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Abstract8

Proof terms are syntactic expressions that represent computations in term rewriting. They were9

introduced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of10

reductions in (left-linear) first-order term rewriting systems. We study the problem of extending the11

notion of proof term to higher-order rewriting, which generalizes the first-order setting by allowing12

terms with binders and higher-order substitution. In previous works that devise proof terms for13

higher-order rewriting, such as Bruggink’s, it has been noted that the challenge lies in reconciling14

composition of proof terms and higher-order substitution (β-equivalence). This led Bruggink to15

reject “nested” composition, other than at the outermost level. In this paper, we propose a notion16

of higher-order proof term we dub rewrites that supports nested composition. We then define two17

notions of equivalence on rewrites, namely permutation equivalence and projection equivalence, and18

show that they coincide.19
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1 Introduction27

Term rewriting systems model computation as sequences of steps between terms, reduction28

sequences, where steps are instances of term rewriting rules [15]. It is natural to consider29

reduction sequences up to swapping of orthogonal steps since such reductions perform the30

“same work”. The ensuing notion of equivalence is called permutation equivalence and was31

first studied by Lévy [11] in the setting of the λ-calculus but has appeared in other guises32

connected with concurrency [15, Rem.8.1.1]. As an example, consider the rewrite rule33

c(x, f(y)) _ d(x, x) and the following reduction sequence where, in each step, the contracted34

redex is underlined:35

c(c(z, f(z)), f(z)) _ d(c(z, f(z)), c(z, f(z))) _ d(d(z, z), c(z, f(z))) _ d(d(z, z), d(z, z))
(1)36

Performing the innermost redex first, rather than the outermost one, leads to:37

c(c(z, f(z)), f(z)) _ c(d(z, z), f(z)) _ d(d(z, z), d(z, z)) (2)38

The first step in (1) makes two copies of the innermost redex. It is the two steps contracting39

these copies that are swapped with the first one in (1) to produce (2). Such duplication (and40
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11:2 Reductions in Higher-Order Rewriting and Their Equivalence

erasure) contribute most of the complications behind permutation equivalence, both in its41

formulation and the study of its properties.42

Proof Terms. Proof terms are a natural representation for computations. They were43

introduced by Meseguer as a means of representing proofs in Rewriting Logic [13] and exploited44

by van Oostrom and de Vrijer in the setting of first-order left-linear rewriting systems, to study45

equivalence of reductions in [17] and [15, Chapter 9]. Rewrite rules are assigned rule symbols46

denoting the application of a rewriting rule. Proof terms are expressions built using function47

symbols, a binary operator “;” denoting sequential composition of proof terms, and rule48

symbols. Assuming the following rule symbol for our rewrite rule ϱ(x, y) : c(x, f(y)) _ d(x, x),49

reduction (1) may be represented as the proof term: ϱ(c(z, f(z)), z) ; d(ϱ(z, z), c(z, f(z))) ;50

d(d(z, z), ϱ(z, z)) and reduction (2) as the proof term: c(ϱ(z, z), f(z)) ; ϱ(d(z, z), z). One51

notable feature of proof terms is that they support parallel steps. For instance, both proof52

terms above are permutation equivalent to ϱ(c(z, f(z)), z) ; d(ϱ(z, z), ϱ(z, z)), which performs53

the two last steps in parallel, as well as to ϱ(ϱ(z, z), z), which performs all steps simultaneously.54

Permutation equivalence now can be studied in terms of equational theories on proof terms.55

Equivalence of Reductions via Proof Terms for First-Order Rewriting. In [17], van56

Oostrom and de Vrijer characterize permutation equivalence of proof terms in four alternative57

ways. First, they formulate an equational theory of permutation equivalence ρ ≈ σ between58

proof terms, such that for example ϱ(c(z, f(z)), z) ; d(ϱ(z, z), ϱ(z, z)) ≈ ϱ(ϱ(z, z), z) holds.59

These equations account for the behavior of proof term composition, which has a monoidal60

structure, in the sense that composition is associative and empty steps act as identities.61

Second, they define an operation of projection ρ/σ, denoting the computational work that62

is left of ρ after σ. For example, c(ϱ(z, z), f(z))/ϱ(c(z, f(z)), z) = d(ϱ(z, z), ϱ(z, z)). This63

induces a notion of projection equivalence between proof terms ρ and σ, declared to hold64

when both ρ/σ and σ/ρ are empty, i.e. they contain no rule symbols. Third, they define a65

standardization procedure to reorder the steps of a reduction in outside-in order, mapping66

each proof term ρ to a proof term ρ∗ in standard form. For example, the (parallel) standard67

form of c(ϱ(z, z), f(z)) ; ϱ(d(z, z), z) is ϱ(c(z, f(z)), z) ; d(ϱ(z, z), ϱ(z, z)). This induces a68

notion of standardization equivalence between proof terms ρ and σ, declared to hold when69

ρ∗ = σ∗. Fourth, they define a notion of labelling equivalence, based on lifting computational70

steps to labelled terms. Although these notions of equivalence were known prior to [17],71

the main result of that paper is that they are systematically studied using proof terms and,72

moreover, shown to coincide.73

Higher-Order Rewriting. Higher-order term rewriting (HOR) generalizes first-order term74

rewriting by allowing binders. Function symbols are generalized to constants of any given75

simple type, and first-order terms are generalized to simply-typed λ-terms, including constants76

and up to βη-equivalence. The paradigmatic example of a higher-order rewriting system is the77

λ-calculus. It includes a base type ι and two constants app : ι→ ι→ ι and lam : (ι→ ι)→ ι;78

β-reduction may be expressed as the higher-order rewrite rule app (lam (λz.x z)) y _ x y.79

A sample reduction sequence is:80

lam(λv.app(lam(λx.x), app(lam(λw.w), v))) _ lam(λv.app(lam(λx.x), v)) _ lam(λv.v) (3)81

Generalizing proof terms to the setting of higher-order rewriting is a natural goal. Just82

like in the first-order case, we assign rule symbols to rewrite rules. One would then expect83

to obtain proof terms by adding these rule symbols and the “;” composition operator to84
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the simply typed λ-calculus. If we assume the following rule symbol for our rewrite rule85

ϱ x y : app (lam (λz.x z)) y _ x y, then an example of a higher-order proof term for (3) is:86

lam
(

λv.
(
app(lam(λx.x), ϱ (λw.w) v) ; ϱ (λu.u) v

))
87

However, higher-order substitution and proof term composition seem not to be in conson-88

ance, an issue already observed by Bruggink [4]. Consider a variable x. This variable itself89

denotes an empty computation x _ x, so the composition (x ; x) also denotes an empty90

computation x _ x. If σ is an arbitrary proof term s _ t, the proof term (λx.(x ; x)) σ91

should, in principle, represent a computation (λx.x) s _ (λx.x) t. This is the same as s _ t,92

because terms are regarded up to βη-equivalence. The challenge lies in lifting βη-equivalence93

to the level of proof terms: if β-reduction is naively extended to operate on proof terms, the94

well-formed proof term (λx.(x ; x)) σ becomes equal to (σ ; σ), which is ill-formed because95

σ is not composable with itself if s ̸=βη t. Rather than simply disallowing the use of “;”96

under applications and abstractions (the route taken in [4]), our aim is to integrate it with97

