
On-the-Fly Inlining of Dynamic Dependency

Monitors for Secure Information Flow

Luciano Bello1,2 and Eduardo Bonelli2,3,4

1 Si6 Labs - CITEDEF - Inst. de Investigac. Cient. y Técnicas para la Defensa
lbello@citedef.gob.ar

2 ITBA - Instituto Tecnológico Buenos Aires
3 CONICET - Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

4 UNQ - Univesidad Nacional de Quilmes
ebonelli@unq.edu.ar

Abstract. Information flow analysis (IFA) in the setting of programming
languages is steadily veering towards the adoption of dynamic techniques.
This is particularly attractive for scripting languages for web applications
programming. A common manifestation of dynamic techniques is that of
run-time monitors, which should block program execution in the pres-
ence of an insecure run. Significant efforts are still required before practi-
cal, scalable monitors for secure IFA of industrial scale languages such as
JavaScript can be achieved. Such monitors ideally should compensate for
the absence of the traces they do not track, should not require modifica-
tions of the VM and should provide a fair compromise between security
and usability among other things. This paper discusses on-the-fly inlining
of monitors that track dependencies as a prospective candidate.

1 Introduction

Secure IFA in the setting of programming languages [1] is steadily veering to-
wards the adoption of dynamic techniques [2,3,4,5,6,7,8,9]. There are numerous
reasons for this among which we can mention the following. First they are attrac-
tive from the perspective of scripting languages for the web such as JavaScript
which are complex subjects of study for static-based techniques. Second, they
allow dealing with inherently run-time issues such as dynamic object creation
and eval run-time code evaluation mechanism. Last but not least, recent work
has suggested that a mix of both static and dynamic flavors of IFA will probably
strike the balance between correct, usable and scalable tools in practice.

Language-based secure IFA is achieved by assigning variables a security level
such as public or secret and then determining whether those that are labeled as
secret affect the contents of public ones during execution. This security property
is formalised as noninterference. In this paper, we are concerned in particular
with termination-insensitive noninterference[1,10]: starting with two identical
run-time states that only differ in the contents of secret variables, the final states
attained after any given pair of terminating runs differ at most in the contents
of the secret variables. Thus in this paper we ignore covert channels.

G. Barthe, A. Datta, and S. Etalle (Eds.): FAST 2011, LNCS 7140, pp. 55–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

56 L. Bello and E. Bonelli

IFA Monitors. Dynamic IFA monitors track the security level of data during
execution. If the level of the data contained in a variable may vary
during execution we speak of a flow-sensitive analysis [12]. Flow-sensitivity pro-
vides a more flexible setting than the flow-insensitive one when it comes to
practical enforcement of security policies. Purely dynamic flow-sensitive moni-
tors can leak information related to control flow [11]. Such monitors keep track
of the security label of each variable and update these labels when variables
are assigned. Information leak occurs essentially because these monitors can-
not track traces that are not taken (such as branches that are not executed).

1 tmp := 1; pub := 1;
2 ifp1 sec then
3 tmp := 0;
4 ifp2 tmp then
5 pub := 0;
6 retp3 (pub)

Fig. 1. Monitor attack, from [11]

Consider the example in Fig. 1 taken from [7]
(the subscripts may be ignored for now). As-
sume that sec is initially labeled as secret.
The monitor labels variables tmp and pub as
public (since constants are considered public
values) after executing the first two assign-
ments. If sec is nonzero, the label of tmp is
updated to secret since the assignment in line
3 depends on the value of sec. The “then”
branch of the second conditional is not exe-
cuted. If sec is zero, then the “then” branch of the second conditional is exe-
cuted. Either way, the value of sec, a secret variable, leaks to the returned value
and the monitor is incapable of detecting it.

Purely dynamic flow-sensitive monitors must therefore be supplied with ad-
ditional information in order to compensate for this deficiency. One option is
to supply the monitor with information on the branches not taken. This is the
approach taken for example in [11]. In the example of Fig. 1, when execution
reaches the conditional in line 4, although the “then” branch is not taken the
label of pub would be updated to secret since this variable would have been
written in the branch that was not taken and that branch depends on a secret
variable. In order to avoid the need for performing static analysis [13] proposed
the no-sensitive upgrade scheme where execution gets stuck on attempting to
assign a public variable in a secret context. Returning to our example, when sec
is nonzero and execution reaches the assignment in line 3, it would get stuck.
A minor variant of that scheme is the permissive upgrade [14] scheme where,
although assignment of public variables in a secret contexts is allowed, branch-
ing on expressions that depend on such variables is disallowed. In our example,
when sec is nonzero and execution reaches the assignment in line 3, it would be
allowed. However, execution would get stuck at line 4. As stated in [15], not only
can these schemes reject secure programs, but also their practical applicability
is yet to be determined.

