
Using Fields and Explicit Substitutions to
Implement Objects and Functions in a de Bruijn

Setting

Eduardo Bonelli

1 Laboratoire de Recherche en Informatique, Bât 490, Université de Paris-Sud,
91405, Orsay Cedex, France, email: bonelli@lri.fr

2 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Argentina.

Abstract. We propose a calculus of explicit substitutions with de Bruijn
indices for implementing objects and functions which is confluent and
preserves strong normalization. We start from Abadi and Cardelli’s ς-
calculus [1] for the object calculus and from the λυ-calculus [20] for the
functional calculus. The de Bruijn setting poses problems when encoding
the λυ-calculus within the ς-calculus following the style proposed in [1].
We introduce fields as a primitive construct in the target calculus in order
to deal with these difficulties. The solution obtained greatly simplifies the
one proposed in [17] in a named variable setting. We also eliminate the
conditional rules present in the latter calculus obtaining in this way a
full non-conditional first order system.

1 Introduction

The object oriented paradigm is heavily used in the software engineering process.
The simplicity of the underlying ideas makes it especially suited for resolving
complex tasks. However, since no widespread consensus on its theoretical foun-
dations has been reached, rigorous reasoning is difficult to achieve. In fact due
to its success in software development the rapid evolution of object oriented
languages has converted the task of formulating a formal calculus capturing the
general principals of the paradigm into an interesting problem. In this direction,
the calculi introduced by Abadi and Cardelli [1] constitute a simple yet powerful
formalism.
The core untyped calculus presented in [1] is called the ς-calculus. This cal-

culus defines objects as collections of methods and supports method update, thus
providing mecanisms for inheritance by embedding. It also captures the notion
of self, a name which allows a method to refer to its host object. These pri-
mitive constructs allow the representation of a vast amount of object oriented
features, including classes, traits, and multiple inheritance. Furthermore, it may
be extended into a typed setting.
Evaluation in the ς-calculus is accomplished by means of reduction rules and

substitution. As in the lambda calculus, substitution is defined as an atomic

J. Flum and M. Rodŕıguez-Artalejo (Eds.): CSL’99, LNCS 1683, pp. 204–219, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Using Fields and Explicit Substitutions 205

operation which does not form part of the calculus. Therefore, any implemen-
tation has to deal with its computation. This is not a trivial task, in particular
in a setting where variables are represented by names (as is usually done). Thus
inevitably, a gap arises between theory and implementation. Calculi of explicit
substitution eliminate this gap by decomposing the substitution process into
more atomical parts and incorporating the behaviour of these parts as new ope-
rators in the calculus. This has the added benefit that we obtain a finer grained
control on the computation of the substitution, providing for example tools for
studying refinement of proofs in type theory or the theory of abstract evaluation
machines.

Explicit substitution calculi arise with the study of pioneering calculus λσ

[2]. The idea is simple: the notion of substitution used to define β-reduction in
the lambda calculus takes place at a meta-level, explicit substitution calculi add
new operators, and reduction rules for these new operators, so that substituti-
ons may be computed at the object-level. Explicit substitution constructors thus
implement substitution within the calculus, drawing the theory closer to the im-
plementation level. Abadi, Cardelli, Curien and Lévy used indices, as introduced
by de Bruijn in [8], to represent variables and introduced also a typed version of
λσ. Other calculi of explicit substitutions are λσ⇑ [13], λυ[20], λs [14], λd [11],
λζ [23], λχ [21], and λx [26]. All but the last two of these calculi have been
formulated with de Bruijn indices, λχ uses de Bruijn levels and λx uses variable
names. They have all been studied in the setting of the lambda calculus. At-
tempts to study explicit substitutions in a general setting are the Explicit CRS
[5], based on the higher order rewriting formalism CRS [18], and the eXplicit
Reduction Systems [24]. These formalisms although defined in a higher order
rewriting setting deal with a fixed “built in” explicit substitution calculus (Σ in
Explicit CRS and σ⇑ in XRS). This rises naturally the question of the generality
of these formalisms as theories of explicit substitution. In particular, we shall
see below that the calculus of explicit substitutions implementing the ς object
oriented language fits in neither of these schemes.

In this paper we provide an implementation language for object oriented
programming as formalized by the ς-calculus. We introduce the untyped ςDBES -
calculus, an explicit substitution calculus in a de Bruijn indice setting which
is confluent and preserves strong normalization. Abadi and Cardelli’s ς-calcu-
lus allows the execution of lambda calculus expressions by means of an elegant
translation which requires the use of fields (see section 4). Although it does not
provide fields as primitive constructions they can be simulated. A brief analysis,
as discussed in section 5, shows that this simulation is not well adapted when
variable names are replaced by de Bruijn indices and explicit substitutions are
incorporated. The ςDBES -calculus introduces fields as primitive constructs in the
language, thus allowing to merge both the object oriented language and the
functional lambda calculus in the spirit of [1].

The use of de Bruijn indices by encoding variable names with numbers avoids
having to deal with α-conversion, thus simplifying the associated reduction re-
lation.