βη-reduction.98

Contribution. We propose a syntax for higher-order proof terms, called rewrites,99

that includes βη-equivalence and allows rewrites to be freely composed. We then define a100

relation ρ ≈ σ of permutation equivalence between rewrites, the central notion of our101

work. The issue mentioned above is avoided by disallowing the ill-behaved substitution of a102

rewrite in a rewrite “ρ{x\σ}”, and by only allowing notions of substitution of a term in a103

rewrite ρ{x\s}, and of a rewrite in a term s{x\\ρ}. From these, a well-behaved notion of104

substitution of a rewrite in a rewrite ρ{x\\\σ} can be shown to be derivable. We also define a105

notion of projection ρ//σ. The induced notion of projection equivalence coincides with106

permutation equivalence, in the sense that ρ ≈ σ iff ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt, where107

ρtgt stands for the target term of ρ. The equivalence is established by means of flattening, a108

method to convert an arbitrary rewrite ρ into a (flat) representative ρ♭ that only uses the109

composition operator “;” at the top level and a notion of flat permutation equivalence110

ρ ∼ σ. Flattening is achieved by means of a rewriting system whose objects are themselves111

rewrites. This system is shown to be confluent and strongly normalizing. We also show that112

permutation equivalence is sound and complete with respect to flat permutation113

equivalence in the sense that ρ ≈ σ if and only if ρ♭ ∼ σ♭.114

Structure of the Paper. In Section 2 we review Nipkow’s Higher-Order Rewriting Systems.115

Section 3 proposes our notion of rewrite and Section 4 introduces permutation equivalence for116

them. Flattening is presented in Section 5. In this section, we also formulate an equational117

theory defining the relation ρ ∼ σ of flat permutation equivalence between flat rewrites.118

It relies crucially on a ternary relation between multisteps, called splitting and written119

µ⇔ µ1 ; µ2, meaning that µ and µ1 ; µ2 perform the same computational work. In Section 6120

we first define a projection operator for flat rewrites ρ/σ, and we lift it to a projection121

operator for arbitrary rewrites ρ//σ
def= ρ♭/σ♭. Then we show that the induced notion of122

projection equivalence coincides with permutation equivalence. Finally, we conclude and123

discuss related and future work. Detailed proofs can be found in the accompanying technical report [2].124

125
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11:4 Reductions in Higher-Order Rewriting and Their Equivalence

2 Higher-Order Rewriting126

There are various approaches to HOR in the literature, including Klop’s Combinatory127

Reduction Systems (CRSs) [8] and Nipkow’s Higher-Order Rewriting Systems (HRSs) [14,128

12]. We consider HRSs in this paper. Their use of the simply-typed lambda calculus for129

representing terms and substitution provides a suitable starting point for modeling our130

rewrites. Moreover, HRS are arguably more general than CRS in that their instantiation131

mechanism is more powerful [15, Sec.11.4.2]. We next introduce HRS. Assume given a132

denumerably infinite set of variables (x, y, . . .), base types (α, β, . . .), and constant symbols133

(c, d, . . .). The sets of terms (s, t, . . .) and types (A, B, . . .) are given by:134

s ::= x | c | λx.s | s s A ::= α | A→ A135

A term can either be a variable, a constant, an abstraction or an application. A type can136

either be a base type or an arrow type. We write fv(s) for the free variables of s. We use Xn,137

or sometimes just X if n is clear from the context, to denote a sequence X1, . . . , Xn. Following138

standard conventions, s tn stands for the iterated application s t1 . . . tn, and An → B for the139

type A1 → . . . An → B. We write s{x\t} for the capture-avoiding substitution of all free140

occurrences of x in s with t and call it a term/term substitution. We identify terms that differ141

only in the names of their bound variables. A typing context (Γ, Γ′, . . .) is a partial function142

from variables to types. We write dom(Γ) for the domain of Γ. Given a typing context Γ143

and x /∈ dom(Γ), we write Γ, x : A for the typing context such that (Γ, x : A)(x) = A, and144

(Γ, x : A)(y) = Γ(y) whenever y ̸= x. We write · for the empty typing context and x ∈ Γ if145

x ∈ dom(Γ). A signature of a HRS is a set C of typed constants c : A. A sample signature is146

C = {app : ι→ ι→ ι, lam : (ι→ ι)→ ι} for ι a base type.147

▶ Definition 1 (Type system for terms). Terms are typed using the usual typing rules of the148

simply-typed λ-calculus:149

(x : A) ∈ Γ
Var

Γ ⊢ x : A

(c : A) ∈ C
Con

Γ ⊢ c : A

Γ, x : A ⊢ s : B
Abs

Γ ⊢ λx.s : A→ B

Γ ⊢ s : A→ B Γ ⊢ t : A
App

Γ ⊢ s t : B150

Given any Γ and A such that Γ ⊢ s : A can be proved using these rules, we say s is a typed151

term over C. We typically drop C assuming it is implicit.152

We assume the usual definition of β and η-reduction between terms. Recall that β-153

reduction (resp. η-reduction) is confluent and terminating on typed terms. We write s ↓β
154

(resp. s ↓η) for the unique β-normal form (resp. η-normal form) of s. The β-normal form of155

a term s has the form λxk.a t1 . . . tm, for a either a constant or a variable. The η-expanded156

form of s is defined as:157

s ↑η def= λxn+k.a (tm ↑η) (xn+1 ↑η) . . . (xn+k ↑η)158

where s is assumed to have type An+k → B and the xn+1, . . . , xn+k are fresh. We use s ↕η
β159

to denote the term s ↓β ↑η and call it the βη-normal form of s.160

A substitution θ is a function from variables to typed terms such that θ(x) ̸= x only161

for finitely many x. The domain of a substitution is defined as dom(θ) = {x | θ(x) ̸= x}.162

The application of a substitution θ = {x1 7→ s1, . . . , xn 7→ sn} to a term t is defined as163

θ t
def= ((λxn.t) sn) ↕η

β .164
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▶ Definition 2. A pattern is a typed term in β-normal form such that all free occurrences of165

a variable xi are in a subterm of the form xi t1 . . . tk with t1, . . . , tk η-equivalent to distinct166

bound variables. A rewriting rule is a pair ⟨ℓ, r⟩ of typed terms in βη-normal form of the167

same base type with ℓ a pattern not η-equivalent to a variable and fv(r) ⊆ fv(ℓ). An HRS is168

a pair consisting of a signature and a set of rewriting rules over that signature. We typically169

omit the signature.170

▶ Definition 3. The rewrite relation →R for an HRS R is the relation over typed terms in171

βη-normal form defined as follows:172

⟨ℓ, r⟩ ∈ R
Root

θ ℓ →R θ r

s →R t
App

a rm s pn →R a rm t pn

s →R t
Abs

λx.s →R λx.t173

where a is either a constant or a variable of type Am+1+n → B. We write ∗→R (resp. ∗↔R)174

for the reflexive, transitive (resp. reflexive, symmetric and transtive) closure of →R .175

▶ Example 4. Consider a base type ι and typed constants mu : (ι → ι) → ι and f : ι →176

ι. Two sample rewriting rules are: ⟨mu(λy.x y), x (mu(λy.x y))⟩ and ⟨f x, g x⟩. All four177

terms have base type ι. An example of a sequence of rewrite steps is mu (λx.f x) →R178

f (mu (λx.f x)) →R f (mu (λx.g x)) →R g (mu (λx.g x)).179

An HRS is orthogonal if: 1. The rules are left-linear, i.e. if the left-hand side ℓ has180

fv(ℓ) = {x1, . . . , xn}, then there is exactly one free occurrence of xi in ℓ, for each 1 ≤ i ≤ n.181

2. There are no critical pairs, as defined for example in [14, Def. 4.1]. Orthogonal HRSs182

are deterministic in the sense that their rewrite relation is confluent. All of the examples of183

