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Abstract. We study secure information flow in a stack based Typed As-
sembly Language (TAL). We define a TAL with an execution stack and
establish the soundness of its type system by proving non-interference.
One of the problems of studying information flow for a low-level language
is the absence of high-level control flow constructs that guide information
flow analysis in high-level languages. Furthermore, in the presence of an
execution stack, code that frees space on the stack must be constrained
in order to avoid illegal flows. Finally, in the presence of stack poly-
morphism, we must ensure that type variables are instantiated without
observable differences. These issues are addressed by introducing junc-
tion points into the type system, ensuring that they behave as ordered
linear continuations, and that they interact safely with the execution
stack. We also discuss several limitations of our approach and point out
some remaining open issues.

1 Introduction and Motivation

The increasing need to guarantee the confidentiality of electronically stored in-
formation has prompted the academic community to study confidentiality from
different points of view. Although access control regulates who can access infor-
mation, it does not regulate the proper manipulation of sensitive data, i.e. the
flow of information. In contrast, the theory of programming languages provides
powerful techniques that have proven successful in studying information flow
security.

In a multilevel security architecture, information can range from having low
(public) to high (secret) security level. Information flow analysis studies whether
an attacker can obtain information about the secret data by observing the public
output of the system. The non-interference property states that any two exe-
cutions of the same program, where only the high-security inputs differ in both
executions, do not exhibit any observable difference in their outputs.

The example in Fig. 1(a) shows a program that has the non-interference
property only if the variable y is secret. Otherwise, information about the secret
(labelled �) value stored in x is revealed by the different values that y can
have, depending on the branch of the if-then-else instruction executed. This
breach of security is called implicit information flow. In order to statically detect
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pc level x : int�; z : int⊥

low if x = 0
high then y := 1
high else y := 2;
low z := 3

(a) High-level language

L1 : bnz r1,L2
mov r2, 1
jmp L3

L2 : mov r2, 2
L3 : mov r3, 3

(b) Assembly language

L1 : pushJP L3
bnz r1,L2
mov r2, 1
jmpJP L3

L2 : mov r2, 2
jmpJP L3

L3 : mov r3, 3

(c) SIFTAL

Fig. 1. Example of implicit information flow

this kind of information flow, a security level is associated with the program
counter at each program point. This association is shown in the left column
of the example, and it can be verified that at each program point no variable
with a lower security level than the program counter is updated. Notice that the
assignment in the last line of code does not depend on the value of x. Therefore,
the level of the program counter becomes low again and the public (labelled ⊥)
variable z can be updated without compromising confidentiality.

Motivated by the desire to obtain secure information flow results for low-level
code without trusting the compiler, and the fact that most mobile programs
are distributed in some low-level format, we study confidentiality for assembly
programs using a language-based approach to security via type theory.

Information flow analysis in low-level languages presents a number of difficul-
ties typically not present in high-level ones. As already noted in several articles on
information flow for low-level languages [3, 14], the absence of high-level control
flow constructs dictates the need for some alternative mechanism for retrieving
high-level program structure. For example, the program in Fig. 1(b) is a stan-
dard translation of the high-level program of Fig. 1(a) to assembly language.
Notice that the security level of the program counter can be raised after the
execution of the bnz instruction, but there is no way of knowing where it can be
lowered again, in order to allow the update of the public variable z represented
by register r3.

In [15] we introduced the notion of junction point, which represents a pro-
gram point where execution of different branches of computation converge. Our
Typed Assembly Language SIFTAL uses junction points and typing directives to
manipulate a stack of junction points and reflect the control flow structure of
the programs. These junction points are instrumental during typechecking to
prove non-interference; however, they bear no meaning during execution, and
are therefore removed after typechecking.

The code in Fig. 1(c) is a translation to SIFTAL of the high-level program
in Fig. 1(a). The SIFTAL program uses the code label L3 as a junction point,
in order to signal where the security level can be lowered. During typechecking,
the typing directive pushJP L3 pushes the label L3 onto a stack, introducing a
linear obligation that has to be met by using a jmpJP L3 instruction. Moreover,
the program is well-typed only if there are no modifications of public registers
inside the branches of the bnz instruction. Note that pushJP has no effect at
run-time and it is discarded after typechecking, while jmpJP will be replaced by
a jmp instruction.
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Lstart Code〈{r1 : int⊥, r2 : int�} | ⊥〉
salloc 2
mov r1,0
sst sp[0],r1
mov r1,1
sst sp[1],r1
bnz r2,Lhigh
jmp LJP

Lhigh Code〈{r1 : int⊥} | �〉
sfree 1
jmp LJP

LJP Code〈{r1 : int⊥} | ⊥〉
sld r1,sp[0]
. . .

Lstart Code〈{r1 : int⊥, r2 : int�} | ⊥〉
salloc 3
mov r1,0
sst sp[2],r1
mov r1,1
sst sp[1],r1
sst sp[0],r2
bnz r2, Lhigh
jmp LJP

Lhigh Code〈{r1 : int⊥} | �〉
sfree 1
jmp LJP

LJP Code〈{r1 : int⊥} | ⊥〉
sfree 1
sld r1,sp[0]
. . .

(a) (b)

Fig. 2. Insecure information flow in the presence of stacks

SIFTAL is a RISC load-store assembly language, and it includes instructions
to allocate (salloc) and deallocate (sfree) space on the stack, and instructions
to load (sld) and store (sst) words from and onto the stack. In order to verify
the non-interference of a program that manipulates the stack, we must ensure
the absence of explicit illegal flows via the stack: elements that are pushed onto
the stack while the pc has a security level l must be popped while the pc has
at least security level l.

However, other more subtle forms of information leaks may arise. Consider
the code in Fig. 2. The expression Code〈Γ | pc〉 that appears alongside a
code label is the type of the code block, where Γ is the type of the registers
before execution starts, and pc indicates the initial security level of the program
counter. For simplicity, in these programs we do not include the type of the stack
pointer.