Dynamic Dependency Tracking. An alternative to supplying a monitor that
is flow-sensitive with either static information or resorting to the no-sensitive
upgrade or permissive upgrade schemes is dependency analysis [5]. Shroff et al.
introduce a run-time IFA monitor that assigns program points to branches and
maintains a cache of dependencies of indirect flows towards program points and

On-the-Fly Inlining of Dynamic Dependency Monitors 57

a cache of direct flows towards program points. These caches are called κ and
δ, respectively. The former is persistent over successive runs. Indeed, when exe-
cution takes a branch which has hitherto been unexplored, the monitor collects
information associated with it and adds it to the current indirect dependencies.
Thus, although an initial run may not spot an insecure flow, it will eventually
be spotted in subsequent runs.

In order to illustrate this approach, we briefly revisit the example of Fig. 1
(further details are supplied in Sec. 2). We abbreviate the security level “secret”
with the letter H and “public” with L, as is standard. Values in this setting
are tagged with both a set of dependencies (set of program points p, pi, etc.)
and a security level. When the level is not important but the dependency is, we
annotate the value just with the dependency: e.g. 0p (in our example dependen-
cies are singletons, hence we write p rather that {p}). Likewise, when it is the
security level that is relevant we write for e.g. 0L or 0H . After initialization of
the variables and their security levels, the guard in line 2 is checked. Here two
operations take place. First the level of program point p1 is set to H reflecting a
direct dependency of p1 with sec. This is stored in δ, the cache of direct depen-
dencies. The body of the condition is executed (since the guard is true) and tmp
is updated to 0p1, indicating that the assigned value depends on the guard in
p1. When the guard from the fourth line is evaluated, in κ (the cache of indirect
dependencies, which is initially empty) the system stores that p2 depends on p1
(written p2 �→ p1), since the value of the variable involved in the condition de-
pends on p1. At this point pub has the same value, namely 1, as sec, and hence
leaks this fact. The key of the technique is to retain κ for future runs. Suppose
that in a successive run sec is 0H . The condition from line 2 is evaluated and
the direct dependency p1 �→ H is registered in δ. The third line is skipped and
the condition pointed by p2 is checked. This condition refers to tmp whose value
is 1L. The body in line 5 is executed and pub is updated with 0p2. At this point,
it is possible to detect that pub depends on H as follows: variable pub depends
on p2 (using the cache κ); p2 depends on p1; and the level of the latter program
point is H according to the direct dependency cache. Table 1 summarizes both
runs as explained above.

Inlining Monitors. An alternative to implementing a monitor as part of a
custom virtual machine or modifying the interpreter [16,17] is to resort to inlin-
ing [2,15,18,19]. The main advantage behind this option is that no modification
of the host run-time environment is needed, hence achieving a greater degree
of portability. This is particularly important in web applications. Also, such an
inlining can take place either at the browser level or at the proxy level, thus
allowing dedicated hardware to inline system wide. Magazinius et al. [19] intro-
duce the notion of on-the-fly inlining. The monitor in charge of enforcing the
security policy uses a function trans to inline a monitored code. This function
is also available at run-time and can be used to transform code only known im-
mediately before its execution. The best example of this dynamic source is the
eval primitive.

58 L. Bello and E. Bonelli

Table 1. Dependency tracking on two runs of Fig. 1

First run Second run
line 1 2 3 4 6 1 2 4 5 6

sec 1H 1H 1H 1H 1H 0H 0H 0H 0H 0H

tmp 1L 1L 0p1 0p1 0p1 1L 1L 1L 1L 1L

pub 1L 1L 1L 1L 1L 1L 1L 1L 0p2 0p2

p1 H H H H H H H H
p2 L L L L L
p3 L L

ret 1p3 0p3

κ p1

p2
�
�� p1

p2
�
�� p1

p2
�
�� p1

p2
�
�� p1

p2
�
�� p1

p2
�
�� p1

p2
�
��

p3
�
��

Contribution. This paper takes the first steps in inlining the dependency anal-
ysis [5] as a viable alternative to supplying a flow-sensitive monitor with either
static information or resorting to the no-sensitive upgrade or permissive upgrade
schemes. Given that we aim at applying our monitor to JavaScript, we incor-
porate eval into our analysis. Since the code evaluated by eval is generated
at run-time and, at the same time, the dependency tracking technique requires
that program points be persisted, we resort to hashing to associate program
points to dynamically generated code. We define and prove correct an on-the-fly
inlining transformation, in the style of [19], of a security monitor which is based
on dependency analysis that incorporates these extensions.

Paper Structure. Sec. 2 recasts the theory of [5] originally developed for a
lambda calculus with references to a simple imperative language. Sec. 3 briefly
describes the target language of the inlining transformation and defines the
transformation itself. Sec. 4 extends the transformation to eval. The proper-
ties of the transformation are developed in Sec. 5. Finally, we present conclu-
sions and possible lines of additional work. A prototype in Python is available
at http://tpi.blog.unq.edu.ar/~ebonelli/inlining.tar.gz.

