

| snd(MA∧B)B | inl(M)A∨B | inr(M)A∨B | (caseM [xA].P [yB].Q)C

| (!MA)[[s]]A | (LetB vA be r,MA inNB)B{vA:=r}

| (MA+Ls)
A | (s+RN

B)B

Free variables of validity and truth for terms are defined analogously to those

for proof witnesses. Type decorations are often omitted where it is safe. To the

already introduced notions of substitution we add substitution of truth/validity

variables in terms by proof witnesses/terms: MB{aA := NA} and MB{vA :=NA}.
A typing judgement has the form Θ;Γ � MA | s. The typing rules in Fig. 4 (obtained

by assigning terms to the axiom and inference schemes of IHLP) define when a

typing judgement is derivable. The following example term of type [[s]]A ∨ [[t]]B ⊃
[[inl(s) + inr(t)]](A ∨B) illustrates the term assigned to the derivation of Exm. 2.1:

λz[[s]]A∨[[t]]B.case z[[s]]A∨[[t]]B [x[[s]]A].LetB vA be s, x[[s]]A in !(inl(vA) + inr(t))

[y[[t]]B].LetBuB be t, y[[t]]B in !(inl(s) + inr(uB))

Remark 4.1 Also in λIHLP (as already mentioned for IHLP), terms do not deter-

mine complete derivations due to the �I typing rule. For variations where this

property does hold, see the discussion in Sec. 5.

λIHLP-reduction is defined as the compatible closure of the following two groups

of reduction rules. The first set of rules, the principal rules, arises from the principal

cases of normalisation of derivations.

G. Steren, E. Bonelli / Electronic Notes in Theoretical Computer Science 300 (2014) 89–103 97



T-Var
Θ;Γ, xA � xA |xA

T-VarM
Θ, vA; Γ � vA | vA

Θ;Γ, xA � MB | s
T- ⊃ I

Θ;Γ � (λxA.M)A⊃B |λxA.s

Θ;Γ � MA⊃B | s Θ;Γ � NA | t
T- ⊃E

Θ;Γ � (MN)B | s · t

Θ;Γ � MA | s Θ;Γ � NB | t
T-∧I

Θ;Γ � 〈M,N〉A∧B | 〈s, t〉

Θ;Γ � MA∧B | s
T-∧E1

Θ;Γ � fst(M)A | fst(s)

Θ; Γ � MA∧B | s
T-∧E2

Θ;Γ � snd(M)B | snd(s)

Θ; Γ � MA | s
T-∨I1

Θ;Γ � inl(M)A∨B | inl(s)

Θ; Γ � MB | s
T-∨I2

Θ;Γ � inr(M)A∨B | inr(s)

Θ; Γ � MA∨B |r Θ;Γ, xA � PC |s Θ;Γ, yB � QC | t
T-∨E

Θ;Γ � (caseM [xA].P [yB ].Q)C | case r [xA].s [yB ].t

Θ; · � MA | s Θ; · � s≡ t : A
T-�I

Θ;Γ � (!M)[[t]]A | !t

Θ;Γ � M [[r]]A | s Θ, vA; Γ � NC | t
T-�E

Θ;Γ � (LetB vA be r,M inN)C{vA:=r} |LetB vA be r, s in t

Θ;Γ � MA | s
T-PlusL

Θ;Γ � (M+L t)A | s+ t

Θ;Γ � NB | t
T-PlusR

Θ;Γ � (s+RN)B | s+ t

Fig. 4. Typing schemes

β : (λxA.MB)NA → MB{xA := NA}
β� : LetB vA be r, (!NA)[[t]]A inMB → MB{vA := NA}
ρ1 : fst(〈MA, NB〉) → MA

ρ2 : snd(〈MA, NB〉) → NB

δL : case inl(MA)A∨B [xA].PC [yB].QC → PC{xA := MA}
δR : case inr(MB)A∨B [xA].PC [yB].QC → QC{yB := MB}

The second set of rules, the permutative rules, arise from the permutative cases

of normalisation. They simply permute all term constructs that encode an instance

of an elimination scheme with the plus.