206 E. Bonelli

Most importantly, the analysis pertaining to the merging of the object ori-
ented language and the functional lambda calculus while retaining the spirit of
the aforementioned translation revealed [17] that two different notions of substi-
tution were necessary: Ordinary Substitution and Invoke Substitution. Ordinary
Substitution is used to perform evaluation of methods and may be related to
the usual notion of substitution which is made explicit in calculi for the lambda
calculus. Whereas Invoke Substitution is used to implement functions as objects
and reports a different behaviour. Also, some interaction between both types
of substitutions must be specified. Therefore, higher order rewriting formalisms
such as CRS [18], Explicit CRS [5] or XRS [24] do not cater for this difference.
Consequently, the ςDBES -calculus is not an instance of any of these formalisms.
The work reported here is very much in the spirit of [17]. There a calculus

of explicit substitutions in a named variable setting for the ς-calculus, called
ςES , is defined. The interaction between Ordinary and Invoke substitution is
easier to express since one may specify conditions on free variables naturally.
Whereas in a de Bruijn setting the situation is more complex since conditions
on free variables imply adjustments on indices. The solution we have adopted by
incorporating field constructs allows us, in contrast to [17], to do away with the
conditions on free variables, thus obtaining a non-conditional interaction rule.
Also, the calculus obtained here is a first order calculus. No binding operators
are needed. As remarked above, just as the ςES calculus is not an instance of
Explicit CRS, the ςDBES -calculus is not an instance of an XRS.
This paper is organized as follows. Section 2 recalls the main concepts and

definitions of the ς-calculus. Section 3 introduces the ς-calculus with de Bruijn
indices, called ςDB -calculus. Section 4 is devoted to the ς-calculus with de Bruijn
indices and fields, the ς•

DB -calculus. Here we introduce the syntax, we prove con-
fluence and finally we show how it relates to the ςDB -calculus. Also the invoke
substitution is defined. Section 5 defines de ς•

DB -calculus with explicit substi-
tutions, called ςDBES -calculus. The following section deals with the encoding
of lambda calculus with explicit substitutions in the ςDBES -calculus. Section
7 proves the main properties of ςDBES : confluence and preservation of strong
normalization. Finally, we conclude and suggest future research directions.

2 The ς-Calculus

This section presents the ς-calculus as defined in [1]. We have at our disposal
an infinite list of variables denoted x, y, z, . . ., and an infinite list of labels de-
noted l, li, l

′, The labels shall be used to reference methods. An object is
represented as a collection of methods denoted li = ς(xi).ai. Each method has
a reference or method name li and a method body ς(xi).ai. The labels of an
object’s methods are assumed to be all distinct. Operations allowed on objects
are method invocation and method update. A method invocation of the method lj
in an object [li = ς(xi).a i∈1..n

i] is represented by the term [li = ς(xi).a i∈1..n
i].lj .

As a result of a method invocation, not only the corresponding method body is
returned but also, this method body is supplied with a copy of its host object.

Using Fields and Explicit Substitutions 207

Thus method bodies are represented as ς(xi).ai where ς is a binder that binds
the variable xi in ai. This variable called self will be replaced by the host object
when the associated method is invoked. It is this notion of self captured by the
ς-calculus that makes it so versatile. The other valid operation on objects is
method update. A method lj = ς(xj).aj in an object o may be replaced by a new
method l′j = ς(x′

j).a
′
j , thus resulting in a new object o

′.
The terms of the ς-calculus, denoted Tς , is given by the following grammar

a ::= x | a.l | a ✁ 〈l = ς(x).a〉 | [li = ς(xi).a i∈1..n
i] .

A variable convention similar to the one present in λ-calculus is adopted:
terms differing only in the names of their bound variables (i.e. α-equivalent) are
considered identical.
We say that x is a variable, a.l is a method invocation, a ✁ 〈l = ς(x).a〉 is a

method update and [li = ς(xi).a i∈1..n
i] is an object.

In order to introduce reduction between terms the notions of free variables
and substitution are defined as in [1]. The result of substituting a free variable
x in a term a for a term b shall be denoted a{x← b}.
The semantics of the ς-calculus, referred to as the primitive semantics in [1],

is defined by the following rewrite rules:

o.lj −→ς aj{xj ← o} j ∈ 1..n
o ✁ 〈lj = ς(x).a〉 −→ς [lj = ς(x).a, li = ς(xi).a

i∈1..n,i �=j
i] j ∈ 1..n

where o ≡ [li = ς(xi).a i∈1..n
i].

The first rule defines the semantics of method invocation. The result of in-
voking the method lj (a “call” to method ς(xj).aj) is the body of the method
aj where the self variable has been replaced by a copy of the host object. The
second rule defines the semantics of method update. Note that the substitution
operator is not part of the ς-calculus but rather a meta-operation.
As regards the expressive power of this calculus, it is shown in [1] that lambda

terms can be encoded as objects and that β-reduction can be simulated by ς-
reduction.

Definition 1. The translation ≺≺ . from λ-terms to Tς is defined as:

≺≺ x =def x
≺≺ λx.a =def [arg = ς(z).z.arg, val = ς(x). ≺≺ a {x← x.arg}]
≺≺ ab =def ≺≺ a • ≺≺ b

where c • d =def (c ✁ 〈arg = ς(y).d〉).val with y /∈ FV (d)

It is then proved for λ-terms a and b that if a−→βb then ≺≺ a ∗−→ς≺≺
b .

3 The ς-Calculus à la de Bruijn (ςDB-Calculus)

Here we introduce the ς-calculus in a de Bruijn setting. N.G.de Bruijn in-
troduced a notation for lambda terms which deals with the problem of ha-
ving to rename bound variables when implementing mechanized provers [8].