2 Dependency Analysis for a Simple Imperative
Language

We adapt the dependency analysis framework of Shroff et al. [5] to a simple
imperative language Wdeps prior to considering an inlining transformation for it.
Its syntax is given in Fig. 2. There are two main syntactic categories, expressions
and commands. An expression is either a variable, a labeled value, a binary
expression, an application (of a user-defined function to an argument expression)
or a case expression. A labeled value is a tuple consisting of a value (an integer or

http://tpi.blog.unq.edu.ar/~ebonelli/inlining.tar.gz

On-the-Fly Inlining of Dynamic Dependency Monitors 59

P, π ::= {p} (set of ppids, program counter)
v ::= i

∣
∣ s (value)

σ ::= 〈v, P, L〉 (labeled value)
e ::= x

∣
∣ σ

∣
∣ e ⊕ e

∣
∣ f(e)

∣
∣ case e of (e : e)+ (expression)

c ::= skip
∣
∣ x := e

∣
∣ letx = e in c

∣
∣ c; c

∣
∣ whilep e do c (command)

∣
∣ ifp e then c else c

∣
∣ retp(e)

∣
∣ stop

E ::= ∅ ∣
∣ f(x)

.
= e; E (expr. environment)

μ ::= {x �→ σ} (memory)

κ ::= {p �→ P} (cache of dependencies)

δ ::= {p �→ L} (cache of direct flows)

Fig. 2. Syntax of Wdeps

a string), a set of program points and a security level. We assume a set of program
points p1, p2, Security levels are taken from a lattice (L,�). We write � for
the supremum. Commands are standard. For technical purposes, it is convenient
to assume that the program to be executed ends in a return command ret, and
that moreover this is the unique occurrence of ret in the program. Note however
that this assumption may be dropped at the expense of slightly complicating the
statement of information leak (Def. 1) and delayed leak detection (Prop. 1). The
while, if and ret commands are sub-scripted with a program point.

The operational semantics of Wdeps is defined in terms of a binary relation
over configurations, tuples of the form 〈E, κ, δ, π, μ, c〉 where E is an expression
environment, κ is a cache of indirect flows, δ is a cache of direct flows, π is
the program counter (a set of program points), μ is a (partial) function from
variables to labeled values and c is the current command. We use D,Di, etc for
configurations. We write μ[x �→ σ] for the memory that behaves as μ except on
x to which it associates σ. Also, μ\x undefines μ on x. The domain of μ includes
a special variable ret that holds the return value. The expression environment
declares all available user-defined functions. We omit writing it in configurations
and assume it is implicitly present. Expression evaluation is introduced in terms
of closed expression evaluation and then (open) expression evaluation. Closed
expression evaluation is defined as follows,

I(〈v, P, L〉) def
= 〈v, P, L〉

I(f(e))
def
= f̂(I(e))

I(case e of e : e′)
def
= ˆcase I(e) of e′

i : e′

I(e1 ⊕ e2)
def
= I(e1)⊕̂I(e2)

where we assume f̂(〈v, P, L〉) def= I(e[x := 〈v, P, L〉]), if f(x) .= e ∈ E;

ˆcase 〈u, P, L〉 of e : e′ def
= 〈v, P ∪P ′, L�L′〉 if u matches1 ei with substitution σ

and I(σe′i) = 〈v, P ′, L′〉; and 〈i1, P1, L1〉⊕̂〈i2, P2, L2〉 def
= 〈i1⊕i2, P1∪P2, L1�L2〉.

1 Here we mean the standard notion of matching of a closed term e1 against an alge-
braic pattern e2; if successful, it produces a substitution σ for the variables of e2 s.t.
σ(e2) = e1.

60 L. Bello and E. Bonelli

We assume that in a case-expression exactly one branch applies. Moreover, we
leave it to the user to guarantee that user-defined functions are terminating.

Given a memory μ, the variable replacement function, also written μ, applies
to expressions: it traverses expressions replacing variables by their values. It is
defined only if the free variables of its argument are in the domain of μ. Finally,
open expression evaluation is defined as I ◦ μ, the composition of I and μ, and
abbreviated μ̂.

The reduction judgement D1 � D2 states that the former configuration re-
duces to the latter. This judgement is defined by means of the reduction schemes
of Fig. 3. It is a mixed-step semantics in the sense that it mixes both small and
big-step semantics. Thus D1 � D2 may be read as D2 may be obtained from
D1 in some number of small reduction steps. We write D1

n� D2 for the n-fold
composition of �. Rule Skip is straightforward; stop is a run-time command to
indicate the end of execution. The Let scheme is standard; we resort to [x := e]
for capture avoiding substitution of all occurrences of the free variable x by e.
The Assign scheme updates memory μ by associating x with the labeled value
of e, augmenting the indirect dependencies with the program counter π. We omit
the description of While-T and While-F and describe the schemes for the con-
ditional (which are similar). If the condition is true (the reduction scheme when
the condition is false, namely If-F, is identical except that it reduces c2, hence it
is omitted), then before executing the corresponding branch the configuration is
updated. First the program counter is updated to include the program point p.
A new dependency is added to the cache of indirect dependencies for p, namely
π ∪P , indicating that there is an indirect flow from the current security context
under which the conditional is being reduced and the condition e (via its depen-
dencies). The union operator κ � κ′ is defined as κ′′ iff κ′′ is the smallest cache
such that κ, κ′ ≤ κ′′. Here the ordering relation on caches is defined as κ ≤ κ′

iff ∀p ∈ dom(κ).κ(p) ⊆ κ′(p). Finally, the security level L of the condition is
recorded in δ′, reflecting the direct dependency of the branch on e. The scheme
for ret updates the cache of indirect dependencies indicating that there is an
indirect flow from the program counter and e (via its dependencies) towards
the value that is returned. Finally, we note that 〈κ, δ, π, μ, c〉 � 〈κ′, δ′, π′, μ′, c′〉
implies κ ≤ κ′ and π′ = π.