ψL: (M
A⊃B+Lt)

A⊃BNA → (MA⊃BNA)B+Lt

ψR: (s+RM
A⊃B)A⊃BNA → s+R(M

A⊃BNA)B

φL:LetB vA be r, (M [[r]]A+Lt) inNB → (LetB vA be r,M inNB)B{vA:=rA}+Lt

φR:LetB vA be r, (s+RM
[[r]]A) inNB → s+R(LetB vA be r,M inNB)B{vA:=rA}

πL : fst((M
A∧B+Ls)

A∧B)A → (fst(MA∧B)A+Ls)
A

πR : fst((s+RM
A∧B)A∧B)A → (s+R fst(M

A∧B)A)A

σL : snd((M
A∧B+Ls)

A∧B)B → (snd(MA∧B)B+Ls)
B

σR : snd((s+RM
A∧B)A∧B)B → (s+Rsnd(M

A∧B)B)B

κL: case (M
A∨B+Ls)

A∨B [xA].PC [yB].QC→ (caseMA∨B [xA].PC [yB].QC)C+Ls

κR: case (s+RM
A∨B)A∨B [xA].PC [yB].QC→ s+R(caseM

A∨B [xA].PC [yB].QC)C
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The first property we address is subject reduction.

Lemma 4.2 (Subject Reduction) If Θ;Γ � MB | s is derivable and MB → NB′
,

then B′ = B and Θ;Γ � NB | s′ is derivable for some witness s′ such that Θ;Γ �
s≡s′ : B.

It would be tempting to expect that, Θ; Γ � MB | s is derivable and MB →
NB, then Θ; Γ � NB | s should also be derivable. However, this is not the case.

For instance, ·; · � ((λxA⊃A.x)λyA.y)A⊃A | (λxA⊃A.x) · λyA.y is derivable, but ·; · �
(λyA.y)A⊃A | (λxA⊃A.x) · λyA.y is not.

However, the above result holds for terms having a ! as their outermost operator.

Corollary 4.3 If Θ;Γ �(!MB)A |t is derivable and MB → NB, then Θ;Γ � (!NB)A | t
is derivable.

The above result gains significance in a programming setting where proof wit-

nesses are used as certificates (see for example [12]), and all code must be certified

in order to be executed. In this case, programs can be closed by an outer !, and

thus full subject reduction is achieved.

Regarding strong normalisation, we define a mapping from λIHLP-terms into

terms of the simply typed lambda calculus λ1,×,+ (1 denotes the unit type) that

preserves certain reduction properties. The result then follows from the fact that

λ1,×,+ is strongly normalising [22].

The mapping 〈| · |〉, associates types (formulae) and terms (proofs) in λIHLP with

types and terms in λ1,×,+. It preserves the structure of formulae except in the case

of the modal type [[s]]A which is mapped to a functional type whose domain is the

unit type 1 and whose co-domain is the mapping of A (i.e. 1⊃ 〈|A|〉). Both truth

and validity variables are translated to the term variables of λ1,×,+. See [25] for full

details.

Lemma 4.4 (〈| • |〉 preserves typability) If Θ;Γ � MA | s is derivable in IHLP,
then 〈|M |〉 : 〈|Θ|〉 ∪ 〈|Γ|〉 � 〈|A|〉 is derivable in λ1,×,+.

Lemma 4.5 (〈| • |〉 commutes with substitution of truth variables)

For all λIHLP-terms M , N , for every truth variable xA:

〈|M |〉{x〈|A|〉 := 〈|N |〉} = 〈|M{xA :=N}|〉.
Although 〈| • |〉 does not commute with substitution of validity variables, the

following result suffices for our purposes.