208 E. Bonelli

Instead of labelling bound variables with names (as above) variables are la-
belled with natural numbers. This number is usually referred to as a de Bruijn
index. If a term is viewed as a tree, an index n stands for a variable bound
by the n-th binder starting from the position of the index. For example, the
term [l1 = ς(x1).[l2 = ς(y1).x1, l3 = ς(z1).z1], l4 = ς(x2).y2] is represented as
[l1 = ς([l2 = ς(2), l3 = ς(1)]), l4 = ς(2)]. Note that free variables are represented
by indices greater than the number of binders above it, thus a variable assigned
an index n that has m sigmas above it refers to the (n − m)-th free variable
(in a preestablished ordering on the set of variables). The advantage attained is
that there is no longer any need to perform renaming of bound variables. Ne-
vertheless we must take care of index adjustments: if a substitution drags a term
under a binder, its indices must be adjusted in order to avoid unwanted capture
of indices.
The terms of the ς-calculus à la de Bruijn (the ςDB -calculus), denoted TςDB ,

are characterized by the grammar a ::= p | a.l | a ✁ 〈l = ς(a)〉 | [li = ς(ai) i∈1..n]
where p is a natural number (IN) greater than zero. We shall use underlined
natural numbers for indices.

Definition 2 (Ordinary Substitution). Let a and b be pure terms and n ≥ 1.
The substitution of a by b at level n is defined as follows:

[li = ς(ai) i∈1..m]{n← b} =def [li = ς(ai{n+ 1← b}) i∈1..m]
d.l{n← b} =def d{n← b}.l
d ✁ 〈l = ς(c)〉{n← b} =def d{n← b}✁ 〈l = ς(c{n+ 1← b})〉

p{n← b} =def

p− 1 if p > n
Un
0 (b) if p = n

p if p < n

where for every i ≥ 0 and n ≥ 1, Un
i (.) is an updating function from terms

in TςDB to terms in TςDB defined as follows:

Un
i ([li = ς(ai) i∈1..m]) =def [li = ς(Un

i+1(ai)) i∈1..m]
Un

i (a.l) =def Un
i (a).l

Un
i (a ✁ 〈l = ς(c)〉) =def Un

i (a)✁ 〈l = ς(Un
i+1(c))〉

Un
i (p) =def

{
p+ n− 1 if p > i
p if p ≤ i

We now define the appropriate reduction rules using the notion of substitu-
tion defined above.

Definition 3 (Reduction in the ςDB -calculus). Reduction in the ςDB -calcu-
lus is defined by the following rewrite rules:

[li = ς(bi) i∈1..n].lj −→ςDB bj{1← [li = ς(bi) i∈1..n]}
[li = ς(bi) i∈1..n]✁ 〈lj = ς(c)〉 −→ςDB [lj = ς(c), li = ς(bi) i∈1..n,i �=j]

Notice that substitution is still a meta-operation in this calculus, completely
external to the reduction rules of the formalism.

Using Fields and Explicit Substitutions 209

4 The ς-Calculus à la de Bruijn with Fields (ς•
DB-Calculus)

The ς•
DB -calculus is a straightforward extension of ςDB -calculus. It is formulated

in preparation for the introduction of explicit substitutions in Section 5 and shall
also be used for proving some properties of this calculus of explicit substitutions.
From a general standpoint an object may be regarded as an entity encap-

sulating state (fields) and behaviour (methods) in an object-oriented language .
These methods allow the object to modify its local state as well as interact with
other objects. Let us concentrate on fields. Consider an object calculator that
possesses a field which allows the user (another object) to store some interme-
diate result. For this the object interface includes a method save(n) where n is
the number to be stored. Also, in order to retrieve this value it includes a method
recall. Thus one would expect the equation calculator.save(n).recall=n
to be true. This is characteristic of the behaviour of fields. As mentioned in [1]
the ς-calculus does not include field contructs as primitive. Nevertheless, me-
thods that do not use the self variable may be regarded as fields. Indeed, let b
be a term in the ς-calculus such that it has no occurrence of a variable x. Then
we have [l = ς(x).b].l−→ςb{x← [l = ς(x).b]} ≡ b Thus we obtain exactly b, the
body of the method l = ς(x).b.
Now consider the setting where variables are represented no longer by variable

names but by de Bruijn indices. Then we could attempt to proceed as above.
Consider a term b in the ςDB -calculus such that 1 /∈ FV (b). Then we have,
[l = ς(b)].l−→ςDB b{1 ← [l = ς(b)]} ≡ b− where b− represents b with free indices
decremented in one unit. The result obtained is not the same as the body of the
method l = ς(b).
Thus we may simulate fields in ςDB -calculus by representing them as methods

l = ς(b+) where b+ represents b where all free indices are incremented in one unit.
Nevertheless, we shall introduce fields as primitive constructs in the language.
The reason for doing so is that when explicit substitutions are introduced into
the calculus and the translation of (an explicit substitution version of) the λ-
calculus into this extension studied, field simulation may no longer be performed
(c.f. Section 5).
Therefore in our de Bruijn setting we incorporate, as a primitive notion, that

of a field. The terms of the ς-calculus à la de Bruijn with fields (hereafter the
ς•
DB -calculus), denoted Tς•

DB
, are called pure terms and are characterized by the

following grammar:

a ::= p | a.l | a ✁ 〈m〉 | [m i∈1..n
i]

m ::= l = g | l := a
g ::= ς(a)

where p is a natural number greater than zero.
An object is constructed by a list of methods and fields. A method is denoted

“l = g” where l is its label and g its body. A field is denoted “l := a” where l is
its label and a its body. Note that we may override a method with a field and
viceversa.