Fig. 2(a) shows that it is possible to leak confidential information by allowing
to pop a public stack component during the execution of a high-security branch.
The first five lines of the program push a 0 and a 1 onto the stack using the
auxiliary register r1. Then, in line 6 a branching operation based on the secret
value stored in r2 is performed. One branch (line 7) is empty, and only jumps to
the junction point LJP . The second branch pointed to by Lhigh eliminates one
element from the stack with sfree. Thus, the top of the stack is erased, leaving
1 as the new top, and the branch ends with a jump to LJP . At the junction
point LJP , the security level of the pc is low again, allowing the public register
r1 to learn information about the secret value in the register r2 by reading the
top of the stack. Now, if r1 contains 1 the attacker knows that r2 is not 0, if r1
contains 0 the attacker knows that r2 contains 0.

The previous problem stems from the fact that a high-security branch has
freed the public stack component on the top of the stack. However, as the next
example shows, it is not sufficient to restrict the free operation to components
whose security level is at least that of the program counter at that point. The
code in Fig. 2(b) pushes two public values on the stack and then a secret one.
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It then branches on the secret value of r2. One branch does nothing and the
other frees the top of the stack. It is legal to do it because at the top of the stack
there is a secret value and the program counter is high-security at that point.
Once the junction point LJP has been reached, the topmost item of the stack
is freed. Again, this is legal because the security level of the program counter is
low. Therefore, any public or secret value can be erased from the stack. However,
depending on the public value of the top of the resulting stack, information may
be inferred about the secret value of r2. The conclusion is that the type system
must guarantee that high branches free the same amount of items from the stack.

Stack types in SIFTAL are polymorphic. That is, type variables can be in-
cluded in a stack type to abstract part of the type. This is required to implement
multiple calls to code sections, as in procedure calls. The new format of the type
for a piece of code will be Code〈∀[Θ]Γ | pc〉, with Θ being the list of variables
(usually denoted by the capital letters X , Y , etc.), Γ being the type of the reg-
isters, including a stack pointer register named sp, and pc being the expected
security level of the program counter in such code.

In order to jump to a piece of code that has a polymorphic stack type, the
type variables must be instantiated. For example, code of type Code〈∀[X ]{sp :
int⊥ · X} | pc〉 requires a stack with type int⊥ · X to be executed safely. If that
code is at label L then the jump instruction jmp L[int� · ε] instantiates, for this
particular call, the type of the stack to int⊥ · int� · ε.

Lstart Code〈∀[X]{r1 : int⊥, r2 : int�, sp : X} | ⊥〉
salloc 2
mov r1,0
sst sp[0],r1
mov r1,1
sst sp[1],r1
pushJP LJP
bnz r2,Lhigh[X]
jmpJP LJP[int⊥ ·X] % requires LJP on top

Lhigh Code〈∀[Y ]{r1 : int⊥, sp : int⊥ · LJP · int⊥ · Y } | �〉
sfree 1
jmpJP LJP[Y ] % requires LJP in the middle

LJP Code〈∀[Z]{r1 : int⊥, sp : int⊥ · Z} | ⊥〉
sld r1,sp[0]
. . .

Fig. 3. Implicit information flow detected in SIFTAL

By translating the code in Fig. 2(a) to SIFTAL, we obtain the program in
Fig. 3. This code fails to typecheck since the occurrence of jmpJP in Lstart
requires that LJP be at the top of the stack, but the one in Lhigh requires that
it be in the middle, since Lhigh frees the topmost component.

This paper presents an extension of our previous work on information flow
for assembly languages [7, 15] to address the issues that arise by the inclusion of
an execution stack. The examples in this section illustrate that stack constructs
are not orthogonal to junction point constructs. Indeed, the main technical con-
tribution of this work is the explicit treatment of junction points as a tool to
address the problems that arise in the presence of polymorphic stacks.
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Additional benefits of dealing explicitly with junction points in the type
system are: 1) well-typed programs must “consume” all of their junction points,
which, in the vision of junction points as ordered linear continuations [28], is
equivalent to requiring that all linear obligations are met; and 2) whenever a
jump to a code block is performed, the type system ensures that the current
pending junction points are passed on as obligations to the destination code
block. Complete definitions and detailed proofs of the results in this paper appear
in the preliminary version of the technical report [6].

2 An Overview of SIFTAL

2.1 Syntax of Terms and Type Expressions

SIFTAL is a Typed Assembly Language (TAL) [17] based on STAL [16]. It has an
execution stack and constructs that support stack allocation. The syntax of the
types for SIFTAL is given in Fig. 4, and the syntax of SIFTAL programs is given
in Fig. 5. We assume the following pairwise disjoint sets: an infinite enumerable
set of code labels L1, L2, . . ., an infinite enumerable set of memory tuple labels
p1, p2, . . ., an infinite enumerable set of stack variables X1, X2, . . . and a finite
set of registers {r0, . . . , rn, sp}.

security labels l, pc ∈ Lsec
security types σ ::= τ l

types τ ::= int | Code〈∀[Θ]Γ | pc〉 | 〈σ0, . . . , σn〉
register bank types Γ ::= {r1 : σ1, . . . , rn : σn, sp : Σ}
stack types Σ ::= X | ε | σ̂ · Σ | L · Σ
stack component types σ̂ ::= σ | ns
type assignment Θ ::= · | X, Θ
heap types Ψ ::= {�1 : σ1, . . . , �n : σn}
machine configuration types Ω ::= [Ψ, Γ,pc]

