
A Typed Assembly Language for Non-interference

Ricardo Medel1, Adriana Compagnoni1, and Eduardo Bonelli2

1 Stevens Institute of Technology, Hoboken NJ 07030, USA
{rmedel, abc}@cs.stevens.edu

2 LIFIA, Fac. de Informática, Univ. Nac. de La Plata, Argentina
eduardo@sol.info.unlp.edu.ar

Abstract. Non-interference is a desirable property of systems in a multilevel se-
curity architecture, stating that confidential information is not disclosed in public
output. The challenge of studying information flow for assembly languages is
that the control flow constructs that guide the analysis in high-level languages
are not present. To address this problem, we define a typed assembly language
that uses pseudo-instructions to impose a stack discipline on the control flow of
programs. We develop a type system for checking that assembly programs enjoy
non-interference and its proof of soundness.

1 Introduction

The confidentiality of information handled by computing systems is of paramount im-
portance. However, standard perimeter security mechanisms such as access control
or digital signatures fail to address the enforcement of information-flow policies. On
the other hand, language-based strategies offer a promising approach to information
flow security. In this paper, we study confidentiality for an assembly language using a
language-based approach to security via type-theory.

In a multilevel security architecture information can range from having low (pub-
lic) to high (confidential) security level. Information flow analysis studies whether an
attacker can obtain information about the confidential data by observing the output of
the system. The non-interference property states that any two executions of the same
program, where only the high-level inputs differ in both executions, does not exhibit
any observable difference in the program’s output.

In this paper we define SIF, a typed assembly language for secure information flow
analysis with security types. This language contains two pseudo-instructions,cpush L
and cjmp L, for handling a stack of code labels indicating the program points where
different branches of code converge, and the type system enforces a stack policy on
those code labels. Our development culminates with a proof that well-typed SIF pro-
grams are assembled to untyped machine code that satisfy non-interference.

The type system of SIF detects explicit illegal flows as well as implicit illegal flows
arising from the control structure of a program. Other covert channels such as those
based on termination, timing, and power consumption, are outside the scope of this
paper.

M. Coppo et al. (Eds.): ICTCS 2005, LNCS 3701, pp. 360–374, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Typed Assembly Language for Non-interference 361

2 SIF, a Typed Assembly Language

In information flow analysis, a security level is associated with the program counter (pc)
at each program execution point. This security level is used to detect implicit informa-
tion flow from high-level values to low-level values. Moreover, control flow analysis is
crucial in allowing this security level to decrease where there is no risk of illicit flow of
information.

Sec. level of pc
low if x=0
high then y:=1
high else y:=2
low z:=3

(a) High-level program

L1 : bnz r1, L2 % if x �=0 goto L2
move r2 ← 1 % y:= 1
jmp L3

L2 : move r2 ← 2 % y:= 2
L3 : move r3 ← 3 % z:= 3

(b) Assembly program

Fig. 1. Example of implicit illegal information flow

Consider the example in Figure 1(a), where x has high security level and z has low
security level. Notice that y cannot have low security level, since information about x
can be retrieved from y, violating the non-interference property. Since the execution
path depends on the value stored in the high-security variable x, entering the branches
of the if-then-else changes the security level of the pc to high, indicating that
only high-level variables can be updated. On the other hand, since z is modified after
both branches, there is no leaking of information from either y or x to z. Therefore,
the security level of the pc can be safely lowered.

A standard compilation of this example to assembly language may produce the
code shown in Figure 1(b). Note that the block structure of the if-then-else is
lost, and it is not clear where it is safe to lower the security level of the pc. We address
this problem by including in our assembly language a stack of code labels accessed by
two pseudo-instructions, cpush L and cjmp L, to simulate the block structure of
high-level languages.

The instruction cpush L pushes L onto the stack while cjmp L first pops L from
the stack if L is already at the top, and then jumps to the instruction labelled by L. The
extra label information in cjmp L allows us to statically control that the intended label
is removed, thereby preventing ill structured code.

The SIF code for the example in Figure 1(a) is shown below. The code at L1 pushes
the label L3 onto the stack. The code at L3 corresponds to the instructions following the
if-then-else in the source code. Observe that the code at L3 can only be executed
once, because the instruction cjmp L3 at the end of the code pointed to by L1 (then
branch), or at the end of L2 (else branch), removes the top of the stack and jumps to
the code pointed to by L3 . At this point it is safe to lower the security level of the pc,
since updating the low-security register r3 does not leak any information about r1.

Moreover, as in HBAL [1], the type-checking of the program is separated from the
verification of the safety of the machine configuration where the program is assembled.
Thus, following the schema shown below, a type-checker can verify if a program is safe

362 R. Medel, A. Compagnoni, and E. Bonelli

cpush % set junction point
bnz % if x goto
arithi % y:= 1, with =0
cjmp

arithi % y:= 2
cjmp

arithi % z:= 3
halt
eof

for execution on any safe memory configuration, and the runtime environment only
needs to check that the initial machine configuration is safe before each run.