HRSs presented above are orthogonal. In the sequel of this paper, we assume given a fixed,184

orthogonal HRS R.185

3 Rewrites186

In this section we propose a syntax for higher-order proof terms, called rewrites1. Rewrites187

for an HRS R are a means for denoting proofs in Higher-Order Rewriting Logic (HORL,188

cf. Def. 7) which, in turn, correspond to reduction sequences in R (cf. Thm. 9). As in the189

first-order case [13], HORL is simply the equational theory that results from an HRS but190

disregarding symmetry. Given an HRS R, let Rc denote the set of pairs ⟨λxn.ℓ, λxn.r⟩ such191

that ⟨ℓ, r⟩ ∈ R and {x1, . . . , xn} = fv(ℓ). We begin by recalling the definition of equational192

logic (cf. Def. 5), the equational theory induced by an HRS. It is essentially that of [12,193

Def. 3.11], except that in the inference rule ERule we use Rc rather than R. This equivalent194

formulation will be convenient when introducing rewrites since free variables in the LHS of a195

rewrite rule will be reflected in the rewrite too.196

▶ Definition 5 (Equational Logic). An HRS R induces a relation .=R on terms defined by197

1 Our notion of rewrite is unrelated to that of Def. 2.4 in [13]; it corresponds to “proof terms” as introduced
in Sec. 3.1 in [13].

CSL 2023



11:6 Reductions in Higher-Order Rewriting and Their Equivalence

the following rules:198

Γ, x : A ⊢ s : B Γ ⊢ t : A
EBeta

Γ ⊢ (λx.s) t
.=R s{x\t} : B

Γ, x : A ⊢ s : B x /∈ fv(s)
EEta

Γ ⊢ λx.s x
.=R s : B

(x : A) ∈ Γ
EVar

Γ ⊢ x
.=R x : A

(c : A) ∈ C
ECon

Γ ⊢ c .=R c : A

Γ, x : A ⊢ s0
.=R s1 : B

EAbs
Γ ⊢ λx.s0

.=R λx.s1 : A → B

Γ ⊢ s0
.=R s1 : A → B Γ ⊢ t0

.=R t1 : A
EApp

Γ ⊢ s0 t0
.=R s1 t1 : B

⟨s, t⟩ ∈ Rc · ⊢ s : A · ⊢ t : A
ERule

Γ ⊢ s
.=R t : A

Γ ⊢ s0
.=R s1 : A

ESymm
Γ ⊢ s1

.=R s0 : A

Γ ⊢ s0
.=R s1 : A Γ ⊢ s1

.=R s2 : A
ETrans

Γ ⊢ s0
.=R s2 : A

199

▶ Theorem 6 (Thm. 3.12 in [12]). Γ ⊢ s
.=R t : A iff s ↕η

β
∗↔R t ↕η

β.200

The (⇐) direction follows from observing that →β,η and ∗↔R are all included in .=R. The201

(⇒) direction is by induction on the derivation of Γ ⊢ s
.=R t : A.202

Higher-Order Rewriting Logic results from dropping ESymm in Def. 5 and adding a proof203

witness. Its judgments take the form Γ ⊢ ρ : s _ t : A where the proof witness ρ is called a204

rewrite. Given a set of rule symbols (ϱ, ϑ, . . .), the set of rewrites (ρ, σ, . . .) is given by:205

ρ ::= x | c | ϱ | λx.ρ | ρ ρ | ρ ; ρ206

A rewrite can either be a variable, a constant, a rule symbol, an abstraction congruence, an207

application congruence, or a composition. Note that composition may occur anywhere inside208

a rewrite. For the sake of clarity we present the full system for Higher-Order Rewriting Logic209

next. We assume given an HRS R such that each rewrite rule ⟨ℓ, r⟩ ∈ R has been assigned210

a unique rule symbol ϱ and shall write ⟨ϱ, ℓ, r⟩ ∈ R and also use the same notation for Rc.211

HORL consists of two forms of typing judgments:212

1. Γ ⊢ s =βη t : A, meaning that s and t are βη-equivalent terms of type A under Γ; and213

2. Γ ⊢ ρ : s _R t : A, meaning that ρ is a rewrite with source s and target t, which are214

terms of type A under Γ.215

▶ Definition 7 (Higher-Order Rewriting Logic). Term equivalence is defined as the reflexive,216

symmetric, transitive, and contextual closure of:217

Γ, x : A ⊢ s : B Γ ⊢ t : A
EqBeta

Γ ⊢ (λx.s) t =βη s{x\t} : B

Γ, x : A ⊢ s : B x /∈ fv(s)
EqEta

Γ ⊢ λx.s x =βη s : B
218

Typing rules for rewrites are as follows:219

(x : A) ∈ Γ
RVar

Γ ⊢ x : x _R x : A

(c : A) ∈ C
RCon

Γ ⊢ c : c _R c : A

Γ, x : A ⊢ ρ : s0 _R s1 : B
RAbs

Γ ⊢ λx.ρ : λx.s0 _R λx.s1 : A → B

Γ ⊢ ρ : s0 _R s1 : A → B Γ ⊢ σ : t0 _R t1 : A
RApp

Γ ⊢ ρ σ : s0 t0 _R s1 t1 : B

⟨ϱ, s, t⟩ ∈ Rc · ⊢ s : A · ⊢ t : A
RRule

Γ ⊢ ϱ : s _R t : A

Γ ⊢ ρ : s0 _R s1 : A Γ ⊢ σ : s1 _R s2 : A
RTrans

Γ ⊢ ρ ; σ : s0 _R s2 : A

Γ ⊢ ρ : s′ _R t′ : A Γ ⊢ s =βη s′ : A Γ ⊢ t′ =βη t : A
RConv

Γ ⊢ ρ : s _R t : A

220
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The RVar and RCon rules express that variables and constants represent identity rewrites.221

The RAbs and RApp rules express congruence below abstraction and application. The RRule222

rule allows us to use a rule symbol to stand for a rewrite between its source and its target,223

which must be closed terms of the same type. The RConv rule states that the source and the224

target of a rewrite are regarded up to βη-equivalence. Note that there are no rules equating225

rewrites; such rules are the purpose of Section 4 which introduces permutation equivalence.226

▶ Example 8. Suppose we assign the following rule symbols to the rewriting rules of Ex. 4:227

⟨ϱ, mu(λy.x y), x (mu(λy.x y))⟩ and ⟨ϑ, f x, g x⟩. Recall that C def= {mu : (ι → ι) → ι, f :228

ι→ ι}. The reduction of Ex. 4 can be represented as a rewrite:229

· ⊢ ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)) : mu (λx.f x) _R g (mu (λx.g x) : ι230

Inspection of the proof of Thm. 6 in [12] reveals that β and η are only needed for231

substitutions in rewrite rules. As a consequence:232

▶ Theorem 9. There is a rewrite ρ such that Γ ⊢ ρ : s _R t : A if and only if s ↕η
β

∗→R t ↕η
β.233

Now that we know that rewrites over an HRS R are sound and complete with respect to234

reduction sequences in R, we review some basic properties of rewrites and then focus, in235

the remaining sections, on equivalences between rewrites. In the sequel we will omit R in236