Fig. 4. Types in SIFTAL

Since type expressions in SIFTAL may include annotations for security levels,
we assume given a lattice Lsec of security labels. The least and greatest elements
of this lattice are ⊥ and �, respectively. We use � for the lattice ordering and �
for the lattice join operation. Security types are types annotated with a security
label (τ l). The type of integer constants is int , while Code〈∀[Θ]Γ | pc〉 is the
type of code blocks. The type of tuple labels is denoted by 〈σ0, . . . , σn〉 or 〈σ〉.
The type of a code block Code〈∀[Θ]Γ | pc〉 consists of the register context Γ , a
register bank type that maps registers to types; the security label of the program
counter (pc); and a type assignment (Θ) of stack type variables that binds all free
stack variables in Γ . Execution stack types (Σ) are sequences of stack component
types: security types, nonsense types, and code labels. The nonsense type is used
when allocating space on the stack. Letters α, αi are used for stack component
types. We use FV (Σ) for the free variables in Σ (and similarly for the free
variables in security types, code blocks, etc.). A heap type (Ψ) is a mapping from
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machine configuration Π ::= (H,R, B)
heap H ::= {�1 : h1, . . . , �n : hn}
heap labels � ::= p | L
heap values h ::= 〈w, . . . , w〉 | Code〈∀[Θ]Γ | pc〉l.B
register bank R ::= {r1 : w1, . . . , rn : wn, sp : S}
code blocks B ::= halt | jmp v | jmpJPL[Σ] | ι; B
instructions ι ::= aop rd, rs, v | bnz r, v | mov r, v | ld rd, rs[i]

st rd[i], rs | pushJP L | salloc i | sfree i
sld rd, sp[i] | sst sp[i], rs

arithmetic operations aop ::= add | sub | mul
operands v ::= r | w | v[Σ]
word values w ::= i | p | L | w[Σ]
stack component values ŵ ::= w | ns
stack S ::= ε | ŵ · S

Fig. 5. Syntax of SIFTAL

heap addresses to security types. We assume that Ψ maps code block security
types to code labels L and tuple security types to tuple pointers p.

A machine configuration is a tuple (H, R, B), where H is the heap (mapping
heap labels to heap values), R is a register bank (mapping registers to word
values), and B is the currently executing code block. A heap label 	 is either a code
label L or a tuple label p. A heap value h is either a code block (annotated with
a security type) Code〈∀[Θ]Γ | pc〉l.B or a tuple of word values 〈w1, . . . , wn〉,
also denoted 〈w〉.

A word value is either an integer constant (i), a heap label (p or L) or a heap
label followed by a series of stack types of the form L[Σ1] . . . [Σn], (expressions of
the form p[Σ1] . . . [Σn] and i[Σ1] . . . [Σn] are ruled out by the type system). The
register bank is a finite set of registers ri, including a designated stack pointer
sp which points to the top of the stack. A stack is modeled as a sequence of
stack components: either word values or the special “nonsense” value ns, used
for newly allocated stack space.

Besides standard assembly instructions, SIFTAL has instructions to manipu-
late the execution stack (salloc, sfree, sst, and sld) and to handle the junc-
tion points (pushJP and jmpJP). Note that both jmp and jmpJP may instantiate
the stack variables of the destination code. For example, jmp L[Σ] instantiates
the stack variable of code block L with Σ before jumping to it (cf. Sec. 2.3).

2.2 Type System

In order to present the type system of SIFTAL, we need to define some notation
first: if Γ = {r1 : σ1, . . . , rn : σn, sp : Σ}, then Dom(Γ ) is the set {r1, . . . , rn, sp},
and Γ [r := σ] is the register bank type resulting from updating Γ with r : σ. We
define label(τ l) = l. We use Γ{X ← Σ} for the result of substituting all free
occurrences of the stack type variable X in Γ with Σ. A similar notation is used
for substituting inside word values, operands, types, code blocks, etc. If Θ is a
sequence of stack type variables X1, . . . , Xn and Σ is a sequence of stack types
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Θ | Γ | pc �Ψ B blk

Θ � Γ ok Γ (sp) = Halt ·Σ
T Halt

Θ | Γ | pc �Ψ halt blk

Θ | Γ �Ψ v : Code〈∀[·]Γ ′ | pc′〉l′ opnd
Θ � Code〈∀[·]Γ ′ | pc′〉 ≤ Code〈∀[·]Γ | pc � l′〉 T Jmp

Θ | Γ | pc �Ψ jmp v blk

Θ � Code〈∀[·]Γ ′{X ← Σ} | pc′〉 ≤ Code〈∀[·]Γ [sp := Σ′] | l〉
Γ ′(sp) = α1 · . . . αn ·X Θ � Σ ok Γ (sp) = L ·Σ′ Ψ(L) = Code〈∀[X]Γ ′ | pc′〉l

T Jmpcc
Θ | Γ | pc �Ψ jmpJPL[Σ] blk

Θ | Γ �Ψ rs : intl1 opnd Θ | Γ �Ψ v : int l2 opnd
pc � l1 � l2 
 label(Γ (rd)) Θ | Γ [rd := intlabel(Γ (rd))] | pc �Ψ B blk T Arith

Θ | Γ | pc �Ψ aop rd, rs, v; B blk

Θ � Code〈∀[·]Γ ′ | pc′〉 ≤ Code〈∀[·]Γ | pc � l1 � l2〉
Θ | Γ �Ψ r : intl1 opnd Θ | Γ �Ψ v : Code〈∀[·]Γ ′ | pc′〉l2 opnd

Θ | Γ | pc � l1 �Ψ B blk
T CondBrnch

Θ | Γ | pc �Ψ bnz r, v; B blk

Θ | Γ �Ψ v : τ
l1
1 opnd pc � l1 
 label(Γ (r)) Θ | Γ [r := τ

label(Γ (r))
1 ] | pc �Ψ B blk

T Mov
Θ | Γ | pc �Ψ mov r, v; B blk

Fig. 6. Typing rules for code blocks (part I)

Σ1, . . . , Σn, then we write Γ{Θ ← Σ} for Γ{X1 ← Σ1}{X2 ← Σ2} . . . {Xn ←
Σn}, if {Xi, . . . , Xn} ∩ FV (Σi−1) = ∅, for 2 ≤ i ≤ n.