Eval

No

Unsafe Code

Typechecker

Unsafe Memory.

No

Yes Yes
Compiler Assembler Is machine safe?

The assembler removescpush L and translates cjmp L into jmp L, an ordinary
unconditional jump, leaving no trace of these pseudo-instructions in the executable code
(See the definition of the assembly function Asm(−) in section 2.4).

2.1 The Type System

We assume given a lattice Lsec of security labels [8], with an ordering relation �, least
(⊥) and greatest (�) elements, and join (�) and meet (�) operations. These labels assign
security levels to elements of the language through types. The type expressions of SIF
are given by the following grammar:

security labels l ∈ Lsec

security types σ ::= ωl

word types ω ::= int | [τ]
memory location types τ ::= σ × . . . × σ | code

Security types (σ) are word types annotated with a security label. The expression
LABL(σ) returns the security label of a security type σ. A word type (ω) is either an
integer type (int) or a pointer to a memory location type ([τ]). Memory location types
(τ) are tuples of security types, or a special type code. We use τ [c], with c a positive
integer, to refer to the cth word type of the product type τ . Since the type code indicates
the type of an assembly instruction, our system distinguishes code from data.

A context (Γ ‖ Λ) contains a register context Γ and a junction points stack Λ. A
junction points stack (Λ) is a stack of code labels, each representing the convergence
point of a fork in the control flow of a program. The empty stack is denoted by ε. A

A Typed Assembly Language for Non-interference 363

register context Γ contains type information about registers, mapping them to security
types. We assume a finite set of registers {r0, . . . , rn}, with two dedicated registers: r0,
that always holds zero, and pc, the program counter.

We write Dom(Γ) for the domain of the register context Γ . The empty context is
denoted by {}. The register context obtained by eliminating from Γ all pairs with r as
first component be denoted by Γ/r, while Γ, Γ ′ denotes the union of register contexts
with disjoint domains. We use Γ, r : σ as a shorthand for Γ, {r : σ}, and Γ [r := σ] as
a shorthand for Γ/r, {r : σ}.

Since the program counter is always a pointer to code, we usually write pc : l
instead of pc : [code]l, and Γ (pc) = l if pc : l ∈ Γ .

2.2 Syntax of SIF Programs

A program (P) is a sequence of instructions and code labels ended by the directive
eof. SIF has standard assembly language instructions such as arithmetic operations,
conditional branching, load, and store, plus pseudo-instructions cpush and cjmp to
handle the stack of code labels.

program P ::= eof | L; P | p; P
instructions p ::= halt | jmp L | bnz r,L

| load r ← r[c] | store r[c] ← r
| arith r ← r � r | arithi r ← r � i
| cpush L | cjmp L

operations � ::= + | − | ∗ | /

We use c to indicate an offset, and i to indicate integer literals. We assume an infinite
enumerable set of code labels. Intuitively, the instruction cpush L pushes the junction
point represented by the code label L onto the stack, while the instruction cjmp L
behaves as a pop and a jump. If L is at the top of the stack, it pops L and then jumps to
the instruction labeled L.

2.3 Typing Rules

A signature (Σ) is a mapping assigning contexts to labels. The context Σ(L) contains
the typing assumptions for the registers in the program point pointed to by the label L.
The judgment Γ ‖ Λ �Σ P is a typing judgment for a SIF program P , with signature
Σ, in a context Γ ‖ Λ. We say that a program P is well-typed if Ctxt(P) �Σ P , where
Ctxt(P) is the partial function defined as: Ctxt(L; P) = Σ(L), Ctxt(eof) = {} ‖ ε.

The typing rules for SIF programs, shown in Figures 2 and 3, are designed to prevent
illegal flows of information. The directive eof is treated as a halt instruction. So,
rules T Eof and T Halt ensure that the stack is empty.

Rule T Label requires that the current context be compatible with the context ex-
pected at the position of the label, as defined in the signature (Σ) of the program. Jumps
and conditional jumps are typed by rules T Jmp and T CondBrnch. In both rules the
current context has to be compatible with the context expected at the destination code.
In T CondBrnch, both the code pointed to by L and the remaining program P are con-
sidered destinations of the jump included in this operation. In order to avoid implicit

364 R. Medel, A. Compagnoni, and E. Bonelli

Γ ′ ⊆ Γ l � l′

ST RegBank
(Γ, pc : l ‖ Λ) ≤ (Γ ′, pc : l′ ‖ Λ)