Γ ⊢ ρ : s _R t : A and write Γ ⊢ ρ : s _ t : A.237

▶ Definition 10 (Source and target of a rewrite). For each rewrite ρ we define the source ρsrc
238

and the target ρtgt as the following terms:239

xsrc def= x

csrc def= c
ϱsrc def= s if (ϱ : s _ t : A) ∈ R

(λx.ρ)src def= λx.ρsrc

(ρ σ)src def= ρsrc σsrc

(ρ ; σ)src def= ρsrc

xtgt def= x

ctgt def= c
ϱtgt def= t if (ϱ : s _ t : A) ∈ R

(λx.ρ)tgt def= λx.ρtgt

(ρ σ)tgt def= ρtgt σtgt

(ρ ; σ)tgt def= ρtgt

240

The free variables of an expression X (which may be a term or a rewrite) are written241

fv(X), and defined as expected, with lambdas binding variables in their bodies. For any given242

term or rewrite X, we write X{x\t} for the capture-avoiding substitution of the variable x243

in X by t. The operation ρ{x\t} is called rewrite/term substitution.244

We mention a few important syntactic properties of terms and rewrites (detailed statements245

and proofs can be found in Section A of [2]). First, some basic properties hold, such as weakening246

(e.g. if Γ ⊢ ρ : s _ t : A then Γ, x : B ⊢ ρ : s _ t : A) and commuting substitution247

with the source and target operators (e.g. ρ{x\s}src = ρsrc{x\s}). Terms appearing in248

valid equality and rewriting judgments can always be shown to be typable, that is, if either249

Γ ⊢ s =βη t : A or Γ ⊢ ρ : s _ t : A, then Γ ⊢ s : A and Γ ⊢ t : A. Second, given a typable250

rewrite, Γ ⊢ ρ : s _ t : A, the source of ρ and s are not necessarily equal, but they are251

interconvertible, that is Γ ⊢ s =βη ρsrc : A, and similarly for the target, i.e. Γ ⊢ t =βη ρtgt : A.252

For example, if ϱ : λx.c x _ λx.d : A→ A then it can be shown that ⊢ ϱ d : c d _ d : A,253

and indeed c d =βη (λx.c x) d = (ϱ d)src. Third, any typable term s can be understood as an254

empty or unit rewrite s, without occurrences of rule symbols, between s and itself: if Γ ⊢ s : A255

then Γ ⊢ s : s _ s : A. We usually coerce terms to rewrites implicitly if there is little danger256

of confusion. Substitution of a variable for a term is functorial, that is, given a rewrite257

Γ, x : A ⊢ ρ : s _ t : B and a term Γ ⊢ r : A, then Γ ⊢ ρ{x\r} : s{x\r} _ t{x\r} : B.258
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Term/rewrite substitution generalizes term/term substitution s{x\t} when t is a rewrite,259

i.e. s{x\\ρ}. Sometimes we also call this notion lifting substitution, as s{x\\ρ} “lifts” the260

expression s from the level of terms to the level of rewrites.261

▶ Definition 11 (Term/rewrite substitution).

y{x\\ρ} def=
{

ρ if x = y

y if x ̸= y
c{x\\ρ} def= c

(λy.s){x\\ρ} def= λy.s{x\\ρ} if x ̸= y (s t){x\\ρ} def= s{x\\ρ} t{x\\ρ}
262

We mention some important properties of term/rewrite substitution. First, term/rewrite263

substitution is a kind of horizontal composition, in the sense that if Γ, x : A ⊢ s : B and Γ ⊢ ρ :264

t _ t′ : A then Γ ⊢ s{x\\ρ} : s{x\t} _ s{x\t′} : B. Second, term/rewrite and rewrite/term265

substitution commute according to the equation s{x\\ρ}{y\t} = s{y\t}{x\\ρ{y\t}}, as-266

suming that Γ, x : A, y : B ⊢ s : C and Γ, y : B ⊢ ρ : r _ r′ : A and Γ ⊢ t : B (where, by267

convention, x /∈ fv(t)). Note that, in particular, if y does not occur free in ρ, this means that268

s{x\\ρ}{y\t} = s{y\t}{x\\ρ}. Third, term/rewrite substitution commutes with reflexivity269

in the sense that s{x\\t} = s{x\t} holds whenever Γ, x : A ⊢ s : B and Γ ⊢ t : A. It also270

commutes with the source and target operators, in the sense that s{x\\ρ}src = s{x\ρsrc} and271

s{x\\ρ}tgt = s{x\ρtgt} hold whenever Γ, x : A ⊢ s : B and Γ ⊢ ρ : t _ t′ : A.272

4 Permutation equivalence273

This section presents permutation equivalence (Def. 12), a relation over (typed) rewrites274

ρ ≈ σ that identifies any two rewrites ρ and σ denoting computations in a given HRS R that275

are equivalent up to permutation of steps.276

Towards Permutation Equivalence for Rewrites. Equipped with the self-evident operations277

of term/rewrite substitution s{x\\ρ}, rewrite/term substitution ρ{x\t} and the fact that278

rewrites may be freely composed, we set out to synthesize a definition of permutation279

equivalence by attempting to assign a meaning for (λx.ρ) σ, where Γ ⊢ ρ : s0 _ s1 : A and280

Γ ⊢ σ : t0 _ t1 : A. We begin by assuming we have equations that allow rewrites to be281

post-composed with their targets (≈-IdR) and pre-composed with their source (≈-IdL) and282

reason as follows:283

(λx.ρ) σ ≈(IdR) ((λx.ρ) ; (λx.s1)) σ ≈(IdL) ((λx.ρ) ; (λx.s1)) (t0 ; σ)284

These rewrites are syntactically valid since we allow composition inside an application.285

Next, we allow application to commute with composition by introducing a rule ≈-App:286

(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2). Applying this equation leads us to:287

((λx.ρ) ; (λx.s1)) (t0 ; σ) ≈(App) (λx.ρ) t0 ; (λx.s1) σ288

Finally, we introduce β-equality on rewrites. Arbitrary β-reduction of rewrites is not allowed289

a priori. It is only allowed when either the abstraction or the argument are unit rewrites, for290

which the substitution operators mentioned above can be used. These equations take the291

form (λx.s) ρ ≈ s{x\\ρ} and (λx.ρ) s ≈ ρ{x\s} and are called, ≈-BetaTR and ≈-BetaRT.292

(λx.ρ) t0 ; (λx.s1) σ ≈(BetaRT) ρ{x\t0} ; (λx.s1) σ ≈(BetaTR) ρ{x\t0} ; s1{x\\σ}293

In summary we have (λx.ρ) σ ≈ ρ{x\t0} ; s1{x\\σ}. We could equally well have deduced294

(λx.ρ) σ ≈ s0{x\\σ} ; ρ{x\t1}. As it turns out, however, ρ{x\t0} ; s1{x\\σ} and s0{x\\σ} ;295

ρ{x\t1} are permutation equivalent in our theory.296
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Permutation Equivalence for Rewrites: Definition and Properties. We collect the obser-297

vations above in the following definition.298

▶ Definition 12 (Permutation equivalence). Suppose Γ ⊢ ρ : s _ t : A and Γ ⊢ ρ′ : s′ _ t′ : A299

are derivable. Permutation equivalence, written Γ ⊢ (ρ : s _ t) ≈ (ρ′ : s′ _ t′) : A (or simply300

ρ ≈ ρ′ if Γ, s, t, s′, t′, A are clear from the context), is defined as the reflexive, symmetric,301

transitive, and contextual closure of the following axioms:302

ρsrc ; ρ ≈ ρ ≈-IdL
ρ ; ρtgt ≈ ρ ≈-IdR

(ρ ; σ) ; τ ≈ ρ ; (σ ; τ) ≈-Assoc
(λx.ρ) ; (λx.σ) ≈ λx.(ρ ; σ) ≈-Abs
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2) ≈-App