2.1 Properties

Delayed leak detection (Prop. 1), the main property that the monitor enjoys,
is presented in this section. Before doing so however, we require some defini-
tions. The transitive closure of cache look-up is defined as κ(p)

def
= P ∪ κ(P)+,

where κ(p) = P . Suppose P = {p1, . . . , pk}. Then κ(P)
def
=

⋃

i∈1..k k(pi)

and κ(P)+
def
=

⋃

i∈1..k k(pi)+. We define secLevelκ,δP
def
= δ(P ∪ κ(P)+), the

join of all security levels associated to the transitive closure of P according
to the direct dependencies recorded in δ. We write μ[xk �→ 〈vk, ∅, Lhigh〉] for
μ[x1 �→ 〈v1, ∅, Lhigh〉] . . . [xk �→ 〈vk, ∅, Lhigh〉]. We fix Llow and Lhigh to be any
two distinct levels. A terminating run leaks information via its return value, if

On-the-Fly Inlining of Dynamic Dependency Monitors 61

Skip
〈κ, δ, π, μ, skip〉 � 〈κ, δ, π, μ, stop〉

〈κ, δ, π, μ[z �→ μ̂(e)], c[x := z]〉 n� 〈κ′, δ′, π, μ′, stop〉 z fresh
Let

〈κ, δ, π, μ, let x = e in c〉 � 〈κ′, δ′, π, μ′ \ z, stop〉

〈κ, δ, π, μ, c1〉 n
� 〈κ′, δ′, π, μ′, stop〉

Seq
〈κ, δ, π, μ, c1; c2〉 � 〈κ′, δ′, π, μ′, c2〉

μ̂(e) = 〈v, P, L〉 μ′ = μ[x �→ 〈v, P ∪ π, L〉]
Assign

〈κ, δ, π, μ, x := e〉 � 〈κ, δ, π, μ′, stop〉

μ̂(e) = 〈i, P, L〉 i 	= 0 π′ = π ∪ {p} κ′ = κ
 {p �→ π ∪ P}
δ′ = δ
 {p �→ L} 〈κ′, δ′, π′, μ, c〉 n� 〈κ′′, δ′′, π′, μ′′, stop〉

While-T
〈κ, δ, π, μ, whilep e do c〉 � 〈κ′′, δ′′, π, μ′, whilep e do c〉

μ̂(e) = 〈0, P, L〉 κ′ = κ
 {p �→ π ∪ P} δ′ = δ
 {p �→ L}
While-F

〈κ, δ, π, μ, whilep e do c〉 � 〈κ′, δ′, π, μ, stop〉

μ̂(e) = 〈i, P, L〉 i 	= 0 π′ = π ∪ {p} κ′ = κ
 {p �→ π ∪ P}
δ′ = δ
 {p �→ L} 〈κ′, δ′, π′, μ, c1〉 n� 〈κ′′, δ′′, π′, μ′, stop〉

If-T
〈κ, δ, π, μ, ifpe then c1 else c2〉 � 〈κ′′, δ′′, π, μ′, stop〉

μ̂(e) = 〈v, P, L〉 κ′ = κ
 {p �→ π ∪ P} δ′ = δ
 {p �→ L}
Ret

〈κ, δ, π, μ, retp(e)〉 � 〈κ′, δ′, π, μ[ret �→ 〈v, P ∪ π, L〉], stop〉

Fig. 3. Mixed-step semantics for Wdeps

this return value is visible to an attacker as determined by the schemes in Fig. 3
and there is another run of the same command, whose initial memory differs
only in secret values w.r.t. that of the first run, that produces a different return
value. Moreover, this second run has the final cache of indirect dependencies of
the first run (κ1) as its initial cache of indirect dependencies.

Definition 1 (Information Leak [5]). Let μ0
def
= μ[xk �→ 〈vk, ∅, Lhigh〉] for

some memory μ. A run 〈κ0, δ0, π, μ0, c〉
n1� 〈κ1, δ1, π, μ1, stop〉 leaks information

w.r.t. security level Llow , with Lhigh �� Llow iff

1. μ1(ret) = 〈i1, P1, L1〉;
2. (secLevelκ1,δ1P1) � L1 � Llow ; and
3. there exists k labeled values 〈v′k, ∅, Lhigh〉 s.t. μ′

0 = μ[xk �→ 〈v′k, ∅, Lhigh〉] and

〈κ1, δ0, π, μ′
0, c〉

n2� 〈κ2, δ2, π, μ2, stop〉 and μ2(ret) = 〈i2, P2, L2〉 with i1 �= i2.