Ctxt(P)
Σ P
T Halt

Γ ‖ ε
Σ halt ; P

T Eof
Γ ‖ ε
Σ eof

(Γ ‖ Λ) ≤ Σ(L) Σ(L)
Σ P
T Label

Γ ‖ Λ
Σ L; P

(Γ ‖ Λ) ≤ Σ(L) Ctxt(P)
Σ P
T Jmp

Γ ‖ Λ
Σ jmp L; P

(Γ, r : int l′ , pc : l � l′ ‖ Λ) ≤ Σ(L) Γ, r : int l′ , pc : l � l′ ‖ Λ
Σ P
T CondBrnch

Γ, r : int l′ , pc : l ‖ Λ
Σ bnz r, L; P

Fig. 2. Subtyping for contexts and typing rules for programs (1st part)

flows of information, the security level of the pc in the destination code should not
be lower than the current security level and the security level of the register (r) that
controls the branching.

In T Arith the security level of the source registers and the pc should not exceed the
security level of the target register to avoid explicit flows of information. The security
level of rd can actually be lowered to reflect its new contents, but, to avoid implicit in-
formation flows, it cannot be lowered beyond the level of the pc. Similarly for T Arithi,
T Load and T Store. In T Load, an additional condition establishes that the security
level of the pointer to the heap has to be lower than or equal to the security level of the
word to be read.

The rule T Cpush controls whether cpush L can add the code label L to the stack.
Since L is going to be consumed by a cjmp L instruction, its security level should not
be lower than the current level of the pc. The cjmp L instruction jumps to the junction
point pointed to by label L. Furthermore, to prevent ill structured programs the rule
T Cjmp forces the code label L to be at the top of the stack, and the current context
has to be compatible with the one expected at the destination code. However, since a
cjmp instruction allows the security level to be lowered, there are no conditions on its
security level.

2.4 Type Soundness of SIF

In this section we define a semantics for the untyped assembly instructions operating on
a machine model, we give an interpretation for SIF types which captures the way types
are implemented in memory, and finally we prove that the execution of a well-typed
SIF program modifies a type-safe configuration into another type-safe configuration.

Let Reg = {0, 1, . . . , Rmax} be the register indices, with two dedicated registers:
R(0) = 0, and R(pc) is the program counter. Let Loc ⊆ Z be the set of memory lo-

A Typed Assembly Language for Non-interference 365

Γ (rd) = ωld rd, rs, rt �= pc
Γ (rs) = int ls l � ls � lt � ld
Γ (rt) = int lt Γ, pc : l ‖ Λ
Σ P

T Arith
Γ, pc : l ‖ Λ
Σ arith rd ← rs � rt; P

rd, rs �= pc
Γ (rd) = ωld l � ls � ld
Γ (rs) = int ls Γ, pc : l ‖ Λ
Σ P

T Arithi
Γ, pc : l ‖ Λ
Σ arithi rd ← rs � i; P

Γ (rs) = [τ]ls rd, rs �= pc
Γ (rd) = ωld l � ls � lc � ld
τ [c] = ωlc

c Γ, pc : l ‖ Λ
Σ P
T Load

Γ, pc : l ‖ Λ
Σ load rd ← rs[c]; P

Γ (rd) = [τ]ld rd, rs �= pc
Γ (rs) = τ [c] = ωls l � ld � ls
τ is code-free Γ, pc : l ‖ Λ
Σ P

T Store
Γ, pc : l ‖ Λ
Σ store rd[c] ← rs; P

l � Σ(L)(pc) Γ, pc : l ‖ L · Λ
Σ P
T Cpush

Γ, pc : l ‖ Λ
Σ cpush L; P

Σ(L) = Γ ′ ‖ Λ Γ ′
/pc ⊆ Γ/pc Ctxt(P)
Σ P

T Cjmp
Γ ‖ L · Λ
Σ cjmp L; P

Fig. 3. Typing rules for programs (2nd part)

cations on our machine, Wrd be the set of machine words that can stand for integers or
locations, and Code be the set of machine words which can stand for machine instruc-
tions. To simplify the presentation, we assume that Wrd is disjoint from Code; so, our
model keeps code separate from data.

A machine configuration M is a pair (H, R) where H : Loc ⇁ Wrd
 Code is
a partial function defining a heap configuration, and R : Reg → Wrd is a register
configuration.

Given a program P , a machine assembled for P is a machine configuration which
contains a representation of the assembly program, with machine instructions stored
in some designated contiguous portion of the heap. Supposing P = p1; . . . ; pn, the
assembly process defines a function PAdr : 1, . . . , n → Loc which gives the destination
location for the code when assembling the typed instruction pu, where 1 ≤ u ≤ n. For
each of the locations 	 where P is stored, H() ∈ Code. The assembly process also
defines the function LAdr(L), which assigns to each label in P the heap location where
the code pointed to by the label was assembled.