(λx.s) ρ ≈ s{x\\ρ} ≈-BetaTR
(λx.ρ) s ≈ ρ{x\s} ≈-BetaRT

λx.ρ x ≈ ρ if x /∈ fv(ρ) ≈-Eta

303

Rules ≈-IdL, ≈-IdR and ≈-Assoc, state that rewrites together with rewrite composition have304

a monoidal structure. Recall from Section 3 that ρsrc is a term and ρsrc is its corresponding305

rewrite. Rules ≈-Abs and ≈-App state that rewrite composition commutes with abstraction306

and application. An important thing to be wary of is that rules may be applied only if307

both the left and the right-hand sides are well-typed. In particular, the right-hand side of308

the ≈-App rule may not be well-typed even if the left-hand side is; for example given rule309

symbols c : A→ B and d : A, the expression ((λx.x)(c d)) ; (c d) is well-typed, with source310

and target c d, while ((λx.x) ; c) ((c d) ; d) is not well-typed.311

Finally, rules ≈-BetaTR, ≈-BetaRT and ≈-Eta introduce βη-equivalence for rewrites. Note312

that ≈-BetaTR and ≈-BetaRT restrict either the body of the abstraction or the argument to a313

unit rewrite, thus avoiding the issue mentioned in the introduction where a naive combination314

of composition and βη-equivalence can lead to invalid rewrites.315

Note that there are no explicit sequencing equations such as the I/O equations2 defining316

permutation equivalence in the first-order case [15] and the corresponding equations flat-l317

and flat-r of [4] for the higher-order case. Nonetheless, we can derive the following coherence318

equation (see Lem. 63 and Lem. 64 in [2] for the proof):319

ρ{x\s′} ; t{x\\σ} ≈ s{x\\σ} ; ρ{x\t′} (≈-Perm)320

where Γ, x : A ⊢ ρ : s _ t : B and Γ ⊢ σ : s′ _ t′ : A.321

▶ Example 13. Consider the HRS of Ex. 4 and the reduction of Ex. 8. We recall the latter322

below (R2) and present a second one (R1).323

R1 : mu (λx.f x) _ mu (λx.g x) _ g (mu (λx.g x))
R2 : mu (λx.f x) _ f (mu (λx.f x)) _ f (mu (λx.g x)) _ g (mu (λx.g x))324

Reduction sequence R1 can be encoded as the rewrite mu (λx.ϑ x); ϱ (λx.g x) and R2 as325

2 I : ϱ(σ1, ..., σn) ≈ l(σ1, ..., σn) · ϱ(t1, ..., tn) and O : ϱ(σ1, ..., σn) ≈ ϱ(s1, ..., sn) · r(σ1, ..., σn)
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ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)). These two rewrites are permutation equivalent:326

mu (λx.ϑ x) ; ϱ (λx.g x)
≈(Eta) mu ϑ ; ϱ g
= (mu y){y\\ϑ} ; (ϱ y){y\g}
≈(Perm) (ϱ y){y\f} ; (y (mu y)){y\\ϑ}
= ϱ f ; ϑ (mu ϑ)
≈(IdL) ϱ f ; (f ; ϑ) (mu ϑ)
≈(IdR) ϱ f ; (f ; ϑ) ((mu ϑ) ; (mu g))
≈(App) ϱ f ; f (mu ϑ) ; ϑ (mu g)
≈(Eta) ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x))

327

The ≈-Perm rule motivates the definition of rewrite/rewrite substitution, ρ{x\\\σ} def=328

ρ{x\s′} ; t{x\\σ}, which defines a rewrite s{x\s′} _ t{x\t′}. Note that ρ{x\\\σ} depends329

on t and s′, and hence on the particular typing derivations for ρ and σ. Congruence330

results (Lem. 63 and Lem. 64 in [2]) ensure that the value of ρ{x\\\σ} does not depend,331

up to permutation equivalence, on those typing derivations. Rewrite/rewrite substitution332

generalizes rewrite/term and term/rewrite substitution, in the sense that ρ{x\t} ≈ ρ{x\\\t}333

and s{x\\ρ} ≈ s{x\\\ρ}.334

Other important facts involving rewrite/rewrite substitution are the following. First, it335

commutes with abstraction, application, and composition, that is (λy.ρ){x\\\σ} ≈ λy.ρ{x\\\σ},336

(ρ1 ρ2){x\\\σ} ≈ ρ1{x\\\σ} ρ2{x\\\σ}, and (ρ1 ; ρ2){x\\\σ1 ; σ2} ≈ ρ1{x\\\σ1} ; ρ2{x\\\σ2}.337

Second, permutation equivalence is a congruence with respect to rewrite/rewrite substitution,338

that is, if ρ ≈ ρ′ and σ ≈ σ′ then ρ{x\\\σ} ≈ ρ′{x\\\σ′}. Third, an analog of the substitution339

lemma holds, namely ρ{x\\\σ}{y\\\τ} ≈ ρ{y\\\τ}{x\\\σ{y\\\τ}}. Finally, as discussed above,340

a β-rule for arbitrary rewrites holds in the form (λx.ρ) σ ≈ ρ{x\\\σ}. The full theory of341

rewrite/rewrite substitution is not developed here for lack of space (but see Section B.2 in [2]).342

5 Flattening343

Allowing composition to be nested within application and abstraction can give rise to rewrites344

in which it is not obvious what reduction sequences of steps are being denoted. An example345

from the previous section might be the rewrite ((λx.f x) ; ϑ) ((mu (λx.ϑ x)) ; (mu (λx.g x)))346

which denotes the reduction sequence f (mu (λx.f x)) _ g (mu (λx.g x)) that replaces both347

occurrences of f with g simultaneously. This section shows how rewrites can be “flattened”348

so as to expose an underlying reduction sequence, expressed as a canonical (flat) rewrite.349

One additional use of flattening will be to use it to show that permutation equivalence is350

decidable (cf. end of Sec. Section 6). Before introducing flat rewrites we define multisteps.351

A multistep is a rewrite without any occurrences of the composition operator. We use352

µ, ν, ξ, . . . to range over multisteps. The capture-avoiding substitution of the free occurrences353

of x in µ by ν is written µ{x\ν}, which is in turn a multistep. A flat multistep (µ̂, ν̂, . . .),354

is a multistep in β-normal form, i.e. without subterms of the form (λx.µ) ν. A flat rewrite355

(ρ̂, σ̂, . . .), is a rewrite given by the grammar ρ̂ ::= µ̂ | ρ̂ ; σ̂. Flat rewrites use the composition356

operator “;” at the top level, that is they are of the form µ̂1 ; . . . ; µ̂n (up to associativity of357

“;”), where each µ̂i is a flat multistep. Note that we do not require the µ̂i to be in βη-normal358

form nor in βη-normal form. As mentioned in the introduction, flattening is achieved by359

means of a rewriting system whose objects are themselves rewrites (Def. 15) which is shown360

to be confluent and terminating (Prop. 17).361
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We also formulate an equational theory defining a relation ρ ∼ σ of flat permutation362

equivalence between flat rewrites (Def. 19). The main result of this section is that permutation363

equivalence is sound and complete with respect to flat permutation equivalence (Thm. 20).364

▶ Remark 14. A substitution µ{x\ν} in which µ is a term is a term/rewrite substitution,365

i.e. s{x\ν} = s{x\\ν}. A substitution in which ν is a term is a rewrite/term substitution,366

i.e. µ{x\s} = µ{x\s}.367

▶ Definition 15 (Flattening Rewrite System F). The flattening system F is given by the368

following rules, closed under arbitrary contexts, defined between typable rewrites:369