The typing judgments that determine when a code block B is well-typed
under type assignment Θ, register type Γ , program counter security level pc and
heap type Ψ , are given in Figs. 6 and 7. A halt instruction is treated as a jump
to a special junction point that halts the program execution. As a consequence,
the stack type must have the label Halt at the top. The judgment Θ � Γ ok
verifies that the register bank type is well-formed under type assignment Θ,
that is, that the free variables in Γ are declared in the type assignment Θ (see
[6] for a formal statement). In order for a jmp v instruction to be well-typed, the
current register bank type must be compatible with that which is expected at
the destination label denoted by v. This is enforced by means of the subtyping
judgment. The subtyping relation is omitted here for reasons of space, but it
includes the standard requirements that it be a partial order (on types, security
types and register bank types) and uses width subtyping for register bank types.
Moreover, in order to avoid illegal flows, a jump instruction can only jump to a
code block with the same or higher security level. Therefore, the security level of
the destination code label must be higher than or equal to the current level pc
of the program counter together with the security label of the destination code
label l′.

The jmpJP L[Σ] instruction is similar, although not identical, to the jmp case.
First of all, in order to jump to the next junction point L, it must appear at
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Θ | Γ �Ψ rs : 〈σ0, . . . , σi, . . . , σn−1〉l1 opnd pc � l1 
 label(σi)
label(σi) 
 label(Γ (rd)) Θ | Γ [rd := σi] | pc �Ψ B blk

T Ld
Θ | Γ | pc �Ψ ld rd, rs[i]; B blk

Θ | Γ �Ψ rd : 〈σ0, . . . , σi, . . . , σn−1〉l opnd Θ | Γ �Ψ rs : σi opnd
pc � l 
 label(σi) Θ | Γ | pc �Ψ B blk

T St
Θ | Γ | pc �Ψ st rd[i], rs; B blk

Ψ(L) = Code〈∀[X]Γ ′ | pc′〉l′ pc 
 pc′ Γ (sp) = Σ Θ | Γ [sp := L ·Σ] | pc �Ψ B blk
T Push

Θ | Γ | pc �Ψ pushJP L; B blk

Γ (sp) = Σ Θ | Γ [sp :=

i� �� �
ns · . . . · ns ·Σ] | pc �Ψ B blk

T Salloc
Θ | Γ | pc �Ψ salloc i; B blk

Γ (sp) = σ̂0 · . . . σ̂i−1 ·Σ Θ | Γ [sp := Σ] | pc �Ψ B blk
T Sfree

Θ | Γ | pc �Ψ sfree i; B blk

Γ (sp) = σ̂0 · . . . · σ̂i ·Σ pc � l 
 label(Γ (rd))
σ̂i = τ l Θ | Γ [rd := τ label(Γ (rd))] | pc �Ψ B blk

T Sld
Θ | Γ | pc �Ψ sld rd, sp[i]; B blk

Γ (sp) = σ̂0 · . . . · σ̂i ·Σ pc 
 l

Θ | Γ �Ψ rs : τ l opnd Θ | Γ [sp := σ̂0 · . . . · σ̂i−1 · τ l ·Σ] | pc �Ψ B blk
T Sst

Θ | Γ | pc �Ψ sst sp[i], rs; B blk

Fig. 7. Typing rules for code blocks (part II)

the top of the current stack type Γ (sp). Second, the current register bank type
must be compatible with the one expected at the destination code. In particular,
this includes passing on the pending junction points which appear in the type
of the current execution stack Γ (sp). The register bank type expected at the
destination label L is given by Ψ(L), where all occurrences of the stack type X
have been instantiated with Σ. In order to deal with the problem mentioned in
the introduction related to stack polymorphism, we assume that junction points
have only one free stack variable (which may of course occur any number of times
in Γ ′, the register bank type required by the destination code block) and that
the type of the stack Γ ′(sp) has an occurrence of X at the end (cf. condition
Γ ′(sp) = α1 · . . . · αn · X). This allows us to relate the type instantiated for
X , namely Σ, to the type of the current execution stack (Σ′) and this gives us
a handle on Σ when dealing with non-interference. Finally, since the program
counter level of the junction point is to be “reset” to pc′, the label l′ of the type
of L becomes irrelevant. This is addressed by requiring l′ � pc′, a condition
which is easily met by defining l′ appropriately.

T Arith types the arithmetic operators. Since the result of the operation de-
pends on the operands and the current program counter level, the register that
holds the result (rd) is required to have the appropriate security level. The rule
for mov is similar to T Arith. T CondBrnch, T Ld and T St are as expected (see
[6] for further details).
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The pushJP L type directive simply adds the code label L to the top of the
stack type and types the rest of the code block under this new stack type. The
condition pc � pc′ makes sure that when the junction point L is invoked, the
label of the program counter does not drop below the current level pc.

Regarding salloc, we simply add i nonsense types to the stack type and
then typecheck the rest of the code under this new stack type. The instruction
that frees the top i components of the stack, namely sfree i, simply drops the
top i component types of the stack type and then types the rest of the program.
Two comments are in order here. First, the stack components that are freed must
not be code labels. This would interfere with the linear nature of the junction
points (the only directives that may manipulate junction points are jmpJP and
pushJP). Second, no condition on the security labels of the freed components
is required. This is a consequence of our approach to junction points which, for
example, guarantees that if components are freed before jumping to a low-level
junction point, then the freed components must have been secret (and hence not
observable to the low-level user). See the High-Step Invariant Lemma (Lemma 2)
for details.

The typing rules for sld and sst follow similar patterns to those discussed
above. T Sld requires that the stack component to be loaded be initialized (i.e.
not have nonsense type). We remark that it should be straightforward to extend
both T Sld and T Sst so as to allow loading stack components that are under
junction point labels, although the details remain to be verified.