Given a machine configuration M = (H, R), we define a machine transition rela-
tion M −→ M ′, as follows: First, M ′ differs from M by incrementing R(pc) according

366 R. Medel, A. Compagnoni, and E. Bonelli

to the length of the instruction in H(R(pc)); then, the transformation given in the table
below is applied to obtain the new heap H ′, or register bank R′. The operations on r0
have no effect.

jmp L R′ = R[pc := LAdr(L)]

bnz r, L R′ =
{

R, if R(r) = 0
R[pc := LAdr(L)], otherwise

arith rd ← rs � rt R′ = R[rd := R(rs) � R(rt)]
arithi rd ← rs � i R′ = R[rd := R(rs) � i]
load rd ← rs[c] R′ = R[rd := H(R(rs) + c)]
store rd[c] ← rs H ′ = H [R(rd) + c := R(rs)]

Asm(pu) stands for the sequence of untyped machine instructions which is the result

of assembling a typed assembly instruction pu:

Asm(L) = ε Asm(eof) = halt
Asm(cpush L) = ε Asm(cjmp L) = jmp L
Asm(pu) = pu, otherwise

Notice that the sequence has at most one instruction. We write M
Asm(pu)−→ M ′, if M

executes to M ′ through the instructions in Asm(pu), by zero or one transitions in M .
The reflexive and transitive closure of this relation is defined by the following rules.

Refl
M =⇒ M

M1
Asm(pu)−→ M2

Incl
M1 =⇒ M2

M1 =⇒ M2 M2 =⇒ M3
Trans

M1 =⇒ M3

2.5 Imposing Types on the Model

A heap context ψ is a function that maps heap locations to security types. A heap
context contains type information about the heap locations required to type the registers.
Dom(ψ) denotes the domain of the heap context ψ. The empty context is denoted by
{}. We write ψ[:= τ] for the heap context resulting from updating ψ with 	 : τ .
Two heap contexts ψ and ψ′ are compatible, denoted compat(ψ, ψ′), if for all 	 ∈
Dom(ψ)∩Dom(ψ′), ψ() = ψ′(). The following rules assign types to heap locations:

H(�) ∈ Code
T HLocCode

H ; {� : code} |= � : code hloc

H(�) ∈ Wrd
T HLocInt

H ; {� : int l} |= � : int l hloc

H(�) ∈ Wrd compat(ψ, {� : [τ]l}) H ;ψ |= H(�) : τ hloc
T HLocPtr

H ;ψ ∪ {� : [τ]l} |= � : [τ]l hloc

compat(ψ, ψ′) H ; ψ |= � : τ hloc
W HLoc

H ; ψ ∪ ψ′ |= � : τ hloc

mi = size(σ0) + . . . + size(σi−1)
H ; ψ |= � + mi : σi hloc for all 0 ≤ i ≤ n

T HLocProd
H ; ψ |= � : σ0 × . . . × σn hloc

A Typed Assembly Language for Non-interference 367

In order to define the notion of satisfiability of contexts by machine configurations,
we need to define a satisfiability relation for registers.

r �= pc
T RegInt

M |={} r : int l reg

H ;ψ |= R(r) : τ hloc
T RegPtr

(H,R) |=ψ r : [τ]l reg

(H,R) |=ψ r : σ reg compat(ψ, ψ′)
W Reg

(H, R) |=ψ∪ψ′ r : σ reg
A machine configuration M satisfies a typing assignment Γ with a heap typing con-

text ψ (written M |=ψ Γ) if and only if for each register ri ∈ Dom(Γ), M satisfies the
typing statement M |=ψi ri : Γ (ri) reg, the heap contexts ψi are pairwise compatible,
and ψ = ∪∀iψi.

A machine configuration M = (H, R) is in final state if H(R(pc)) = halt . We
define an approximation to the execution of a typed program P = p1; . . . ; pn by relating
the execution of the code locations in the machine M with the control paths in the
program by means of the relation pu � pv, which holds between pairs of instructions
indexed by the set:

{(i, i + 1) | pi �= jmp, cjmp, and i < n}
∪
{(i, j + 1) | pi = jmp L, bnz r,L, or cjmp L, and pj = L}.

We use pu
∗� pv to denote the reflexive and transitive closure of pu � pv.

2.6 Type Soundness

In this section we show that our type system ensures that the reduction rules preserve
type safety. The soundness results imply that if the initial memory satisfies the initial
typing assumptions of the program, then each memory configuration reachable from the
initial memory satisfies the typing assumptions of its current instruction.

The typing assumptions of each instruction of a program can be obtained from
the initial context by the typechecking process. The derivation Ctxt(P) �Σ P
of a well-typed program P = p1; . . . pu; . . . ; pn determines a sequence of contexts
Γ1 ‖ Λ1, . . . , Γn ‖ Λn from sub-derivations of the form Γu ‖ Λu �Σ pu; pu+1; . . . ; pn.