λx.(ρ ; σ) ♭7→ (λx.ρ) ; (λx.σ) F-Abs
(ρ ; σ) µ

♭7→ (ρ µsrc) ; (σ µ) F-App1
µ (ρ ; σ) ♭7→ (µ ρ) ; (µtgt σ) F-App2

(ρ1 ; ρ2) (σ1 ; σ2) ♭7→ ((ρ1 ; ρ2) σsrc
1 ) ; (ρtgt

2 (σ1 ; σ2)) F-App3
(λx.µ) ν

♭7→ µ{x\ν} F-BetaM
λx.µ x

♭7→ µ if x /∈ fv(µ) F-EtaM

370

Note that rules F -BetaM and F -EtaM apply to multisteps only. The reduction relation ♭7→ is371

the union of all these rules, closed by compatibility under arbitrary contexts. We write ρ♭ for372

the unique ♭7→-normal form of ρ.373

▶ Example 16. Consider a rewriting rule ϱ : c _ d : A. The rewrite (λx.(x ; x)) ϱ, whose374

meaning (as previously mentioned) is not obvious, can be flattened as follows:375

(λx.(x ; x)) ϱ
♭7→F-Abs ((λx.x) ; (λx.x)) ϱ

♭7→F-App1 (λx.x) c ; (λx.x) ϱ
♭7→F-BetaM c ; (λx.x) ϱ

♭7→F-BetaM c ; ϱ
376

The following result is proved by noting that F -BetaM and F -EtaM steps can be postponed377

after steps of other kinds and then providing a well-founded measure for steps in F without378

F-BetaM and F-EtaM to prove it is SN. Confluence of F follows from Newman’s lemma.379

▶ Proposition 17. The flattening system F is strongly normalizing and confluent.380

Flat Permutation Equivalence. We now turn to the definition of the relation ρ ∼ σ of flat381

permutation equivalence. The key notion to define is the following ternary relation:382

▶ Definition 18 (Splitting). Let Γ ⊢ µ : s _ t : A and Γ ⊢ µ1 : s′ _ r1 : A and383

Γ ⊢ µ2 : r2 _ t′ : A be multisteps. We say that µ splits into µ1 and µ2 if the following384

inductively defined ternary relation, written µ⇔ µ1 ; µ2, holds:385

SVar
x⇔ x ; x

SCon
c⇔ c ; c

SRuleL
ϱ⇔ ϱ ; ϱtgt

SRuleR
ϱ⇔ ϱsrc ; ϱ386

387

µ⇔ µ1 ; µ2
SAbs

λx.µ⇔ λx.µ1 ; λx.µ2

µ⇔ µ1 ; µ2 ν ⇔ ν1 ; ν2
SApp

µ ν ⇔ µ1 ν1 ; µ2 ν2388

▶ Definition 19 (Flat permutation equivalence). Flat permutation equivalence judgments are389

of the form: Γ ⊢ (ρ : s _ t) ∼ (ρ′ : s′ _ t′) : A, meaning that ρ and ρ′ are equivalent rewrites,390

with sources s and s′ respectively, and targets t and t′ respectively. The rewrites ρ and ρ′
391
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are assumed to be in ♭7→-normal form, which in particular means that they must be flat392

rewrites. Sometimes we write ρ ∼ ρ′ if Γ, s, t, s′, t′, A are irrelevant or clear from the context.393

Derivability is defined by the two following axioms, which are closed by reflexivity, symmetry,394

transitivity, and closure under composition contexts (given by S ::= □ | S ; ρ | ρ ; S):395

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ) ∼-Assoc
µ ∼ µ♭

1 ; µ♭
2 if µ⇔ µ1 ; µ2 ∼-Perm396

Note that in ∼-Perm, −♭ operates over multisteps. So the only rules of F that are applied397

here are the F-BetaM and F-EtaM rules.398

▶ Theorem 20 (Soundness and completeness of flat permutation equivalence). Let Γ ⊢ ρ : s _399

t : A and Γ ⊢ σ : s′ _ t′ : A. Then ρ ≈ σ if and only if ρ♭ ∼ σ♭.400

Proof. The (⇐) direction is immediate, given that reduction ♭7→ in the flattening system F is401

included in permutation equivalence (ρ ♭7→ σ implies ρ ≈ σ) and, similarly, flat permutation402

equivalence is included in permutation equivalence (ρ ∼ σ implies ρ ≈ σ).403

The (⇒) direction is by induction on the derivation of ρ ≈ σ. It is subtle and requires404

numerous auxiliary results (see Section D.8 in [2]). ◀405

▶ Example 21. With the same notation as in Ex. 13, it can be checked that the rewrites406

mu (λx.ϑ x) ; ϱ (λx.g x) and ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)) are permutation407

equivalent by means of flattening. Indeed, using the ∼-Perm rule three times:408

mu ϑ ; ϱ g ∼ ϱ ϑ as ϱ ϑ⇔ (λx.mu (λy.x y)) ϑ ; ϱ (λx.g x)
∼ ϱ f ; ϑ (mu ϑ) as ϱ ϑ⇔ ϱ (λx.f x) ; (λx.x (mu (λy.x y))) ϑ

∼ ϱ f ; (f(mu ϑ) ; ϑ(µ g)) as ϑ (mu ϑ)⇔ (λx.f x) (mu ϑ) ; ϑ (mu (λx.g x))
409

Note that ϱ ϑ⇔ (λx.mu (λy.x y)) ϑ ; ϱ (λx.g x) follows from SApp, SRuleR for the upper left410

hypothesis and SRuleL for the upper right one. Hence411

(mu (λx.ϑ x) ; ϱ (λx.g x))♭ = mu ϑ ; ϱ g
∼ ϱ f ; (f(mu ϑ) ; ϑ(µ g))
= (ϱ (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)))♭

412

6 Projection413

This section presents projection equivalence. Two rewrites ρ and σ are said to be projection414

equivalent if the steps performed by ρ are included in those performed by σ and vice-415

versa. We proceed in stages as follows. First, we define projection of multisteps over416

multisteps (Def. 25) and prove some of its properties (Prop. 26). Second, we extend projection417

to flat rewrites (Def. 28). Third, we extend projection to arbitrary rewrites (Def. 29) and,418

again, we prove some of its properties (Prop. 30). Finally, we show that the induced notion419

of projection equivalence turns out to coincide with permutation equivalence (Thm. 31).420

Projection for Multisteps. Consider the rewrites mu ϑ and ϱ f , using the notation of Ex. 13,421

each representing one step. Since rewrites are subject to βη-equivalence, to define projection422

one must “line up” rule symbols with the left-hand side of the rewrite rules they witness3.423

3 See also the discussion on pg. 120 of [4].
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For example, if the above two multisteps were rewritten as (λy.mu (λx.y x)) ϑ and ϱ (λx.f x),424

respectively, then one can reason inductively as follows to compute the projection of the425

former over the latter (the inference rules themselves are introduced in Def. 22):426

ProjRuleR
λy.mu (λx.y x)///ϱ⇒ λy.y (mu (λx.y x))

ProjRuleL
ϑ///λx.f x⇒ ϑ

ProjApp
(λy.mu (λx.y x)) ϑ///ϱ (λx.f x)⇒ (λy.y (mu (λx.y x))) ϑ427

The flat normal form of (λy.y (mu (λx.y x))) ϑ is the rewrite ϑ (mu ϑ). Hence we would428

deduce mu ϑ///ϱ f ⇒ ϑ (mu ϑ). We begin by introducing an auxiliary notion of projection429

on coinitial multisteps that may not be flat (i.e. may not be in F-BetaM,F-EtaM-normal430

form) called weak projection. We then make use of this notion, to define projection for flat431

multisteps (Def. 25).432

▶ Definition 22 (Weak projection and compatibility). Let Γ ⊢ µ : s _ t : A and Γ ⊢ ν :433

s′ _ r : A be multisteps, not necessarily in normal form, such that s =βη s′. The judgment434