Due to lack of space, we do not give here the typing rules for word values and
operands. In the case of word values, they assign int⊥ to integer constants and
look up the type in Ψ for code and tuple pointers. Also, there is a subsumption
rule that allows subtyping reuse: a word value of type σ may always be used
at any supertype σ′. Finally, a rule allows word values of the form w[Σ] to be
typed. Similar comments apply to the typing rules for operands. Two typing
rules are presented for typing heap values: one for typing a tuple 〈w1, . . . , wn〉
with a tuple security type 〈σ1, . . . , σn〉l componentwise, and another for typing
annotated code blocks.

The typing rules for execution stacks (Fig. 8) need no further comment except
for T ExeSLbl. This rule states that junction points in the execution stack type
may be ignored at run-time. Regarding heaps and register banks, the former
is well-typed if each of the labels in its domain is mapped to well-typed heap
values and the latter if each register different from sp is mapped to a well-typed
word value. Finally, a machine configuration (H, R, B) is well-typed if the heap,
register bank, current code block and execution stack are all well-typed.

2.3 Operational Semantics

The operational semantics of SIFTAL is shown in Fig. 9. Each rule establishes the
semantics of an instruction on the current machine configuration. We say that
Π reduces to Π ′ if Π −→ Π ′. We use � for the reflexive, transitive closure of
−→. The expression R̂(v) is defined as: R(r) if v = r, w if v = w, and R̂(v1)[Σ] if
v = v1[Σ]. The jmp v instruction is executed by first looking up the destination
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�Ψ S : Σ estack

T ExeSNil
�Ψ ε : ε estack

�Ψ S : Σ estack ·�Ψ w : σ wval
T ExeSCons

�Ψ w · S : σ ·Σ estack

�Ψ S : Σ estack
T ExeSLbl

�Ψ S : L ·Σ estack

�Ψ S : Σ estack
T ExeSConsNs

�Ψns · S : ns ·Σ estack

�H : Ψ heap �Ψ R : Γ regBank �(H, R, B) machConfig

Dom(H) = Dom(Ψ) (∀	 ∈ Dom(H)) �Ψ H(	) : Ψ(	) hval � Ψ ok
T Heap

�H : Ψ heap

(∀r ∈ Dom(Γ ) \ {sp}) ·�Ψ R(r) : Γ (r) wval
T RegBank

�Ψ R : Γ regBank

�H : Ψ heap �Ψ R : Γ regBank
· | Γ | pc �Ψ B blk �Ψ R(sp) : Γ (sp) estack

T MachConfig
�(H, R, B) machConfig

Fig. 8. Type rules for execution stacks, heaps, register banks and machine configura-
tions

(H, R, B) −→ Π

where if B = then Π =
jmp v (H, R, B{Θ ← Σ}) OS Jmp

where R̂(v) = L[Σ] and H(L) = Code〈∀[Θ]Γ | pc′〉l.B
jmpJP L[Σ] (H, R, B{X ← Σ}) OS Jmpcc

where H(L) = Code〈∀[X]Γ | pc′〉l.B
aop rd, rs, v; B (H, R[rd := n], B) OS Arith

where n = R̂(v)⊕ R̂(rs)
bnz r, v; B (H, R, B) OS Bnz1

where R̂(r) = 0
bnz r, v; B (H, R, B′{Θ ← Σ}) OS Bnz2

where R̂(r) �= 0, R̂(v) = L[Σ]
and H(L) = Code〈∀[Θ]Γ | pc′′〉l.B′

mov r, v; B (H, R[r := R̂(v)], B) OS Mov
ld rd, rs[i]; B (H, R[rd := wi], B) OS Load

where R̂(rs) = p and H(p) = 〈w0, . . . , wi, . . . , wn−1〉
st rd[i], rs; B (H[p := 〈w0, . . . , R(rs), . . . , wn−1〉], R, B) OS Store

where R̂(rd) = p and H(p) = 〈w0, . . . , wi, . . . , wn−1〉
pushJP L; B (H, R, B) OS Push
salloc i; B (H, R[sp := ns · . . . · ns� �� �

i

·S], B) OS Salloc

where R(sp) = S
sfree i; B (H, R[sp := S], B) OS Sfree

where R(sp) = ŵ0 · . . . · ŵi−1 · S
sld rd, sp[i]; B (H, R[rd := wi], B) OS Sld

where R(sp) = ŵ0 · . . . · ŵi · S
sst sp[i], rs; B (H, R[sp := ŵ0 · . . . · ŵi−1 · R(rs) · S], B) OS Sst

where R(sp) = ŵ0 · . . . · ŵi · S

Fig. 9. Operational semantics
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code label L in v, obtaining the destination code block from the heap and finally
instantiating this code with the vector of stack types given in the operand. The
rule for jmpJP L[Σ] is the same as that of jmp v for v = L[Σ]. The remaining
rules are self explanatory. Note that pushJP is a type directive: it has no effect
at run-time. As a consequence, it could be erased once type checking has been
completed. Finally, we would like to point out that the semantics of SIFTAL is
exactly that of STAL, disregarding the malloc and pack instructions that are
not treated in this work.

The operational semantics is sound with respect to the type system. If a typed
machine configuration is not in a valid final state, then it can always progress
towards one, as formalized by the Progress and Subject Reduction propositions.
In order to formalize this, we use the notation �(H, R, B) : [Ψ, Γ,pc] machConfig
to mean that all of the judgments �H : Ψ heap, �ΨR : Γ regBank, �ΨR(sp) :
Γ (sp) estack and · | Γ | pc �Ψ B blk hold. A machine configuration Π is said
to be stuck at type [Ψ, Γ,pc] if �Π : [Ψ, Γ,pc] machConfig and Π is not of the
form (H, R, halt) with Γ (sp) = Halt · Σ and there does not exist a machine
configuration Π ′ such that Π −→ Π ′.