210 E. Bonelli

We now define the appropriate reduction rules using the notion of substitu-
tion defined above.

Definition 4 (Reduction in the ς•
DB -calculus). Reduction in the ς

•
DB -calcu-

lus is defined adding the following rewrite rules to the rewrite rules of Definition
3:

[lj := a,m i∈1..n,i �=j
i].lj −→ς•

DB
a

[m i∈1..n
i]✁ 〈lj := a〉 −→ς•

DB
[lj := a, m i∈1..n,i �=j

i]

Notice that substitution is still a meta-operation in this calculus, completely
external to the reduction rules of the formalism.
The ς•

DB -calculus is confluent. This may be proved using the proof technique
presented in [27], a variation of the Tait-and-Martin Löf technique. Also, via
a translation function that adjusts appropriately the indices of the bodies of
fields it may be proved that the ςDB -calculus can simulate the ς•

DB -calculus. For
details the reader is referred to [6].

5 Fields and Explicit Substitutions

The ς-calculus with explicit substitutions and de Bruijn indices which we shall
hereafter refer to as the ςDBES -calculus is presented in this section. This cal-
culus introduces two forms of substitution into the object language: ordinary
substitution and invoke substitution. Also, the need for using explicit fields is
explained.

5.1 The ςDBES -Calculus

The set of terms of the ςDBES -calculus, denoted TςDBES , consists of terms of sort
Term and terms of sort Subst. These are defined by the following grammar (sort
Term to the left and sort Subst to the right)

a ::= p | a.l | a ✁ 〈m〉 | [m i∈ 1..n
i] | a[s]

m ::= l = g | l := a s ::= a/ | @l |⇑ (s) |↑
g ::= ς(a) | g[s]

where p is a natural number greater than zero.
Unless otherwise stated when we say that “a is a term in TςDBES ” we mean

“a is a term in TςDBES of sort Term”. A closure is a term of the form a[s]. A
term that does not contain occurrences of closures as subterms is called a pure
term. A term a[s] may be regarded as the term a with pending substitution
s. The substitution operator .[.] is part of the calculus (at the object-level). A
substitution s with an occurrence of a/ is called an ordinary substitution whereas
a substitution s with an occurrence of @l is called an invoke substitution. More
on invoke substitutions shall be said in Section 7. Note that if we erase the
grammar rules generating closures then we obtain the set Tς•

DB
.

Using Fields and Explicit Substitutions 211

The substitution grammar (and substitution subcalculus) for ordinary sub-
stitution is based on the calculus of explicit substitution for the lambda calculus,
λυ [20].
We shall frequently use the notation ⇑i (s) and a[s]i defined inductively as:

⇑0 (s) =def s a[s]0 =def a
⇑i+1 (s) =def ⇑ (⇑i (s)) a[s]i+1 =def a[s]i[s]

The semantics of the ςDBES -calculus is defined by the following rewrite rules:

[lj = ς(a),m i∈1..n,i �=j
i].lj −→MI a[[lj = ς(a),m i∈1..n,i �=j

i]/]
[lj := a,m i∈1..n,i �=j

i].lj −→FI a

[m i ∈ 1..n
i]✁ 〈lj = g〉 −→MO [lj = g, mi∈1..n,i �=j

i] j ∈ 1..n
[m i ∈ 1..n

i]✁ 〈lj := a〉 −→FO [lj := a, mi∈1..n,i �=j
i] j ∈ 1..n

(ς(c))[s] −→SM ς(c[⇑ (s)])
[m i∈ 1..n

i][s] −→SO [mi[s] i∈ 1..n]
(l := a)[s] −→SF l := a[s]
(l = g)[s] −→SB l = g[s]
a.l[s] −→SI a[s].l
a ✁ 〈m〉[s] −→SU a[s]✁ 〈m[s]〉
1[a/] −→FVar a
p+ 1[a/] −→RVar p
1[@l] −→FInv 1.l
p+ 1[@l] −→RInv p+ 1
1[⇑ (s)] −→FVarLift 1
p+ 1[⇑ (s)] −→RVarLift p[s][↑]
p[↑] −→VarShift p+ 1
a[⇑i (@lj)][⇑i ([lj := b,m i∈1..n,i �=j

i]/)] −→CO a[⇑i (b/)]
a[⇑i (@l)][⇑k (s)] −→SW a[⇑k (s)][⇑i (@l)] k > i

The rule MI activates a method invocation. The rule FI activates a field in-
vocation. The rules MO ,FO activate method override and field override respec-
tively. Rules SM ,SO ,SF ,SB ,SI ,SU allow the propagation of the substitution
operator through method body, object, field, method, invocation and override
constructors. Rules FVar ,RVar ,Finv ,RInv ,FVarLift ,RVarLift ,VarShift allow
the computation of substitutions on indices. Finally, the rule CO expresses a
form of interaction of substitutions, and SW expresses a (weak) form of commu-
tation or switching of substitutions. These two rules will be used in simulating
λυ in the ςDBES -calculus.
It is interesting to compare rules RVar and RInv . The creation of a substitu-

tion of the form b/ is accompanied by the elimination of a binder (see rule MI).
Hence all “free” indices should be decremented in one unit. Whereas in the case
of the invoke substitution operator “@” no such adjustment is made.
The ςDBES -calculus without the rules MI ,MO ,FI and FO is referred to as

the ESDB rewriting system. Note that ESDB is not locally confluent since for
example the term 1[@l1][[l1 := b]/] reduces to two different terms by the rules

212 E. Bonelli

FInv and CO respectively, and requires FI to close the diagram. The ESDB
rewriting system is responsible for performing or discarding the substitution
operators and additionally allows for some interaction between ordinary and
invoke substitution operators. The rewriting system obtained by eliminating
the rules for substitution interaction (rules CO and SW) is called the BES
(Basic Explicit Substitution) rewriting system. This system suffices for executing
substitutions; the interaction rules shall be needed when simulating λυ.