62 L. Bello and E. Bonelli

Delayed leak detection is proved in [5] in the setting of a higher-order functional
language and may be adapted to our simple imperative language.

Proposition 1. If

– μ0 = μ[xk �→ 〈vk, ∅, Lk〉];
– the run 〈κ0, δ0, π, μ0, c〉

n1� 〈κ1, δ1, π, μ1, stop〉 leaks information w.r.t. secu-
rity level Llow ; and

– μ1(ret) = 〈i1, P1, L1〉
then there exists 〈v′k, ∅, L′

k〉 s.t.

– μ′
0 = μ[xk �→ 〈v′k, ∅, L′

k〉];
– 〈κ1, δ0, π, μ′

0, c〉
n2� 〈κ2, δ2, π, μ2, stop〉; and

– secLevelκ2,δ1P1 �� Llow .

The labeled values 〈v′k, ∅, L′
k〉 may be either public or secret since, if the first run

leaks information, then appropriate input values of any required level must be
supplied in order for the second run to gather the necessary dependencies that
allow it to detect the leak.

3 Inlining the Dependency Analysis

The inlining transformation trans inserts code that allows dependencies to be
tracked during execution. The target of the transformation is a simple imperative
language we call W whose syntax is defined as follows:

v ::= i
∣
∣ s

∣
∣ P

∣
∣ L (value)

e ::= x
∣
∣ v

∣
∣ e ⊕ e

∣
∣ f(e)

∣
∣ case e of (e : e)+ (expression)

c ::= skip
∣
∣ c; c

∣
∣ letx = e in c

∣
∣ x := e

∣
∣ while e do c

∣
∣ (command)

∣
∣ if e then c else c

∣
∣ ret(e)

∣
∣ stop

M ::= {x �→ v} (memory)

In contrast to Wdeps , it operates on standard, unlabeled values and also in-
cludes sets of program points and security levels as values, since they will be
manipulated by the inlined monitor. Moreover, branches, loops and return com-
mands are no longer decorated with program points. Expression evaluation is
defined similarly to Wdeps . A W-(run-time) configuration is an expression of the
form 〈E, M, c〉 (as usual E shall be dropped for the sake of readability) denoted
with letters C, Ci, etc. The small-step2 semantics of W commands is standard
and hence omitted. We write C → C′ when C′ is obtained from C via a reduc-
tion step. The transformation trans is a user-defined function that resides in E;
when applied to a string it produces a new one. We use double-quotes for string
constants and ++ for string concatenation.

We now describe the inlining transformation depicted in Fig. 4 and Fig. 5. The
inlining of skip is immediate. Regarding assignment x := e, the transformation
2 Hence not mixed-step but rather the standard notion.

On-the-Fly Inlining of Dynamic Dependency Monitors 63

1 trans(y) =

2 case y of

3 "skip": "skip"

4 "x:=e":
5 "xL:= lev(” ++ vars(”e”) ++ ”);" ++
6 "xP:= dep(” ++ vars(”e”) ++ ”) | pc;" ++
7 "x := e"
8 "let x=e in c":
9 "let x=e in " ++

10 "xL:= lev(" ++ vars(”e”) ++ ");" ++
11 "xP := dep(" ++ vars(”e”) ++ ") | pc;" ++
12 trans(c)
13 "c1;c2":

14 trans(c1) ++ ";" ++ trans(c2)
15 # continued below

Fig. 4. Inlining transformation (1/2)

introduces two shadow variables xP and xL. The former is for tracking the
indirect dependencies of x while the latter is for tracking its security level. As
may be perceived from the inlining of assignment, the transformation trans is
in fact defined together with three other user-defined functions, namely vars ,
lev and dep. The first extracts the variables in a string returning a new string
listing the comma-separated variables. Eg. vars(”x ⊕ f(2 ⊕ y)”) would return,
after evaluation, the string “x, y”. The second user-defined function computes
the least upper bound of the security levels of the variables in a string and the last
computes the union of the implicit dependencies of the variables in a string. The
level of e and its indirect dependencies are registered in xL and xP , respectively.
In the case of xP , the current program counter is included by means of the
variable pc. The binary operator | denotes the union between sets. In contrast
to vars(”e”), which is computed at inlining time, lev and dep are computed
when the inlined code is executed. We close the description of the inlining of
assignment by noting that the transformed code adopts flow-sensitivity in the
sense that the security level of the values stored in variables may vary during
execution. It should also be noted that rather than resort to the no sensitive
upgrade discipline of Austin and Flanagan [13] to avoid the attack of Fig. 1
(which is also adopted by [19] in their inlining transformation), the dependency
monitor silently tracks dependencies without getting stuck.