Proposition 1 (Progress). If �Π : [Ψ, Γ,pc] machConfig then either there
exists Π ′ such that Π −→ Π ′, or Π is of the form (H, R, halt) with Γ (sp) =
Halt · Σ.

Proposition 2 (Subject Reduction). If �Π machConfig and Π −→ Π ′

then �Π ′ machConfig.

3 Non-interference

Non-interference is a semantic property that states that computed low security
level values should not be affected by high security ones. Here, “low security” and
“high security” are relative to an arbitrary, but fixed a priori, security level ζ that
determines what an observer can see (low security values) and what he cannot
(high security values). A low security value or typ) is thus one whose security
level is less than or equal to ζ; a high security value or type is one whose security
level is not less than or equal to ζ. The formalization of non-interference proceeds
by defining a notion of indistinguishable machine configuration with respect to
the observer (we call this ζ-indistinguishability) and then showing that given any
two runs of a program that start at indistinguishable machine configurations, if
they terminate1 then they both reach indistinguishable machine configurations.
These two issues are studied in this section.

3.1 ζ-Indistinguishability

An appropriate notion of ζ-indistinguishability for machine configurations re-
quires taking into account each of its components, namely heap, register bank
1 Termination sensitive information flow analysis is an active topic of research. How-

ever, it is not considered in this paper.
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�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow

EqES LAxiom
�Ψ1,Ψ2ε ≈ζ ε : ε ∧ ε estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow �Ψ1,Ψ2 w1 ≈ζ w2 : σ1 ∧ σ2 wval
EqES LLLHH

�Ψ1,Ψ2w1 · S1 ≈ζ w2 · S2 : σ1 ·Σ1 ∧ σ2 ·Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow
EqES LNonsense

�Ψ1,Ψ2ns · S1 ≈ζ ns · S2 : ns ·Σ1 ∧ ns ·Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow l �
 ζ
EqES LHighNs

�Ψ1,Ψ2w1 · S1 ≈ζ ns · S2 : τ
l ·Σ1 ∧ ns ·Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow l �
 ζ
EqES LNsHigh

�Ψ1,Ψ2ns · S1 ≈ζ w2 · S2 : ns ·Σ1 ∧ τ
l ·Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow Ψ1(L) = Ψ2(L) = Code〈∀[Θ]Γ | pc〉l pc � l 
 ζ
EqES LSynch

�Ψ1,Ψ2S1 ≈ζ S2 : L ·Σ1 ∧ L ·Σ2 estackLow

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow Ψ1(L1) = Code〈∀[Θ1]Γ1 | pc1〉l1
Ψ2(L2) = Code〈∀[Θ1]Γ2 | pc2〉l2 pc1 � l1 �
 ζ pc2 � l2 �
 ζ EqES LHighSynch

�Ψ1,Ψ2S1 ≈ζ S2 : L1 ·Σ1 ∧ L2 ·Σ2 estackLow

Fig. 10. Indistinguishable execution stacks at low level program counter

(including the execution stack) and currently executing code block. We begin
our discussion with the execution stack. Clearly, when two runs of the same
program are considered, they are seen to execute in lock-step fashion as long as
no branching instruction appears. Moreover, the execution stack of each run is
seen to have the same size and contain either the same low level values or high
level ones. In this case we say that the stacks are low level indistinguishable and
formalize this notion in Fig. 10. Once a branching instruction appears, say bnz
r,v, the register r may either contain a low level value (in which case both pro-
grams are, once again, seen to execute in lock-step fashion) or it may be a high
level value. In this last case, each run may take a different path (we talk about
different high level branches) since this high level value may not coincide in both
machine configurations. As a consequence, the execution stacks may begin to
vary as a result of the execution of the subsequent instructions. In this case we
say that the stacks are high level indistinguishable and formalize this notion in
Fig. 11. However, note that before any further instruction is executed, the exe-
cution stacks of the two machine configurations are low level indistinguishable
(cf. EqES HAxiom in Fig. 11).

We have yet to clarify the meaning of �Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval, which
relates to the indistinguishability of word values, used when defining low level in-
distinguishability of stacks. The näıve approach would be to state that two word
values are low indistinguishable if σ1, σ2 are low security, σ1 = σ2 and w1 = w2,
and high indistinguishable if σ1 and σ2 are high security. However, the presence
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�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackLow
EqES HAxiom

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh l �
 ζ
EqES HLeft

�Ψ1,Ψ2w · S1 ≈ζ S2 : τ l ·Σ1 ∧Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh l �
 ζ
EqES HRight

�Ψ1,Ψ2S1 ≈ζ w · S2 : Σ1 ∧ τ
l ·Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh
EqES HLeftNs

�Ψ1,Ψ2ns · S1 ≈ζ S2 : ns ·Σ1 ∧Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh
EqES HRightNs

�Ψ1,Ψ2S1 ≈ζ ns · S2 : Σ1 ∧ ns ·Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh Ψ1(L) = Code〈∀[Θ]Γ | pc〉l pc � l �
 ζ
EqES HLeftSynch

�Ψ1,Ψ2S1 ≈ζ S2 : L ·Σ1 ∧Σ2 estackHigh

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧Σ2 estackHigh Ψ2(L) = Code〈∀[Θ]Γ | pc〉l pc � l �
 ζ
EqES HRightSynch

�Ψ1,Ψ2S1 ≈ζ S2 : Σ1 ∧ L ·Σ2 estackHigh

Fig. 11. Indistinguishable execution stacks at high level program counter

of stack polymorphism complicates matters. Consider the following SIFTAL pro-
gram, where B is the current code block and σX = Code〈∀[Θ]{sp : X} | pc〉⊥.

B = pushJP LJP
bnz r, L1
jmpJP LJP [Σ1]

L1 Code〈∀[X]{r1 : σX , sp : X} | �〉�
jmpJP LJP [Σ2]

LJP Code〈∀[Y ]{r1 : σY , sp : Y } | ⊥〉⊥
. . .