A machine configuration is considered type-safe if it satisfies the typing assump-
tions of its current instruction. Given a well-typed program P = p1; . . . pu; . . . ; pn and
a heap context ψ, we say M = (H, R) is type safe at u for P with ψ if M is assembled
for P ; R(pc) = PAdr(u); and M |=ψ Γu.

We prove two meta-theoretic results Progress and Subject Reduction. Progress (The-
orem 1) establishes that a non-final-state type safe machine can always progress to a
new machine by executing a well-typed instruction, and Subject Reduction (Theorem 2)
establishes that if a type safe machine progresses to another machine, the resulting ma-
chine is also type safe.

Theorem 1 (Progress). Suppose a well-typed program P = p1; . . . pu; . . . ; pn and a

machine configuration M type safe at u. Then there exists M ′ such that M
Asm(pu)−→ M ′,

or M is in final state.

368 R. Medel, A. Compagnoni, and E. Bonelli

Theorem 2 (Subject Reduction). Suppose P = p1; . . . pu; . . . ; pn is a well-typed pro-

gram and (H, R) is a machine configuration type safe at u, and (H, R)
Asm(pu)−→ M ′.

Then there exists pv ∈ P such that pu � pv and M ′ is type safe at v.

The proof of this theorem proceeds by case analysis on the current instruction pu,
analyzing each of the possible instructions that follow pu, based on the definition of
program transitions. See the companion technical report [13] for details.

3 Non-interference

Given an arbitrary (but fixed) security level ζ of an observer, non-interference states
that computed low-security values (� ζ) should not be affected by high-security input
values (�� ζ). In order to prove that a program P satisfies non-interference one must
show that any two terminating executions fired from indistinguishable (from the point
of view of the observer) machine configurations yield indistinguishable configurations
of the same security observation level.

In order to establish what it means for machine configurations to be indistinguish-
able from an observer’s point of view whose security level is ζ, we define a ζ-indistingui-
shability relation for machine configurations.

The following definitions assume a given security level ζ, two machine configura-
tions M1 = (H1, R1) and M2 = (H2, R2), two heap contexts ψ1 and ψ2, and two
register contexts Γ1 and Γ2, such that M1 |=ψ1 Γ1 and M2 |=ψ2 Γ2.

Two register banks are ζ-indistinguishable if the observable registers in one bank are
also observable in the other, and the contents of these registers are also ζ-indistinguishable.

Definition 1 (ζ-indistinguishability of register banks). Two register banks R1 and
R2 are ζ-indistinguishable, written �H1:ψ1,H2:ψ2R1 : Γ1 ≈ζ R2 : Γ2 regBank, if for
all r ∈ Dom∪(Γ1, Γ2)1, with r �= pc:

LABL(Γ1(r)) � ζ or LABL(Γ2(r)) � ζ implies

⎧⎨
⎩

r ∈ Dom∩(R1, R2, Γ1, Γ2),
Γ1(r) = Γ2(r), and
�H1:ψ1,H2:ψ2R1(r) ≈ζ R2(r) : Γ1(r) val

Two word values v1 and v2 of type ωl are considered ζ-indistinguishable, written
�H1:ψ1,H2:ψ2v1 ≈ζ v2 : ωl val, if l � ζ implies that both values are equal. In case of
pointers to heap locations, the locations have to be also ζ-indistinguishable.

Two heap values 	1 and 	2 of type τ are considered ζ-indistinguishable, written
�H1:ψ1,H2:ψ2	1 ≈ζ 	2 : τ hval, if 	1 ∈ H1, 	2 ∈ H2, and either the type τ is code and
	1 = 	2, or τ = σ1 × . . . × σn and each pair of offset locations 	1 + mi and 	2 + mi

(with mi as in rule T HLocProd) are ζ-indistinguishable, or τ is a word type with a
security label l and l � ζ implies that both values are equal.

The proof of our main result, the Non-Interference Theorem 3, requires two notions
of indistinguishability of stacks (Low and High). If one execution of a program branches
on a condition while the other does not, the junction points stacks may differ in each
of the paths followed by the executions. If the security level of the pc is low in one