Lemma 4.6 For all λIHLP-terms M , N , for every validity variable vA and every

truth variable y1 �∈ FVT(〈|N |〉): 〈|M |〉{x1⊃〈|A|〉
v :=λy1.〈|N |〉}−−→−→β〈|M{vA := N}|〉.

Lemma 4.7 If M → N in IHLP without the use of permutative rules, then

〈|M |〉 →+ 〈|N |〉 in λ1,×,+.

Lemma 4.8 If M → N in IHLP using only permutative rules, then 〈|M |〉 = 〈|N |〉.
By means of the following polynomial interpretation (·)A in N≥2, using the

standard order for natural numbers, we can show SN of permutative reduction:
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xBA = vBA
def
= 2

(MC⊃BNA)BA
def
= MC⊃B

A ×NA
A

(λxA.MB)A⊃BA
def
= 2×MB

A

〈M,N〉)A∧B
A

def
= MA +NA

fst(M)AA = snd(M)AA
def
= 2×MA

inl(M)A∨B
A = inr(M)A∨B

A
def
= MA

(caseM [xA].P [yB].Q)CA
def
= 2×MA + PA +QA

(!MB)
[[s]]B
A

def
= 1 +MB

A

(LetB vC be r,M inNB)
B{vC :=r}
A

def
= NB

A ×M
[[r]]B
A + 1

(MB+Lt)
B
A

def
= 2×MB

A + 2

(s+RM
B)BA

def
= 2×MB

A + 2

Lemma 4.9 Permutative reduction is SN.

We can now obtain SN for λIHLP.

Proposition 4.10 Every typable IHLP-term is SN.

Proof. By contradiction. Assume that there is an infinite reduction sequence start-

ing from a typable λIHLP-term M0. We will distinguish between principal reductions

(
B→) and permutative reductions (

P→) within this sequence.

Since, by Lemma 4.9, permutative reduction is SN, our sequence must contain

an infinite number of principal reduction steps. Between any two principal steps,

there may be 0 or more permutative steps (always a finite number). Therefore, the

reduction sequence has the form: M0
P−−→−→ M ′

0
B→ M1

P−−→−→ M ′
1

B→ M2
P−−→−→ M ′

2
B→ · · ·

Additionally, by Lemma 4.8, 〈|Mi|〉 = 〈|M ′
i |〉 for every i. Also, by Lemma 4.7, we

know that for every i 〈|Mi|〉 →+ 〈|Mi+1|〉 in λ1,×,+. We can therefore construct an

infinite λ1,×,+-reduction sequence: 〈|M0|〉 →+ 〈|M1|〉 →+ 〈|M2|〉 →+ · · · .
However, M0 is typable in λIHLP and, by Lemma 4.2, so is every Mi. Since

the mapping preserves typability (Lemma 4.4), then we have an infinite reduction

sequence of typable λ1,×,+-terms. This is an absurd, since reduction of typable

λ1,×,+-terms is SN. �

Finally, since λIHLP is an orthogonal higher-order rewrite system (it has no crit-

ical pairs) and is left linear, it is confluent. This follows from standard results in

higher-order rewriting [20].

5 Discussion and Related Work

LP through the Curry-de Bruijn-Howard looking glass has already suggested some

interesting programming idioms. For example, in [6] a lambda calculus where the
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reduction history is part of the term is introduced. The following scheme is used to

recover subject reduction (which fails for the naive scheme as discussed in Sec. 2),

e encoding the derivation of the judgement Θ; Γ � s≡ t : A|e:
Θ; Γ � MA | s Θ;Γ � s≡ t : A|e

Eq
Θ;Γ � e�MA | s

Strong normalisation is deduced for the resulting term assignment λI from weak-

normalisation using techniques from higher-order rewriting. Also, a Church-Rosser

theorem yields confluence of λI . Note that since terms carry information on how a

result is computed (very much in line with Lévy labels in rewriting), the CR result

may be considered a strengthening of the standard CR result of the typed lambda

calculus.