µ///ν ⇒ ξ is defined as follows:435

ProjVar
x///x ⇒ x

ProjCon
c///c ⇒ c

ProjRule
ϱ///ϱ ⇒ ϱtgt

ProjRuleL
ϱ///ϱsrc ⇒ ϱ

ProjRuleR
ϱsrc///ϱ ⇒ ϱtgt

µ///ν ⇒ ξ
ProjAbs

λx.µ///λx.ν ⇒ λx.ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2
ProjApp

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

436

We say that µ and ν are compatible, written µ ↑ ν if, intuitively speaking, µ and ν are437

coinitial, and are “almost” η-expanded and β-normal forms, with the exception that the head438

of the term may be the source of a rule, i.e. a term of the form ϱsrc. Compatibility is defined439

as follows:440

(µi ↑ νi)m
i=1

λx.y µ ↑ λx.y ν

(µi ↑ νi)m
i=1

λx.c µ ↑ λx.c ν

(µi ↑ νi)m
i=1

λx.ϱ µ ↑ λx.ϱ ν

(µi ↑ νi)m
i=1

λx.ϱ µ ↑ λx.ϱsrc ν

(µi ↑ νi)m
i=1

λx.ϱsrc µ ↑ λx.ϱ ν441

The interesting cases are the two last rules, which state essentially that a rule symbol is442

compatible with its source term. Clearly if µ ↑ ν, then there exists a unique ξ such that443

µ///ν ⇒ ξ. Moreover, weak projection is coherent with respect to flattening:444

▶ Lemma 23 (Coherence of projection). Let µ1, ν1, µ2, ν2 be multisteps such that the following445

are satisfied:446

1. µ1 ↑ ν1 and µ2 ↑ ν2;447

2. µ♭
1 = µ♭

2 and ν♭
1 = ν♭

2; and448

3. µ1///ν1 ⇒ ξ1 and µ2///ν2 ⇒ ξ2.449

Then ξ♭
1 = ξ♭

2.450

Thus for arbitrary, coinitial multisteps µ and ν, it suffices to show that we can always find451

corresponding compatible “almost” η-expanded and β-normal forms, as mentioned above.452

▶ Proposition 24 (Existence and uniqueness of projection). Let µ, ν be such that µsrc =βη νsrc.453

Then:454

1. Existence. There exist multisteps µ̇, ν̇, ξ̇ such that µ̇♭ = µ♭ and ν̇♭ = ν♭ and µ̇///ν̇ ⇒ ξ̇.455

2. Compatibility. Furthermore, µ̇ and ν̇ can be chosen in such a way that µ̇ ↑ ν̇.456
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3. Uniqueness. If (µ̇′)♭ = µ♭ and (ν̇′)♭ = ν♭ and µ̇′///ν̇′ ⇒ ξ̇′ then (ξ̇′)♭ = ξ♭.457

Prop. 24 relies on the left-hand side of the rewrite rules of the HRS being patterns. This458

ensures, among other things, that flattening is injective when applied to left-hand sides459

of rewrite rules in the sense that if (ϱsrc µ1 . . . µn)♭ = (ϱsrc ν1 . . . νn)♭ then µ♭
i = ν♭

i for all460

1 ≤ i ≤ n. We can now define projection on arbitrary coinitial rewrites as follows.461

▶ Definition 25 (Projection operator for multisteps). Let µ, ν be such that µsrc =βη νsrc. We462

write µ/ν for the unique multistep of the form ξ̇♭ such that there exist µ̇, ν̇ such that µ̇♭ = µ♭
463

and ν̇♭ = ν♭ and µ̇///ν̇ ⇒ ξ̇, as guaranteed by Prop. 24. The proof is constructive (this relies464

on the HRS being orthogonal), thus providing an effective method to compute µ/ν.465

▶ Proposition 26 (Properties of projection for multisteps).466

1. µ/ν = (µ/ν)♭ = µ♭/ν♭
467

2. Projection commutes with abstraction and application, that is, (λx.µ)/(λx.ν) = (λx.(µ/ν))♭
468

and (µ1 µ2)/(ν1 ν2) = ((µ1/ν1) (µ2/ν2))♭, provided that µ1/ν1 and µ2/ν2 are defined.469

3. The set of multisteps with the projection operator form a residual system [15, Def. 8.7.2]:470

3.1 (µ/ν)/(ξ/ν) = (µ/ξ)/(ν/ξ), known as the Cube Lemma.471

3.2 µ/µ = (µtgt)♭ and, as particular cases: s/s = s♭, x/x = x, c/c = c, and ϱ/ϱ = (ϱtgt)♭.472

3.3 (µsrc)♭/µ = (µtgt)♭ and, as a particular case, (ϱsrc)♭/ϱ = (ϱtgt)♭.473

3.4 µ/(µsrc)♭ = µ♭ and, as a particular case, ϱ/(ϱsrc)♭ = ϱ.474

▶ Example 27. Let ϑ : λx.f x→ λx.g x. Then:475

(λx.(λx.f x) x)/(λx.ϑ x) = (λx.((λx.f x) x)/(ϑ x))♭ = (λx.(((λx.f x)/ϑ)(x/x))♭)♭

= (λx.((λx.g x) x)♭)♭ = (λx.g x)♭ = g476

Projection for Flat Rewrites. The projection operator from Def. 25 is extended to operate477

on flat rewrites. One may try to define ρ/σ using equations such as (ρ1 ; ρ2)/σ = (ρ1/σ) ;478

(ρ2/(σ/ρ1)). However, it is not a priori clear that this recursive definition is well-founded4.479

This is why the following definition proceeds in three stages:480

▶ Definition 28 (Projection operator for flat rewrites). We define:481

1. projection of a flat multistep over a coinitial flat rewrite (µ /1 ρ), by induction on ρ;482

2. projection of a flat rewrite over a coinitial flat multistep (ρ /2 µ), by induction on ρ; and483

3. projection of a flat rewrite over a coinitial flat rewrite (ρ /3 σ) by induction on σ, as484

follows:485

µ /1 ν
def= µ/ν µ /1 (ρ1 ; ρ2) def= (µ /1 ρ1) /1 ρ2

ν /2 µ
def= ν/µ (ρ1 ; ρ2) /2 µ

def= (ρ1 /2 µ) ; (ρ2 /2 (µ /1 ρ1))
ρ /3 µ

def= ρ /2 µ ρ /3 (σ1 ; σ2) def= (ρ /3 σ1) /3 σ2

486

Note that /3 generalizes /2 and /1 in the sense that µ /1 ρ = µ /3 ρ and ρ /2 µ = ρ /3 µ.487

With these definitions, the key equation (ρ1 ; ρ2) /3 σ = (ρ1 /3 σ) ; (ρ2 /3 (σ /3 ρ1)) can be488

shown to hold.489

From this point on, we overload ρ/σ to stand for either of these projection operators.490

The key equation ensures that this abuse of notation is harmless. In the following, we491

mention some important properties of projection for flat rewrites. First, projection of a492

rewrite over a sequence, and of a sequence over a rewrite, obey the expected equations493

4 Another way to prove well-foundedness is by interpretation, as done in [15, Example 6.5.43].
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ρ/(σ1 ; σ2) = (ρ/σ1)/σ2 and (ρ1 ; ρ2)/σ = (ρ1/σ) ; (ρ2/(σ/ρ1)). Second, flat permutation494

equivalence is a congruence with respect to projection: more precisely, if ρ ∼ σ then τ/ρ = τ/σ495

and ρ/τ ∼ σ/τ . Third, the projection of a rewrite over itself is always empty; specifically496