1 We use Dom⊕(A1, . . . , An) as an abbreviation for Dom(A1) ⊕ . . . ⊕ Dom(An).

A Typed Assembly Language for Non-interference 369

LowAxiom
�Σε ≈ζ ε Low

Σ(L)(pc) � ζ �Σ Λ1 ≈ζ Λ2 Low
LowLow

�ΣL · Λ1 ≈ζ L · Λ2 Low

Σ(L1)(pc) �� ζ Σ(L2)(pc) �� ζ �Σ Λ1 ≈ζ Λ2 Low
LowHigh

�ΣL1 · Λ1 ≈ζ L2 · Λ2 cstackLow

�ΣΛ1 ≈ζ Λ2 Low
HighAxiom

�ΣΛ1 ≈ζ Λ2 High

Σ(L)(pc) �� ζ �Σ Λ1 ≈ζ Λ2 High
HighLeft

�ΣL · Λ1 ≈ζ Λ2 High

Σ(L)(pc) �� ζ �Σ Λ1 ≈ζ Λ2 High
HighRight

�ΣΛ1 ≈ζ L · Λ2 High

Fig. 4. ζ-indistinguishability of junction points stacks

execution, then it has to be low in the other execution as well, and the executions must be
identical. The first three rules of Figure 4 define the relation of low-indistinguishability
for stacks. In low-security executions the associated stacks mus be of the same size, and
each code label in the stack of the first execution must be indistinguishable from that of
the corresponding element in the second one.

If the security level of the pc of one of the two executions is high, then the other
one must be high too. The executions are likely to be running different instructions, and
thus the associated stacks may have different sizes. However, we need to ensure that
both executions follow branches of the same condition. This is done by requiring that
both associated stacks have a common (low-indistinguishable) sub-stack. The second
three rules of Figure 4 define the relation of high-indistinguishability for stacks. Also
note that, as imposed by the typing rules, the code labels added to the stack associated
to high-security branches are of high-security level.

Finally, we define the relation of indistinguishability of two machine con from the
point of view of an observer of level ζ.

Definition 2. Two machine configurations M1 = (H1, R1) and M2 = (H2, R2) are
ζ-indistinguishable, denoted by the judgment

�P M1 : Γ1, Λ1, ψ1 ≈ζ M2 : Γ2, Λ2, ψ2 mConfig,

if and only if

1. M1 |=ψ1 Γ1 and M2 |=ψ2 Γ2,
2. M1 and M2 are assembled for P at the same addresses,
3. �H1:ψ1,H2:ψ2R1 : Γ1 ≈ζ R2 : Γ2 regBank, and
4. either

(a) Γ1(pc) = Γ2(pc) � ζ and R1(pc) = R2(pc) and �ΣΛ1 ≈ζ Λ2 Low, or
(b) Γ1(pc) �� ζ and Γ2(pc) �� ζ and �ΣΛ1 ≈ζ Λ2 High.

Note that both machine configurations must be consistent with their corresponding
typing assignments, and they must be executing the code resulting from assembling P .

370 R. Medel, A. Compagnoni, and E. Bonelli

We may now state the non-interference theorem establishing that starting from two
indistinguishable machine configurations assembled for the same program P , if each
execution terminates, the resulting machine configurations remain indistinguishable.

In the following theorem and lemmas, for any instruction pi in a well-typed program
P = p1; . . . ; pn, the context Γi ‖ Λi is obtained from the judment Γi ‖ Λi �Σ pi; pn,
which is derived by a sub-derivation of Ctxt(P) �Σ P .

Theorem 3 (Non-interference). Let P = p1; . . . ; pn be a well-typed program, M1 =
(H1, R1) and M2 = (H2, R2) be machine configurations such that both are type safe
at 1 for P with ψ and

�P M1 : Γ1, ε, ψ ≈ζ M2 : Γ1, ε, ψ mConfig.

If M1 =⇒ M ′
1 and M2 =⇒ M ′

2, with M ′
1 and M ′

2 in final state, then

�P M ′
1 : Γv, ε, ψ1 ≈ζ M ′

2 : Γw, ε, ψ2 mConfig.

The technical challenge that lies in the proof of this theorem is that the ζ-indistin-
guishability of configurations holds after each transition step. The proof is developed in
two stages. First it is proved that two ζ-indistinguishable configurations that have a low
(and identical) level for the pc can reduce in a lock step fashion in a manner invariant
to the ζ-indistinguishability property. This is stated by the following lemma.

Lemma 1 (Low-PC Step). Let P = p1; . . . ; pn be a well-typed program, such that pv1

and pv2 are in P , M1 = (H1, R1) and M2 = (H2, R2) be machine configurations.
Suppose

1. M1 is type safe at v1 and M2 is type safe at v2, for P with ψ1 and ψ2, respectively,
2. �P M1 : Γv1 , Λv1 , ψ1 ≈ζ M2 : Γv2 , Λv2 , ψ2 mConfig,
3. Γv1(pc) � ζ and Γv2(pc) � ζ,

4. M1
Asm(pv1)

−→ M ′
1, and

5. there exists pw1 in P such that pv1 � pw1 , and M ′
1 is type safe at w1 with ψ3.

Then, there exists a configuration M ′
2 such that:

(a) M2
Asm(pv2)

−→ M ′
2,

(b) there exists pw2 in P such that pv2 � pw2 , and M ′
2 is type safe at w2 with ψ4, and

(c) �P M ′
1 : Γw1 , Λw2 , ψ3 ≈ζ M ′

2 : Γw2 , Λw2 , ψ4 mConfig.