5.2 The Need for Explicit Fields

In Section 4 we saw that although the ς•
DB -calculus incorporated fields as pri-

mitive constructs this is not strictly necessary as fields may be simulated in the
ςDB -calculus in a rather natural way. This situation no longer holds when explicit
substitutions are introduced and when we attempt to translate the λυ-calculus
into the ς•

DBES -calculus using the translation in [1] (recalled in Section 2) for the
λ-calculus.
Let us ignore fields as a primitive construct in the language for the moment

and return to our simulation of fields as discussed in Section 4. A field b is
represented as the method l = ς(b+). The ςDBES -calculus is then reduced to the,
say, ς•

DBES , where rules FI, FO, SF and CO have been eliminated.
Now when we attempt to translate the λυ-calculus into the ς•

DBES -calculus
in the style of ≺≺ . we arrive naturally to the translation function k:

k(a/) =def k(a)/ k(p) =def p
k(⇑ (s)) =def ⇑ (k(s)) k(↑) =def ↑
k(a[s]) =def k(a)[k(s)]
k(ab) =def (k(a)✁ 〈arg = ς(k(b)+)〉).val
k(λa) =def [arg = ς(1.arg), val = ς(k(a)[@arg])]

But the meaning of k(b)+ is no longer clear since k(b) may have occurrences
of the explicit substitution operator (it is no longer a pure term). To remedy this
situation the next logical step would be to introduce an “explicit substitution
version” of the .+ operator which in fact we already have: the ↑ (shift) operator.
Indeed, it is with the aid of the shift operator that updating is implemented
explicitly (cf. Section 7 in [6]). The final clause of the definition of k is now
replaced by k(ab) =def (k(a)✁ 〈arg = ς(k(b)[↑])〉).val
So now we proceed to verify that the translation is correct (preserves λυ-

reduction). Consider for example the λυ-reduction rule (λa)b−→Betaa[b/] (cf.
Section 6). Then we must have k((λa)b) ∗−→ς•

DBES
k(a[b/]). We can go as far as:

k((λa)b) =def

([arg = ς(1.arg), val = ς(k(a)[@arg])]✁ 〈arg = ς(k(b)[↑])〉).val −→MO
[arg = ς(k(b)[↑]), val = ς(k(a)[@arg])].val −→MI
k(a)[@arg][[arg = ς(k(b)[↑]), val = ς(k(a)[@arg])]/]

Thus in order to arrive at k(a)[k(b)/] we are in need of adding to the
ς•
DBES -calculus a commutation rule of the form: a[⇑i (@lj)][⇑i ([lj = ς(b[↑

Using Fields and Explicit Substitutions 213

]),m i∈1..n,i �=j
i]/)]−→COMa[⇑i (b/)] (taking i = 0 suffices for our example). But

adding a rule like COM clearly introduces confluence problems.
A variant could be the rule a[⇑i (@lj)][⇑i ([lj = ς(b),m i∈1..n,i �=j

i]/)]−→COM ′

a[⇑i (c/)] where b =BES c[↑]. The major drawbacks are then the fact that the
rule is conditional and (computationally) expensive checking on the equational
substitution theory is required (this resembles problems studied when dealing
with η-contraction in explicit substitution calculi ([7],[25], [16])).
These problems stem from the fact that the formulation of rules which are

subject to restrictions on the free variables in a de Bruijn index setting and in
the presence of explicit substitutions is non trivial. Here, we have solved these
issues by a minor change in the syntax so as to represent fields as primitive
operators. In fact, the rewrite rule CO of the named ςES-calculus presented in
[17] is conditional, whereas the CO rule presented in this work, in a de Bruijn
index setting, is actually simpler since no condition is present.

6 Encoding λυ-Terms in the ςDBES -Calculus

In this section we will show how to simulate the explicit substitution calculus
for the lambda calculus λυ[20] in the ςDBES -calculus. We start by augmenting
the grammar productions for the terms of the ςDBES -calculus in order to allow
abstractions and applications as legal terms. We then define a translation from
terms in the λυ-calculus into this augmented set of terms which preserves re-
duction. We recall the main definitions of the λυ-calculus. Terms are defined by
the following grammars t ::= p | tt | λt | t[s] and s ::=↑ | t/ | ⇑ (s). We recall the
rules below.

(λa)b −→Beta a[b/] p+ 1[a/] −→RVar p
(a b)[s] −→app a[s]b[s] 1[⇑ (s)] −→FVarLift 1
λa[s] −→abs λ(a[⇑ (s)]) p+ 1[⇑ (s)] −→RVarLift p[s][↑]
1[a/] −→FVar a p[↑] −→VarShift p+ 1

The mixed set of terms, which we shall call TλςDBES consists of the terms of
sort Term and terms of sort Subst (which remain unaltered). The terms of sort
Term are defined by the following grammar:

a ::= p | a.l | a ✁ 〈m〉 | [m i∈ 1..n
i] | a[s] | λa | (a a)

m ::= l = g | l := a
g ::= ς(a) | g[s]

where p is any natural number greater than zero.
The rewrite rules of the λςDBES -calculus consists of the rewrite rules of the

ςDBES -calculus together with the rules Beta, abs and app of the λυ-calculus
(note that the remaining rules of λυ already belong to the ςDBES -calculus). The
resulting system may be proved confluent using the interpretation technique [12]
and the fact that the corresponding system with meta-level substitutions is an
orthogonal rewrite system.
The encoding of λυ-terms into λςDBES -terms makes use of the invoke explicit

substitution operator “@” and fields.