The let construct is similar to assignment but also resorts to the let construct
of W . Here we incur in an abuse of notation since in practice we expect xL and xP

to be implemented in terms of dictionaries L[x] and P [x]. Hence we assume that
the declared variable x also binds the x in xL and xP . The inlining of command
composition is simply the inlining of each command. In the case of while (Fig. 5)
first we have to update the current indirect dependencies cache and the cache
of direct flows (lines 3 and 4, respectively). This is because evaluation of e will
take place at least once in order to determine whether program execution skips

64 L. Bello and E. Bonelli

1 # continued from above

2 "whilep e do c":
3 "kp := kp | dep(" ++ vars(”e”) ++ ") | pc;" ++
4 "dp := dp | lev(" ++ vars(”e”) ++ ");" ++
5 "while e do " ++
6 "(let pc′= pc in " ++
7 "pc := pc | {p};" ++
8 trans(c) ++
9 "pc := pc′;" ++

10 "kp := kp | dep(” ++ vars(”e”) ++ ”) | pc;" ++
11 "dp := dp | lev(” ++ vars(”e”) ++ ”));"
12 "ifp e then c1 else c2":

13 "kp := kp | dep(" ++ vars(”e”) ++ ") | pc;" ++
14 "dp := dp | lev(" ++ vars(”e”) ++ ");" ++
15 "let pc′= pc in " ++
16 "pc := pc | {p};" ++
17 "if e then " ++ trans(c1) ++ "else" ++ trans(c2)++ ";" ++
18 "pc := pc′"
19 "retp (e)":
20 "kp := kp | dep(" ++ vars(”e”) ++ texttt”) | pc;" ++
21 "dp := dp | lev(" ++ vars(”e”) ++ ");" ++
22 "ret (e)"

Fig. 5. Inlining transformation (2/2)

the body of the while-loop or enters it. For that purpose we assume that we
have at our disposal global variables kp and dp, for each program point p in the
command to inline. Once inside the body, a copy of the program counter is stored
in pc′ and then the program counter is updated (line 7) with the program point
of the condition of the while. Upon completing the execution of trans(c), it is
restored and then the dependencies are updated reflecting that a new evaluation
of e takes place. The clause for the conditional is similar to the one for while.
The clause for ret follows a similar description.

4 Incorporating eval

This section considers the extension of Wdeps with the command eval(e). Many
modern languages, including JavaScript, perform dynamic code evaluation. IFA
studies have recently begun including it [9,19,20].

The argument of eval is an expression that denotes a string that parses to a
program and is generated at run-time. Therefore its set of program points may
vary. Since the monitor must persist the cache of indirect flows across different
runs, we introduce a new element to Wdeps -configurations, namely a family of
caches indexed by the codomain of a hash function: K is a mapping from the
hash of the source code to a cache of indirect flows (i.e. K ::= {h �→ κ} where h
are elements of the codomain of the hash function). Wdeps-configurations thus

On-the-Fly Inlining of Dynamic Dependency Monitors 65

1 "evalp(e)":
2 "let pc′ = pc in " ++
3 "pc := pc | {p}" ++
4 "kp := kp | dep(” ++ vars(”e”) ++ ”) | pc′" ++
5 "dp := dp | lev(” ++ vars(”e”) ++ ”)" ++
6 "let h = hash(e) in " ++
7 "k := k | Kh;" ++
8 "eval(trans(e));" ++
9 "Kh := Kh | depsIn(k, e);" ++

10 "pc := pc′"

Fig. 6. Inlining of evalp(e)

take the new form 〈K, κ, δ, π, μ, c〉. The reduction schemes of Fig. 3 are extended
by (inductively) dragging along the new component; the following new reduction
scheme, Eval, will be in charge of updating it. A quick word on notation before
proceeding: we write K(h) for the cache of indirect dependencies of s, where s is
a string that parses to a command and hash(s) = h. Also, given a cache κ and
a command c, the expression κ|c is defined as follows (where programPoints(c) is

the set of program points in c): κ|c def
= {p �→ P | p ∈ programPoints(c)∧κ(p) = P}.

The Eval reduction scheme is as follows:

μ̂(e) = 〈s, P, L〉 π′ = π ∪ {p} h = hash(s)

κ′ = κ
 K(h)
 {p �→ π ∪ P} δ′ = δ
 {p �→ L}
〈K, κ′, δ′, π′, μ, parse(s)〉 n� 〈K′, κ′′, δ′′, π′, μ′′, stop〉

Eval
〈K, κ, δ, π, μ, evalp(e)〉 � 〈K′[h �→ K′(h)
 κ′′|parse(s)], κ

′′, δ′′, π, μ′′, stop〉

This reduction scheme looks up the cache for the hash of s (that is K(h)) and then
adds it to the current indirect cache. Also added to this cache is the dependency
of the code to be evaluated on the level of the context and the dependencies of
the expression e itself. The resulting cache is called κ′. After reduction, K′ is
updated with any new dependencies that may have arised (recursively3) for s
(written K′(h) above) together with the set of program points affected to parse(s)
by the outermost (i.e. non-recursive) reduction (written κ′′|parse(s) above). Eval
may be inlined as indicated in Fig. 6 where dep(k, e) represents the user-defined
function that computes κ|c. Note that c here is the code that results from parsing
the value denoted by e.