When the level of the pc is low, the programs execute the same instructions (with
possibly different heap and register bank). They may be seen to be synchronized and
each reduction step made by one is emulated with a reduction of the same instruction
by the other. The resulting machines must be ζ-indistinguishable.

However, a conditional branch (bnz) may cause the execution to fork on a high
value. As a consequence, both of their pc become high and we must provide proof that
there are some ζ-indistinguishable machines to which they reduce. Then, the second
stage of the proof consists of showing that every reduction step of one execution whose
pc has a high-security level can be met with a number of reduction steps (possibly
none) from the other execution such that they reach indistinguishable configurations.
The High-PC Step Lemma states such result.

A Typed Assembly Language for Non-interference 371

Lemma 2 (High-PC Step). Let P = p1; . . . ; pn be a well-typed program, such that pv1

and pv2 are in P , and M1 = (H1, R1) and M2 = (H2, R2) be machine configurations.
Suppose

1. M1 is type safe at v1 and M2 is type safe at v2, for P with ψ1 and ψ2, respectively.
2. �P M1 : Γv1 , Λv1 , ψ1 ≈ζ M2 : Γv2 , Λv2 , ψ2 mConfig,
3. Γv1(pc) �� ζ and Γv2(pc) �� ζ,

4. M1
Asm(pv1)

−→ M ′
1, and

5. there exists pw1 in P such that pv1 � pw1 and M ′
1 is type safe at w1 with ψ3.

Then, either the configuration M2 diverges or there exists a machine configuration M ′
2

such that

(a) M2 =⇒ M ′
2,

(b) there exists pw2 in P such that pv2

∗� pw2 and M ′
2 is type safe at w2 with ψ4, and

(c) �P M ′
1 : Γw1 , Λw1 , ψ3 ≈ζ M ′

2 : Γw2 , Λw2 , ψ4 mConfig.

The main technical difficulty here is the proof of the case when one execution does
a cjmp instruction that lowers the pc level. In this case, the other execution should,
in a number of steps, also reduce its pc level accordingly. This is guaranteed by two
facts. First, high-indistinguishable stacks share a sub-stack whose top is the label to
the junction point where the pc level is reduced and both executions converge. Second,
well-typed programs reach final states only with an empty stack, having visited all the
labels indicated by the junction point stack.

4 Related Work

Information flow analysis has been an active research area in the past three decades [18].
Pioneering work by Bell and LaPadula [4], Feiertag et al. [9], Denning and Denning
[8,7], Neumann et al. [17], and Biba [5] set the basis of multilevel security by defining
a model of information flow where subjects and objects have a security level from a
lattice of security levels. Such a lattice is instrumental in representing a security policy
where a subject cannot read objects of level higher than its level, and it cannot write
objects at levels lower than its own level.

The notion of non-interference was first introduced by Goguen and Meseguer [10],
and there has been a significant amount of research on type systems for confidentiality
for high-level languages including Volpano and Smith [20], and Banerjee and Nau-
mann [2]. Type systems for low-level languages have been an active subject of study
for several years now, including TAL [14], STAL [15], DTAL [21], Alias Types [19],
and HBAL [1].

In his PhD thesis [16], Necula already suggests information flow analysis as an
open research area at the assembly language level. Zdancewic and Myers [22] present
a low-level, secure calculus with ordered linear continuations. An earlier version of
our type system was inspired by that work. However, we discovered that in a typed
assembly language it is enough to have a junction point stack instead of mimicking

372 R. Medel, A. Compagnoni, and E. Bonelli

ordered linear continuations. Moreover, their language has an if-then-else con-
structor that guides the information flow analysis, while SIF has pseudo-instructions
(cpush L and cjmp L) for the same purpose. However, while the if-then-else
constructor remains part of their language after typechecking, cpush and cjmp are
eliminated.

Barthe et al. [3] define a JVM-like low-level language with a heap and an operand
stack. The type system is parameterized by control dependence regions, and it is as-
sumed that there exist functions that obtain such regions. In contrast, SIF allows such
regions to be expressed in the language by using code labels and its well-formedness to
be verified during type-checking. Crary et al. [6] define a low-level calculus for informa-
tion flow analysis, however, their calculus has the structuring construct
if-then-else, unlike SIF that uses typed pseudo-instructions that are assembled
to standard machine instructions.

5 Conclusions and Future Work

We defined SIF, a typed assembly language for secure information flow analysis. Be-
sides the standard features, such as heap and register bank, SIF introduces a stack of
code labels in order to simulate at the assembly level the block structure of high-level
languages. The type system guarantees that well-typed programs assembled on type-
safe machine configurations satisfy the non-interference property: for a security level
ζ, if two type-safe machine configuration are ζ-indistinguishable, then the resulting
machine configurations after execution are also ζ-indistinguishable.