In [10] the history or computation trail is allowed to be inspected by introducing

trail variables ; this permits the calculus to model history-based access control [1]

and history-based information flow [9]. In that work the following term assignment

for �I is proposed, where Δ is a set of trail variables (affine variables that may be

read at most once for the purposes of inspecting computation trails):

Θ;Δ; · � MA | s Θ;Δ; · � s≡ t : A|e
�I

Θ;Δ′; Γ � (!Δe M)[[t]]A | !t
A term of the form !Δe M operates as an audited computation unit, where all com-

putation is audited and locally scoped within M .

Also, in [12] by interpreting �A as mobile code of type A, LP suggests a calculus

of certified mobile units which enriches mobile code with certificates (representing

type derivations). Such units take the form boxsM , s being the certificate and M

the executable. Composition of certified mobile units allows one to build mobile code

out of other pieces of mobile code together with certificates that are also composed

out of other certificates. For example, the term

λa.λb.unpack a to 〈•u, ◦u〉 in (unpack b to 〈•v, ◦v〉 in (box ◦
u·◦v

•
u

•
v))

reads as follows: “Given a mobile unit a and a mobile unit b, extract code
•
v and

certificate
◦
v from b and extract code

•
u and certificate

◦
u from a. Then create new

code
•
u

•
v by applying

•
u to

•
v and a new certificate for this code

◦
u · ◦

v. Finally, wrap

both of these up into a new mobile unit.”. The type system ensures that certificates

always correspond to the mobile code with which it is enclosed.

In contrast to [6] this work includes the plus and also explores a more relaxed

term assignment (derivation of proof witness equality is not reflected in the term

assignment). The reason for relaxing the term assignment is to place the focus of

the analysis on the plus, thereby simplifying the terms that it manipulates. That

being said and based on current preliminary results, the main role of the plus that

suggests itself is its use for typability, as illustrated in Exm. 2.1. It seems to have

no run-time effect. However, more work is required in order to gain deeper insight.
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6 Conclusions

We study a natural deduction presentation of ILP, an intuitionistic fragment of LP,
together with its corresponding term assignment, a variant of those already intro-

duced by the first author and discussed in the previous section. The basic properties

of subject reduction, strong normalisation and confluence are easily shown to hold.

We think that a fresh look on realization of IS4 in the setting of IHLP could be

an interesting avenue for exploration. It should be noted that this is a non-trivial

problem in the presence of inference schemes which mix polarities such as ⊃ E,
hence the reason why the first such proof [2,4] relied on a cut-free sequent calculus

presentation of LP. Indeed, all known (to the authors of this work) realization proofs

rely on presentations where related 5 occurrences of a� do not occur both in positive

and negative positions. We think it could be interesting to put the well-developed

type-inference technology to work but to infer the decorations of boxes rather than

to infer types. Relations with higher-order unification may appear along the way.

In [7] the so called Basic Intuitionistic Logic of Proofs is developed. A modality

of the form [[u]]A is introduced, for u a proof variable, and a number of axioms over

this modality, together with the axioms of IPC and MP, are shown to capture HA-
tautologies. Towards the end of op.cit. operations on proof terms are added and

the resulting system is proved to be arithmetically complete in [14]. Developing a

proof theory for the latter could be an interesting line of work.

There are numerous proof theoretic approaches to intuitionistic modal logic such

as [24,13,17,11], just to name a few. It could be interesting to recast the Logic of

Proofs using some of these other approaches rather than the judgemental style

adopted here.

Further avenues are those related to the use of natural deduction presentations

of fragments of first-order LP. Although first-order LP is not finitely axiomatiz-

able [23,8] (although see [3]), at the cost of losing the connection with Peano Arith-

metic, the resulting type theory system could serve as the foundation for a logical

framework with decidable forms of reflection. Additionally, we are currently ex-

tending our results to full LP, based on classical logic.
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