214 E. Bonelli

Definition 5 (Translation of λςDBES -terms into terms in TςDBES). The
translation ≺ . from λςDBES -terms into terms in TςDBES is defined as

≺ p =def p ≺ ς(a) =def ς(≺ a)
≺ a.l =def ≺ a .l ≺ a/ =def ≺ a /
≺ a ✁ 〈m〉 =def ≺ a ✁〈≺ m 〉 ≺⇑ (s) =def ⇑ (≺ s)
≺ [m i ∈ 1..n

i] =def [≺ mi i ∈ 1..n] ≺↑ =def ↑
≺ l = g =def l =≺ g ≺ @l =def @l
≺ l := a =def l :=≺ a ≺ λa =def c
≺ a[s] =def ≺ a [≺ s] ≺ ab =def ≺ a • ≺ b

where c is [arg = ς(1.arg), val = ς(≺ a [@arg])] and p • q =def (p ✁ 〈arg :=
q〉).val
The translation interprets the lambda expressions abstraction and applica-

tion into objects leaving the rest of the constructions without modifications. The
translation of an abstraction introduces the invoke substitution. Note that the
index level 1 (to which the invoke substitution applies) is bound. This reveals
a difference as regards the behaviour of ordinary and invoke substitutions, as
discussed above. Ordinary substitution is of no use since its index adjusting
mechanism does not exhibit the desired behaviour.
The principal motivation behind the introduction of the rules describing the

interaction of ordinary substitution and invoke substitution lies in the following
proposition.

Proposition 1 (ςDBES simulates λυ). If a−→λυb then ≺ a ∗−→ςDBES≺ b .
Proof. The proof is done by structural induction on the λυ-term. The key cases
are ≺ (λa)b ∗−→ςDBES≺ a[b/] (Case 1) and ≺ λa[s] ∗−→ςDBES≺ λ(a[⇑ (s)])
(Case 2).
Case 1.
≺ (λa)b =def

([arg = ς(1.arg), val = ς(≺ a [@arg])]✁ 〈arg :=≺ b 〉).val −→MO
[arg :=≺ b , val = ς(≺ a [@arg])].val −→MI
≺ a [@arg][[arg :=≺ b , val = ς(≺ a [@arg])]/] −→CO
≺ a [≺ b /] =def

≺ a[b/]
Case 2.
≺ (λa)[s] =def

[arg = ς(1.arg), val = ς(≺ a [@arg])][≺ s] −→SO

[arg = (ς(1.arg))[≺ s], val = (ς(≺ a [@arg]))[≺ s]] ∗−→BES

[arg = ς(1.arg[⇑ (≺ s)]), val = ς(≺ a [@arg][⇑ (≺ s)])] ∗−→BES
[arg = ς(1.arg), val = ς(≺ a [@arg][⇑ (≺ s)])] −→SW
[arg = ς(1.arg), val = ς(≺ a [⇑ (≺ s)][@arg])] =def

≺ λ(a[⇑ (s)])
Wemay therefore conclude that λυ-derivations may be translated into ςDBES -

reductions sequences, thereby implementing objects and functions at the same
time.

Using Fields and Explicit Substitutions 215

7 Confluence and PSN of the ςDBES -Calculus

When dealing with calculi of explicit substitutions some basic properties have to
be considered, namely, strong normalization of the substitution calculus (ESDB),
confluence of the full calculus and preservation of strong normalization, that
is, that every strongly normalizing term in ς•

DB -calculus must also be strongly
normalizing in the ςDBES -calculus. The history of calculi of explicit substitution
has revealed that this last property is by no means trivial. One of the first calculi
of explicit substitution for the λ-calculus, called λσ [2] introduced in 1991 was
long believed to satisfy the aforementioned property. Surprisingly in 1995 Melliès
provided a counterexample [22], exhibiting a (pure typable) term that is strongly
β-normalizing yet admits an infinite λσ-reduction sequence. Since we allow some
interaction between substitutions this property is essential in our current setting.
Strong normalization of the substitution calculus is obtained by the polyno-

mial interpretation technique. As for the confluence of the ςDBES -calculus we
have the following result which is proved using the Interpretation Method [12].

Proposition 2. The ςDBES -calculus is confluent.

Proving preservation of strong normalization is more complicated. We shall
obtain the desired result by using a technique introduced by Bloo and Geuvers
in [4]. As remarked before this property is an essential ingredient in any expli-
cit substitution implementation of a calculus, more so if there is some form of
interaction between substitutions as is our case.

Definition 6 (Strongly normalising pure terms of TςDBES). Let SNς•
DB
de-

note the set of all the ς•
DB -strongly normalizing pure terms of TςDBES . Then we

may define F as F = {a ∈ TςDBES | for all b ⊆ a of sort Term,BES (b) ∈ SNς•
DB
}.

The notation b ⊆ a is used to denote that b is a subterm of a. Next we show
that F is closed with respect to reduction in the ςDBES -calculus.

Lemma 1. Let a, b ∈ Tς•
DB
. If a ∈ F and a−→ςDBES b then b ∈ F .