An alternative to our approach is to have a list of the program points where the secu-
rity level of the pc can be lowered safely. This option delegates the security analysis of
where the pc level can be safely lowered to a previous step (that may use, for example,
a function to calculate control dependence regions [12]). This delegation introduces a
new trusted structure into the type system. Our type system, however, does not need to
trust the well-formation of such a list. Moreover, even the signature (Σ) attached to SIF
programs is untrusted in our setting, since, as we explained in section 2.3, its informa-
tion about the security level of the pc is checked in the rules for cpush and cjmp in
order to prevent illegal information flows.

Currently we are implementing the type system proposed in this paper. We already
developed a compiling function from a very simple high-level imperative programming
language to SIF and the typechecker for SIF programs. We intend to make the software
available upon completion of the system.

We are also developing a version of our language that includes a runtime stack,
in order to define a stack-based compilation function from a more complex high-level
language to SIF.

Acknowledgments. We are grateful to Pablo Garralda, Healfdene Goguen, David Nau-
mann, and Alejandro Russo for enlightening discussions and comments on previous
drafts. We want to thank Nicholas Egebo and Haifan Lu, two undergraduate students
at Stevens, for their help with the implementation of SIF. This work was partially sup-
ported by the NSF project CAREER: A formally verified environment for the production
of secure software – #0093362 and the Stevens Technogenesis Fund.

A Typed Assembly Language for Non-interference 373

References

1. David Aspinall and Adriana B. Compagnoni. Heap bounded assembly language. Journal of
Automated Reasoning, Special Issue on Proof-Carrying Code, 31(3-4):261–302, 2003.

2. A. Banerjee and D. Naumann. Secure information flow and pointer confinement in a java-
like language. In Proceedings of Fifteenth IEEE Computer Security Foundations - CSFW,
pages 253–267, June 2002.

3. G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. In Proceedings of
VMCAI’04, volume 2937 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

4. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations and model.
Technical Report Technical Report MTR 2547 v2, MITRE, November 1973.

5. K. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-
76-372, USAF Electronic Systems Division, Bedford, MA, April 1977.

6. Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of information flow
security with mutable state. Technical Report CMU-CS-03-164, Carnegie Mellon University,
September 2003.

7. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Communications of the ACM, 20(7):504–513, July 1977.

8. Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–242, May 1976.

9. R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a system design.
In 6th ACM Symp. Operating System Principles, pages 57–65, November 1977.

10. J. A. Goguen and J. Meseguer. Security policy and security models. In Proceedings of the
Symposium on Security and Privacy, pages 11–20. IEEE Press, 1982.

11. Daniel Hedin and David Sands. Timing aware information flow security for a javacard-like
bytecode. In Proceedings of BYTECODE, ETAPS’05, to appear, 2005.

12. Xavier Leroy. Java bytecode verification: an overview. In G. Berry, H. Comon, and A. Finkel,
editors, Proceedings of CAV’01, volume 2102, pages 265–285. Springer-Verlag, 2001.

13. Ricardo Medel, Adriana Compagnoni, and Eduardo Bonelli. A typed
assembly language for secure information flow analysis. http://
www.cs.stevens.edu/˜rmedel/hbal/publications/sifTechReport.ps,
2005.

14. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly Lan-
guage. ACM Transactions on Programming Languages and Systems, 21(3):528–569, May
1999.

15. Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly lan-
guage. In Second International Workshop on Types in Compilation, pages 95–117, Kyoto,
March 1998. Published in Xavier Leroy and Atsushi Ohori, editors, Lecture Notes in Com-
puter Science, volume 1473, pages 28-52. Springer-Verlag, 1998.

16. George Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, September
1998.

17. Peter G. Neumman, Richard J. Feiertag, Karl N. Levitt, and Lawrence Robinson. Software
development and proofs of multi-level security. In Proceedings of the 2nd International Con-
ference on Software Engineering, pages 421–428. IEEE Computer Society, October 1976.

18. A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21(1), 2003.

19. Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Gert Smolka, edi-
tor, Ninth European Symposium on Programming, volume 1782 of LNCS, pages 366–381.
Springer-Verlag, April 2000.

374 R. Medel, A. Compagnoni, and E. Bonelli

20. Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. In
TAPSOFT, pages 607–621, 1997.

21. Hongwei Xi and Robert Harper. A dependently typed assembly language. Technical Report
OGI-CSE-99-008, Oregon Graduate Institute of Science and Technology, July 1999.

22. S. Zdancewic and A. Myers. Secure information flow via linear continuations. Higher Order
and Symbolic Computation, 15(2–3), 2002.

	Introduction
	SIF, a Typed Assembly Language
	The Type System
	Syntax of SIF Programs
	Typing Rules
	Type Soundness of SIF
	Imposing Types on the Model
	Type Soundness

	Non-interference
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