Suppose that we have two runs of this program. Moreover, suppose that the
initial machine configuration of each run satisfies the following conditions:

1. they both assign the program counter some (one) low level value,
2. they assign low level indistinguishable execution stacks to sp, and
3. the register bank of the first configuration assigns 0 to the register r while

the register bank of the other machine configuration assigns 1 to r. Note
that these values are high indistinguishable.

At the bnz instruction one run shall jump to L1 while the other shall continue
with the following instruction. At some point, both runs shall “synchronize”
once they reach the junction point LJP . Moreover, this junction point resets the
program counter to a low security level, namely ⊥. Note, however, that at this
point in time the current machine configuration of each run differs in the type of
r1, since X has been instantiated with different types (Σ1 and Σ2). Hence they
cannot be low indistinguishable according to the aforementioned näıve definition.
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As a result, when defining low indistinguishability of word values we must
allow the types of these values (σ1 and σ2 in �Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval)
to differ by instantiation of stack variables with different execution stack types.
Furthermore, these execution stack types may not be arbitrary, they should also
be low indistinguishable. For this reason, in order to formalize the definition of
the judgment �Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval we first introduce the notion of
low-indistinguishable security and stack types

�Ψ1,Ψ2σ1 ≈ζ σ2 secTypeEq and �Ψ1,Ψ2 Σ1 ≈ζ Σ2 stackTypeEq

These notions are defined by simultaneous induction. Informally, types σ1 and
σ2 are low indistinguishable if there is some security type σ and substitutions s1,
s2 on stack variables such that σ1 = s1(σ), σ2 = s2(σ) and s1 and s2 assign low
indistinguishable stacks to the same variables. The same applies to the notion
of low indistinguishable stack types.

With this in place we can now complete our development of indistinguishabil-
ity of machine configurations by defining the notion for word values, heap values,
heaps, register banks and code blocks (Fig. 12). In the case of word values the
judgment �Ψ1,Ψ2w1 ≈ζ w2 wvalEq holds iff there exist substitutions s1, s2 and
word value w such that:

1. Dom(s1) = Dom(s2) = FV (w),
2. w1 = s1(w) and w2 = s2(w), and
3. for every X ∈ Dom(s1), Ψ1, Ψ2 � s1(X) ≈ζ s2(X) stackTypeEq.

In Fig. 12 we write Dom∪(Ψ1, Ψ2) as an abbreviation for Dom(Ψ1) ∪ Dom(Ψ2).
Likewise, Dom∩(H1, H2, Ψ1, Ψ2) abbreviates Dom(H1) ∩ Dom(H2) ∩ Dom(Ψ1) ∩
Dom(Ψ2).

Finally, we address ζ-indistinguishability of machine configurations. Both are
required to be well-typed and their heaps and register banks ζ-indistinguishable.
Furthermore, if their program counters are low level, then we are in the case that
both programs are executing in lock-step fashion and, as a consequence, their
program counters should have identical security levels, and both their currently
executing code blocks and their stacks should be low indistinguishable. If their
program counters are high level, then no condition applies to their currently
executing code blocks, but their stacks must be high indistinguishable.

Definition 1 (ζ-indistinguishability of machine configurations). Assume
machine configurations Πi = (Hi, Ri, Bi) and machine types Ωi = [Ψi, Γi,pci],
i ∈ 1..2. Then the judgment �Π1 ≈ζ Π2 : Ω1 ∧ Ω2 machConfig holds iff

1. �Π1 : Ω1 machConfig and �Π2 : Ω2 machConfig,
2. �H1 ≈ζ H2 : Ψ1 ∧ Ψ2 heap,
3. �Ψ1,Ψ2R1 ≈ζ R2 : Γ1 ∧ Γ2 regBank,
4. (a) either pc1 = pc2 � ζ and �Ψ1,Ψ2B1 ≈ζ B2 code and �Ψ1,Ψ2R1(sp) ≈ζ

R2(sp) : Γ1(sp) ∧ Γ2(sp) estackLow,
(b) or pc1 �� ζ and pc2 �� ζ and �Ψ1,Ψ2R1(sp) ≈ζ R2(sp) : Γ1(sp) ∧

Γ2(sp) estackHigh.
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�Ψ1,Ψ2w1 ≈ζ w2 : σ1 ∧ σ2 wval

l1 �
 ζ l2 �
 ζ
Eq wval L

�Ψ1,Ψ2w1 ≈ζ w2 : τ
l1
1 ∧ τ

l2
2 wval

l1 = l2 
 ζ

�Ψ1,Ψ2τ
l1
1 ≈ζ τ

l2
2 secTypeEq

�Ψ1,Ψ2w1 ≈ζ w2 wvalEq
Eq wval H

�Ψ1,Ψ2w1 ≈ζ w2 : τ
l1
1 ∧ τ

l2
2 wval

�Ψ1,Ψ2h1 ≈ζ h2 : σ1 ∧ σ2 hval

l1 �
 ζ l2 �
 ζ
Eq hval H

�Ψ1,Ψ2h1 ≈ζ h2 : τ
l1
1 ∧ τ

l2
2 hval

l1 = l2 
 ζ
�Ψ1,Ψ2wi ≈ζ w′

i : σi ∧ σ′
i wval

Eq hval tpl L
�Ψ1,Ψ2〈w〉 ≈ζ 〈w′〉 : 〈σ〉l1 ∧ 〈σ′〉l2 hval

l1 = l2 
 ζ κ
l1
1 .B1 = κ

l2
2 .B2

Eq hval blk L
�Ψ1,Ψ2κ

l1
1 .B1 ≈ζ κ

l2
2 .B2 : κ

l1
1 ∧ κ

l2
2 hval

�H1 ≈ζ H2 : Ψ1 ∧ Ψ2 heap holds iff for all 	 ∈ Dom∪(Ψ1, Ψ2) :

label(Ψ1(	)) 
 ζ or label(Ψ2(	)) 
 ζ, implies
�

	 ∈ Dom∩(H1, H2, Ψ1, Ψ2),
�Ψ1,Ψ2H1(	) ≈ζ H2(	) : Ψ1(	) ∧ Ψ2(	) hval.