Proof. We show that for every e ⊆ b we have BES (e) ∈ SNς•
DB
. The proof is by

induction on a.

Definition 7 (Labelled terms). We define the set of terms Tl over the al-
phabet A = {., ◦, ..n.,✁(., .), . < . >n, .[[.]]n, ς(.), [.],=, :=} and for n a natural
number greater or equal to zero, by the following grammar:

t ::= . | t.n◦ | t < t >n| t[[◦]]n | ✁(t, u) | [u i∈1..n
i]

u ::= ◦ = f | ◦ := t
f ::= ς(t) | f < t >n

216 E. Bonelli

Definition 8 (Translation from F to Tl). The translation S(.) : F → Tl is
defined as follows:
S(p) =def .

S([mi ∈1..n
i]) =def [S(mi)i ∈1..n]

S(l = g) =def S(l) = S(g)
S(l := a) =def S(l) := S(a)
S(ς(a)) =def ς(S(a))
S(a.l) =def S(a).nS(l) where n = maxredς•

DB
(BES (a.l))

S(a ✁ 〈m〉) =def ✁(S(a),S(m))
S(a[⇑i (b/)]) =def S(a) < S(b) >n where n = maxredς•

DB
(BES (a[⇑i (b/)]))

S(a[⇑i (↑)]) =def S(a)
S(a[⇑i (@l)]) =def S(a)[[S(l)]]n where n = maxredς•

DB
(BES (a[⇑i (@l)]))

where S(l) = ◦.
We define a precedence (partial ordering) on the set of operators of A as fol-

lows: ..n+1. � . < . >n� .[[.]]n � ..n. � ✁(., .) � ς(.),=, :=, [], ., ◦. Then since
� is well-founded the induced Recursive Path Ordering (RPO) ‘Tl

’ defined
below is well-founded on Tl [10].

Lemma 2. Let a ∈ F . Then a−→Ra
′ implies S(a) Tl

S(a′) where R =
{MI,FI,MO,FO} and S(a) �Tl

S(a′) if R = ςDBES − {MI,FI,MO,FO}.
Proof. The proof is by structural induction on a using lemmas 1 and additional
technical lemmata (see [6]).

We may now prove the main proposition of this section, namely, the propo-
sition of preservation of strong normalization for the ςDBES -calculus.

Proposition 3 (PSN of the ςDBES -calculus). The ςDBES -calculus preserves
strong normalization.

Proof. Suppose that the ςDBES -calculus does not preserve strong normalization.
Thus there is a pure term a which is strongly ς•

DB -normalizing but which pos-
sesses an infinite reduction sequence in the ςDBES -calculus. Since the rewriting
system S ≡ ESDB ∪{MO ,FO ,FI } is strongly normalizing [6] this reduction se-
quence must have the form a ≡ a1

∗−→S a2−→MI a3
∗−→S a4−→MI a5 . . . where

the reductions a2k−→MI a2k+1 for k ≥ 1 occur infinitely many times. Now since
a is in F , and since by lemma 1 the set F is closed under reduction in ς•

DB we
obtain an infinite sequence

S(a) ≡ S(a1) �Tl
S(a2) Tl

S(a3) �Tl
S(a4) Tl

S(a5) . . .
This contradicts the well-foundedness of the recusive path ordering Tl

.

8 Conclusions and Future Work

We have proposed a first order calculus based on de Bruijn indices and explicit
substitutions for implementing objects and functions. The encoding of functions

Using Fields and Explicit Substitutions 217

as objects in the spirit of [1] has led us to consider fields as primitive constructs
in the language. The resulting calculus has been shown to correctly simulate the
object calculus (ς) and the function calculus (λυ), and also that it satisfies the
properties of confluence and preservation of strong normalization. As in [17] two
different forms of substitution are present in the calculus: ordinary substitution
and invoke substitution. In the named variable calculus presented in [17], called
ςES , this distinction is based on constraints associated with types (in an invoke
substitution the type of the method invocation x.l to be substituted for x differ)
and the free variable property. In fact, since ςES is untyped the type constraint
may be minimized. In contrast, and as already hinted in [17], in the ςDBES -cal-
culus this distinction is based on different index adjusting mecanisms, thus fully
justifying the need for different substitution operators.
Interaction between substitutions such as composition or permutation of sub-

stitutions usually renders the property of preservation of strong normalization
non trivial. Indeed since a weak form of interaction between both forms of substi-
tutions is present in the ςDBES -calculus the proof of the property of preservation
of strong normalization has resulted a key issue.
Finally, rules possessing conditions on free variables in a named variable

setting generally pose problems when expressed in a de Bruijn indice setting
as may be seen for example when dealing with η-reduction ([7], [25], [16]). The
use of fields as a primitive construct has allowed us to replace the conditional
rules present in the ςES with non-conditional rules, thus simplifying the resulting
calculus.
As already discussed the ςDBES -calculus is not an instance of the de Bruijn

index based higher order rewriting formalism XRS1 [24]. XRSs provide a fixed
substitution calculus (σ⇑) for computing ordinary substitutions. Thus an inte-
resting approach is to generalize this framework to a formalism where various
forms of substitution may be defined with possible interaction between them.
Also, in view of the importance of the typing discipline the consideration of

type systems for the ςDBES -calculus is required.

Acknowledgements. I would like to thank Delia Kesner, Alejandro Ŕıos
and Pablo E. Mart́ınez López for valuable discussions, advice and encourage-
ment, and the anonymous referees for their comments.