This approach has a downside. When the attacker has enough control over
e, she can manipulate it in order to always generate different hashes. This
affects the accumulation of dependencies (the cache of indirect flows will never
be augmented across different runs) and hence the effectiveness of the monitor in

3 When parse(s) itself has an occurrence of eval whose argument evaluates to s.

66 L. Bello and E. Bonelli

1 "evalp(e)":
2 "let pc′ = pc in:" ++
3 "pc := pc | {p}" ++
4 "kp := kp | dep(” ++ vars(”e”) ++ ”) | pc′" ++
5 "dp := dp | lev(” ++ vars(”e”) ++ ”)" ++
6 "let h = hash(e) in:" ++
7 "k := k | Kh;" ++
8 "eval(trans(e));" ++
9 "dp := dp | secLevel(k,d,dom(depsIn(k, e));" ++

10 "Kh := Kh | depsIn(k, e);" ++
11 "pc := pc′"

Fig. 8. External anchor for evalp(e)

identifying leaks. Since the monitor can leak during early runs, this may not be
desirable. The following code exemplifies this situation:

1 tmp := 1; pub := 1;
2 evalp(x ++ " ifq1 sec then tmp := 0;
3 ifq2 tmp then pub := 0");
4 retq3 (pub)

qH
1

��

q2a
��

����
��

��
��

p �� ��

�� �	
q3

b

��

Fig. 7. Edges a and b are both
needed to detect the leak in q3

The attacker may have control over x, af-
fecting the hash and, therefore, avoid indirect
dependencies from accumulating across differ-
ent runs. Fig 7 represents a dependency chain
of this code. The shaded box represents the
eval context. Notice that q1 and q2 point to p
because π had been extended with the latter.
The edges a and b are created separately in
two different runs, when sec is 1 or 0 respec-
tively. The monitor should be able to capture
the leak by accumulating both edges in κ, just like in the example in Fig. 1,
because there is a path that connects q3 with the high labeled q1. But, since
the attacker may manipulate the hash function output via the variable x, it is
possible to avoid the accumulative effect in κ thus a and b will not exist simul-
taneously in any run.

One approach to this situation is to allow the program point p in the evalp(e)
command to absorb all program points in the code denoted by e. Consequently,
if a high node is created in the eval context, p will be raised to high just after
the execution of eval. The reduction scheme Eval would have to be replaced
by Eval’:

On-the-Fly Inlining of Dynamic Dependency Monitors 67

μ̂(e) = 〈s, P, L〉 h = hash(s) π′ = π ∪ {p}
δ′ = δ
 {p �→ L} κ′ = κ
 K(h)
 {p �→ π ∪ P}

δ′′′ = δ′′[p �→ secLevelκ
′′,δ′′dom(κ′′|parse(s))]

〈K, κ′, δ′, π′, μ, parse(s)〉 n
� 〈K′, κ′′, δ′′, π′, μ′′, stop〉

Eval’
〈K, κ, δ, π, μ, evalp(e)〉 � 〈K′[h �→ K′(h)
 κ′′|parse(s)], κ

′′, δ′′′, π, μ′′, stop〉

qH
1

��

q2a
��

����
��

��
��

pH �� ��

�� �	
q3

b

��

Fig. 9. Dependency chain with ex-
ternal anchor for evalp(e)

Intuitively, every node associated to the pro-
gram argument of eval passes on to p its level
which hence works as an external anchor. In
this way, if any node has the chance to be in
the path of a leak, every low variable depend-
ing on them is considered dangerous. The new
dependency chain for the above mentioned ex-
ample is shown in Fig. 9, where the leak is
detected. More precisely, when evalp(e) con-
cludes, δ′′ is upgraded to secLevelκ,δdom(κ′′|c)
(where dom is the domain of the mapping).
Since q1 is assigned level secret by δ′′, this
bumps the level of p to secret. The proposed inlining is given in Fig. 8. In this
approach the ret statement should not be allowed inside the eval, since the
bumping of the security level of p is produced a posteriori to the execution of
the argument of eval.

5 Properties of the Inlining Transformation

This section addresses the correctness of the inlined transformation. We show
that the inlined transformation of a command c simulates the execution of the
monitor. First we define what it means for a W-configuration to simulate a
Wdeps-configuration. We write trans(c) for the result of applying the recursive
function determined by the code for trans to the argument ”c” and then parsing
the result. Two sample clauses of trans are: trans(c1; c2)

def
= trans(c1); trans(c2) for

command composition and trans(eval(e))
def
= let h = hash(e) in (k := k |Kh;

eval(trans(e)); Kh :=Kh | depsIn(k, e)) for eval. We also extend this definition

with the clause: trans(stop)
def
= stop.

Definition 2. A W-configuration C simulates a Wdeps-configuration D, written
D ≺ C, iff

1. D = 〈K, κ, δ, π, μ, c〉;
2. C = 〈M, trans(c)〉;
3. M(K) = K, M(k) = κ, M(d) = δ, M(pc) = π; and
4. μ(x) = 〈M(x), M(xP), M(xL)〉, for all x ∈ dom(μ).

In the expression ‘M(K) = K’ by abuse of notation we view M(K) as a “dic-
tionary” and therefore understand this expression as signifying that for all

68 L. Bello and E. Bonelli

h ∈ dom(K), M(Kh) = K(h). Similar comments apply to M(k) = κ and
M(d) = δ. In the case of M(pc) = π, both sets of program points are tested
for equality.