ρ/ρ ∼ (ρtgt)♭. Finally, an important property is that ρ ; (σ/ρ) ∼ σ ; (ρ/σ), corresponding to497

a strong form of confluence. The proof of these properties is technical, by induction on the498

structure of the rewrites. We do not develop the full theory of projection for flat rewrites499

here for lack of space (see Section E in [2] for more details).500

Projection for Arbitrary Rewrites. As a final step, the projection operator of Def. 28 may501

be extended to arbitrary rewrites by flattening first. The proof of Prop. 30 relies crucially on the502

properties of projection for flat rewrites and on Thm. 20; it may be found in Section G in [2].503

▶ Definition 29 (Projection operator for arbitrary rewrites). Let ρ, σ be arbitrary coinitial504

rewrites. Their projection is defined as ρ//σ
def= ρ♭/σ♭.505

▶ Proposition 30 (Properties of projection for arbitrary rewrites).506

1. Projection of a rewrite over a sequence and of a sequence over a rewrite obey the expected507

equations ρ//(σ1 ; σ2) = (ρ//σ1)//σ2 and (ρ1 ; ρ2)//σ = (ρ1//σ) ; (ρ2//(σ//ρ1)).508

2. Projection commutes with abstraction and application, that is:509

2.1 (λx.ρ)//(λx.σ) ≈ λx.(ρ//σ), and more precisely (λx.ρ)//(λx.σ) ♭← [∗ λx.(ρ//σ).510

2.2 If ρ1, σ1 are coinitial and ρ2, σ2 are coinitial, then (ρ1 ρ2)//(σ1 σ2) ≈ (ρ1//σ1) (ρ2//σ2),511

and more precisely (ρ1 ρ2)//(σ1 σ2) ♭← [∗ (ρ1//σ1) (ρ2//σ2).512

3. The projection of a rewrite over itself is always empty, ρ//ρ ≈ ρtgt.513

4. Permutation equivalence is a congruence with respect to projection, namely if ρ ≈ σ then514

τ//ρ = τ//σ and ρ//τ ≈ σ//τ .515

5. The key equation ρ ; (σ//ρ) ≈ σ ; (ρ//σ) holds.516

Characterization of Permutation Equivalence in Terms of Projection. Finally, we are517

able to characterize permutation equivalence ρ ≈ σ as the condition that the projections ρ//σ518

and σ//ρ are both empty. Indeed:519

▶ Theorem 31 (Projection equivalence). Let ρ, σ be arbitrary coinitial rewrites. Then ρ ≈ σ520

if and only if ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt.521

Proof. (⇒) Suppose that ρ ≈ σ. Then, by Prop. 30, ρ//σ ≈ σ//σ ≈ σtgt. Symmetrically,522

σ//ρ ≈ ρtgt. (⇐) Let ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt. Then, by Prop. 30, ρ ≈ ρ ; ρtgt ≈ ρ ;523

(σ//ρ) ≈ σ ; (ρ//σ) ≈ σ ; σtgt ≈ σ. ◀524

Since flattening and projection are computable, Thm. 20 and Thm. 31 together provide525

an effective method to decide permutation equivalence ρ ≈ σ for arbitrary rewrites.526

Indeed, to test whether ρ//σ ≈ σtgt, note by Thm. 20 that this is equivalent to testing whether527

ρ//σ ∼ (σtgt)♭, so it suffices to check that ρ//σ is empty, i.e. it contains no rule symbols. This528

is justified by the fact that if µ has no rule symbols and µ ∼ ρ, then ρ has no rule symbols529

(See Lem. 162 in [2]).530

7 Related Work and Conclusions531

As mentioned in the introduction, proof terms were introduced by van Oostrom and de Vrijer532

for first-order left-linear rewrite systems to study equivalence of reductions in [17] and [15,533

Chapter 9]. They are inspired in Rewriting Logic [13]. In the setting of HORs, Hilken [6]534
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introduces rewrites for βη-reduction together with a notion of permutation equivalence for535

those rewrites. He does not study permutation equivalence for arbitrary HORs nor formulate536

notions of projection. Hilken does, however, justify his equations through a categorical537

semantics. We have already discussed Bruggink’s work extensively [4, 3]. Another attempt538

at devising proof terms for HOR by the authors of the present paper is [1]. The latter uses a539

term assignment for a minimal modal logic called Logic of Proofs (LP), to model rewrites.540

LP is a refinement of S4 in which the modality □A is refined to [s]A, where s is said to be a541

witness to the proof of A. The intuition is that terms and rewrites may be seen to belong542

to different stages of discourse; rewrites verse about terms. Terms are typed with simple543

types and rewrites are typed with a modal type [s]A where the term s is the source term544

of the rewrite. However, the notion of substitution that is required for subject reduction545

is arguably ad-hoc. In particular, substitution of a rewrite ρ : s _ s′ : A for x in another546

rewrite σ : t _ t′ : A is defined as the composed rewrite ρ{x\t} ; s′{x\\σ}, where ρ is547

substituted for x in t followed by σ where s′ is substituted for x.548

Future work. It would be of interest to develop tools based on the work presented here549

for reasoning about computations in higher-order rewriting, as has recently been explored for550

first-order rewriting [9, 10]. One downside is that our rewrites cannot be treated as terms in551

a higher-order rewrite system. Indeed, rewrites are not defined modulo βη (for good reason552

since an expression such as (λx.ρ) σ should not be subject to β reduction).553

One problem that should be addressed is that of formulating standardization (see e.g. [15,554

Section 8.5]) using rewrites. This amounts to giving a procedure that reorders the steps of a555

rewrite ρ, yielding a rewrite ρ∗ in which outermost steps are performed before innermost556

ones. Standardization finds canonical representatives of ≈-equivalence classes, in the sense557

that ρ ≈ σ if and only if ρ∗ = σ∗. The flattening rewrite system of Section 5 is a first558

approximation to standardization, since ρ ≈ σ if and only if ρ♭ ∼ σ♭. In a preliminary version559

of this work, we proposed a procedure to compute canonical representatives of ≈-equivalence560

classes, based on the idea of repeatedly converting µ ; ν into µ′ ; ν′ whenever ν ⇔ ξ ; ν′ and561

µ′ ⇔ µ ; ξ, an idea reminiscent of greedy decompositions [5]. Unfortunately, this procedure562

does not always terminate, due to the fact that rewrites may have infinitely long “unfoldings”;563

for instance, if ϱ : c _ c and ϑ : f(x) _ d then ϑ(c) : f(c) _ d is equivalent to arbitrarily564

long rewrites of the form f(ϱ) ; . . . ; f(ϱ) ; ϑ(c). A terminating procedure should probably565

rely on a measure based on the notion of essential development [16, Definition 11].566

Another avenue to pursue is to characterize permutation equivalence via labelling. The567

application of a rewrite step leaves a witness in the term itself, manifested as a decoration568

(a label). These labels thus collect and record the history of a computation. By comparing569

them one can determine whether two computations are equivalent. Labelling equivalence for570

first-order rewriting is studied by van Oostrom and de Vrijer in [17] and [15, Chapter 9].571

We have given semantics to rewrites via Higher-Order Rewriting Logic. A categorical572

semantics for a similar notion of rewrite and permutation equivalence was presented by573

Hirshowitz [7] (projection equivalence and flattening are not studied though). Our s{x\\ρ}574

is called left whiskering and ρ{x\s} right whiskering, using the terminology of 2-category575

theory. These are then used to define ρ{x\\\σ}. A precise relation between the two notions576

of rewrite should be investigated.577
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