References

1. M.Abadi and L.Cardelli. A Theory of Objects. Springer Verlag, 1996.
2. M.Abadi, L.Cardelli, P.-L.Curien, and J.-J.Lévy. Explicit Substitutions. Journal of

Functional Programming, 4(1):375-416, 1991.
3. R.Bloo. Preservation of Termination for Explicit Substitution. PhD. Thesis, Eind-

hoven University, 1997.

1 Strictly speaking it is a first order rewriting formalism but allows to express binding
mecanisms.

218 E. Bonelli

4. R.Bloo and H.Geuvers. Explicit Substitution: on the edge of strong normalization.
Theoretical Computer Science, 204, 1998.

5. R.Bloo, K.Rose. Combinatory Reduction Systems with explicit substitution that
preserve strong normalization. In RTA’96, LNCS 1103, 1996.

6. E. Bonelli. Using fields and explicit substitutions to implement objects
and functions in a de Bruijn setting. Full version obtainable by ftp at
ftp://ftp.lri.fr/LRI/articles/bonelli/objectdbfull.ps.gz.

7. D.Briaud. An explicit eta rewrite rule. In M.Dezani Ed., Int. Conference on Typed
Lambda Calculus and Applications, LNCS vol. 902, 1995.

8. N.G.de Bruijn. Lambda calculus notation with nameless dummies, a tool for au-
tomatic formual manipulation with application to the Church-Rosser theorem.
Koninklijke Nederlandse Akademie van Wetenschappen, Series A, Mathematical
Sciences, 75:381-392, 1972.

9. P.-L.Curien, T.Hardin, and J.-J.Lévy. Confluence properties of weak and strong
calculi of explicit substitutions. Technical Report, Centre d’Etudes et de Recherche
en Informatique, CNAM, 1991.

10. N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer
Science, 17(3):279-301, 1982.

11. M.Ferreira, D.Kesner. and L.Puel. Lambda-calculi with explicit substitutions and
composition which preserve beta-strong normalization. Proceedings of the 5th In-
ternational Conference on Algebraic and Logic Programming (ALP’96), LNCS
1139, 1996.

12. T.Hardin. Résultats de confluence pour les règles fortes de la logique combinatoire
catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris
VII, 1987.

13. T.Hardin and J-J.Lévy. A confluent calculus of substitutions. In France-Japan Ar-
tificial Intelligence and Computer Science Symposium, 1989.

14. F. Kamareddine and A.Ŕıos. A lambda calculus a la de Bruijn with Explicit Sub-
stitutions. Proceedings of the 7th International Symposium on Programming Lan-
guages: Implementations, Logics and Programs (PLILP’95), LNCS 982, 1995.

15. F. Kamareddine and A.Ŕıos. Extending a λ-calculus with Explicit Substitutions
which Preserves Strong Normalization into a Confluent Calculus on Open Terms.
In Journal of Functional Programming, Vol.7 No.4 , 1997.

16. D.Kesner. Confluence properties of extensional and non-extensional lambda-calculi
with explicit substitutions. Proceedings of the 7th International Conference on
Rewriting Techniques and Applications (RTA’96), LNCS 1103, 1996.

17. D.Kesner, P.E.Mart́ınez López. Explicit Substitutions for Objects and Functions.
Proceedings of the Joint International Symposiums: Programming Languages, Im-
plementations, Logics and Program (PLILP’98) and Algebraic and Logic Program-
ming (ALP), LNCS 1490,pp. 195-212, Sept. 1998.

18. J.W.Klop. Combinatory Reduction Systems. PhD Thesis, University of Utrecht,
1980.

19. J.W.Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T.Maibaum,
editors, Handbook of Logic in Computer Science, Volume II, Oxford University
Press, 1992.

20. P. Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions. In
Ann. ACM Symp. on Principles of Programming Languages (POPL), pp. 60-69.
ACM, 1994.

21. P. Lescanne and J.Rouyer Degli. Explicit substitutions with de Bruijn’s levels. In
P.Lescanne editor, RTA’95, LNCS 914, 1995.

Using Fields and Explicit Substitutions 219

22. P.A.Melliès. Typed λ-calculi with explicit substitutions may not terminate. In
TLCA’95, LNCS 902, 1995.

23. C.A.Muñoz. Confluence and Preservation of Strong Normalisation in an Explicit
Substitutions Calculus. Proceedings of the Eleven Annual IEEE Symposium on
Logic in Computer Science, 1996.

24. B.Pagano. Des calculs de substitution explicit et leur application à la compilation
des langages fonctionnels. Thèse de doctorat, Université de Paris VII, 1998.

25. A. Ŕıos. Contribution à l’étude des λ-calculs avec substitutions explicites. Ph.D
Thesis, Université de Paris VII, 1993.

26. K.Rose. Explicit Cyclic Substitutions. In CTRS’92, LNCS 656, 1992.
27. M. Takahashi. Parallel reduction in the λ-calculus. Journal of Symbolic Computa-

tion, 7:113-123, 1989.

	Introduction
	The ς-Calculus
	The ς-Calculus a la de Bruijn (ς_DB-Calculus)
	The ς-Calculus a la de Bruijn with Fields (ς^•_DB-Calculus)
	Fields and Explicit Substitutions
	The ς_DBES-Calculus
	The Need for Explicit Fields

	Encoding λ_ny-Terms in the ς_DBES-Calculus
	Confluence and PSN of the ς_DBES-Calculus
	Conclusions and Future Work