The following correctness property is proved by induction on an appropriate
notion of depth of the reduction sequence D1

n� D2.

Proposition 2. If (1) D1 = 〈K1, κ1, δ1, π1, μ1, c〉; (2) C1 = 〈M1, trans(c)〉; (3)
D1 ≺ C1; and (4) D1

n� D2, n ≥ 0; then there exists C2 s.t. C1 � C2 and
D2 ≺ C2.

D1��

n

��

≺ C1

����

D2 ≺ C2

Remark 1. A converse result also holds: modulo the administrative commands
inserted by trans, reduction from C1 originates from corresponding commands in
c. This may be formalised by requiring the inlining transformation to insert a
form of labeled skip command to signal the correspondence of inlined commands
with their original counterparts (cf. Thm.2(b) in [15]).

6 Conclusions and Future Work

We recast the dependency analysis monitor of Shroff et al. [5] to a simple imper-
ative language and propose a transformation for inlining this monitor on-the-fly.
The purpose is to explore the viability of a completely dynamic inlined depen-
dency analysis as an alternative to other run-time approaches that either require
additional information from the source code (such as branches not taken [15]) or
resort to rather restrictive mechanisms such as no sensitive upgrade [13] (where
execution gets stuck on attempting to assign a public variable in a secret con-
text) or permissive upgrade [14] (where, although assignment of public variables
in a secret contexts is not allowed, branching on expressions that depend on such
variables is disallowed).

This paper reports work in progress, hence we mention some of the lines
we are currently following. First we would like to gain some experience with a
prototype implementation of the inlined transformation as a means of foreseeing
issues related to usability and scaling. Second, we are considering the inclusion
of an output command and an analysis of how the notion of progress-sensitivity
[9] adapts to the dependency tracking setting. Finally, inlining declassification
mechanisms will surely prove crucial for any practical tool based on IFA.

Acknowledgements. To the referees for supplying helpful feedback.

References

1. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications

On-the-Fly Inlining of Dynamic Dependency Monitors 69

2. Venkatakrishnan, V.N., Xu, W., Duvarney, D.C., Sekar, R.: Provably correct run-
time enforcement of non-interference properties. In: International Conference on
Information and Communication Security, pp. 332–351 (2006)

3. Guernic, G.L., Banerjee, A., Jensen, T.P., Schmidt, D.A.: Automata-Based Con-
fidentiality Monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS,
vol. 4435, pp. 75–89. Springer, Heidelberg (2008)

4. Guernic, G.L.: Automaton-based confidentiality monitoring of concurrent pro-
grams. In: Computer Security Foundations Workshop, pp. 218–232 (2007)

5. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure in-
formation flow. In: Proceedings of the 20th IEEE Computer Security Foundations
Symposium, pp. 203–217. IEEE Computer Society, Washington, DC, USA (2007)

6. Mccamant, S., Ernst, M.D.: Quantitative information flow as network flow capacity.
In: SIGPLAN Conference on Programming Language Design and Implementation,
pp. 193–205 (2008)

7. Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller coaster
of information-flow control research. In: Ershov. Memorial Conf., pp. 352–365
(2009)

8. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
SIGPLAN Conference on Programming Language Design and Implementation, pp.
113–124 (2009)

9. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for dy-
namic languages. In: Computer Security Foundations Workshop, pp. 43–59 (2009)

10. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. Journal of Computer Security 4, 167–188

11. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proceedings of the 2010 23rd IEEE Computer Security Foundations Symposium,
CSF 2010, pp. 186–199. IEEE Computer Society, Washington, DC, USA (2010)

12. Hunt, S., Sands, D.: On flow-sensitive security types. In: Morrisett, J.G., Jones,
S.L.P. (eds.) POPL, pp. 79–90. ACM (2006)

13. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
SIGPLAN Not. 44, 20–31 (2009)

14. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In: Pro-
ceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS 2010, pp. 3:1–3:12. ACM, New York (2010)

15. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: Computer
Security Foundations Workshop, pp. 200–214 (2010)

16. Futoransky, A., Gutesman, E., Waissbein, A.: A dynamic technique for enhancing
the security and privacy of web applications. In: Black Hat USA 2007 Briefings,
August 1-2, Las Vegas, NV, USA (2007)

17. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript-based
browser extensions. In: Annual Comp. Sec. App. Conference, pp. 382–391 (2009)

18. Erlingsson, U.: The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University (2003)
TR 2003-1916

19. Magazinius, J., Russo, R., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. In: Proc. IFIP International Information Security Conference (2010)

20. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
javascript. In: SIGPLAN Conference on Programming Language Design and Im-
plementation, pp. 50–62 (2009)

	On-the-Fly Inlining of Dynamic Dependency Monitors for Secure Information Flow
	Introduction
	Dependency Analysis for a Simple Imperative Language
	Properties

	Inlining the Dependency Analysis
	Incorporating eval
	Properties of the Inlining Transformation
	Conclusions and Future Work
	References