�Ψ1,Ψ2R1 ≈ζ R2 : Γ1 ∧ Γ2 regBank holds iff for all r ∈ Dom∪(Γ1, Γ2) \ {sp} :

label(Γ1(r)) 
 ζ or label(Γ2(r)) 
 ζ, implies
�

r ∈ Dom∩(R1, R2, Γ1, Γ2),
�Ψ1,Ψ2R1(r) ≈ζ R2(r) : Γ1(r) ∧ Γ2(r) wval.

�Ψ1,Ψ2B1 ≈ζ B2 code holds iff ∃s1, s2, B such that :

1. Dom(s1) = Dom(s2) = FV (B)
2. B1 = s1(B) and B2 = s2(B) and
3. for every X ∈ Dom(s1), Ψ1, Ψ2 � s1(X) ≈ζ s2(X) stackTypeEq.

Fig. 12. ζ-indistinguishability of word, heap values, heaps, register banks, code blocks

3.2 Noninterference Theorem

This section addresses the formulation and proof of the non-interference theorem,
the main result of this work. As mentioned, we consider two runs of the same
program that start off from indistinguishable machine configurations. Moreover,
we assume that the initial security level of the program counter is ⊥ and that
the execution stack has the Halt code label at the top.

Theorem 1 (Non-Interference). For i ∈ {1, 2}, given machine configura-
tions Πi = (Hi, Ri, B) and machine types Ωi = [Ψi, Γi, ⊥], if these conditions
hold:

– Γ1(sp) = Halt · Σ1 and Γ2(sp) = Halt · Σ2,
– �Π1 ≈ζ Π2 : [Ψ1, Γ1, ⊥] ∧ [Ψ2, Γ2, ⊥] machConfig,
– Π ′1 = (H ′1, R

′
1, halt) and Π1 � Π ′1, and

– Π ′2 = (H ′2, R′2, halt) and Π2 � Π ′2,

then there exist machine types [Ψ1, Γ
′
1,pc′1] and [Ψ2, Γ

′
2,pc′2] such that:

�Π ′1 ≈ζ Π ′2 : [Ψ1, Γ
′
1,pc′1] ∧ [Ψ2, Γ

′
2,pc′2] machConfig.
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The proof first considers one step reduction sequences and then weaves these
together by means of an inductive argument on the length of the reduction se-
quences. Moreover, two kinds of one step reduction steps are considered, one
where the program counter is low (Low PC Lemma) and one where the program
counter is high (High PC Lemma). The proof of the Low PC Lemma does not
present difficulties. It consists of showing that each step of the first machine con-
figuration Π1 can be mimicked by one step of the second machine configuration
Π2 such that ζ-indistinguishable machine configurations are reached.

Lemma 1 (Low PC Lemma). Given machine configurations Πi =(Hi, Ri, Bi)
and machine types Ωi = [Ψi, Γi,pci], i ∈ 1..2. Suppose �Π1 ≈ζ Π2 : Ω1 ∧
Ω2 machConfig, pc1 � ζ and pc2 � ζ, and Π1 −→ Π ′1. Then there exists a
machine configuration Π ′2 and machine configuration types Ω′1 = [Ψ1, Γ

′
1,pc′1]

and Ω′2 = [Ψ2, Γ
′
2,pc′2] such that Π2 −→ Π ′2 and �Π ′1 ≈ζ Π ′2 : [Ψ1, Γ

′
1,pc′1] ∧

[Ψ2, Γ
′
2,pc′2] machConfig.

On the other hand, the key case in the proof of the High PC Lemma is when
the reduction step Π1 −→ Π ′1 lowers the level of the program counter by jump-
ing to a junction point with low level program counter. A machine configura-
tion Π ′2 must be found such that Π2 � Π ′2 and such that Π ′1 and Π ′2 are
ζ-indistinguishable. The main obstacle is how to guarantee that the execution
stacks of Π1 and Π2, previously high indistinguishable and possibly of different
sizes, are now low indistinguishable and of the same size. Since we started off
with a low security program counter (cf. statement of Non-Interference Theorem)
we know that the stacks of Π1 and Π2 have a common, low indistinguishable
substack. The point is that we must make sure that this substack becomes the
current stack when the junction point is jumped to. This is possible because junc-
tion points are part of the execution stack types. More precisely, when Π1 −→ Π ′1
jumps to a junction point L, it must be the case that the type of the execution
stack of Π1 is of the form L · Σ1. Furthermore, from the fact that the program
counter in the type of Ψ(L) is low and �Ψ1,Ψk

S1 ≈ζ S2 : L · Σ1 ∧ Σ2 estackHigh,
we deduce that, Σ2 =? · . . . ·? ·L ·Σ′2 and S2 = w1 · . . . ·wm ·S′2, m ≤ n, where the
question marks “?” may either be junction points, nonsense types or security
types. Moreover,

�Ψ1,Ψk
S1 ≈ζ S′2 : Σ1 ∧ Σ′2 estackLow (1)

must hold by the definition of the estackHigh judgment. The fact that these
question marks are high level types is necessary and is guaranteed by the follow-
ing definition and result:

Definition 2. An execution stack type Σ is said to be ζ-topped in Σ′, if there
exist labels L1, . . . , Ln (possibly none) and stack component types σ̂i,1, . . . , σ̂i,ki ,
i ∈ 1..n (possibly none) such that:

– Σ′ = σ̂1,1 · . . . · σ̂1,k1 · L1 · σ̂2,1 · . . . · σ̂2,k2 · L2 · . . . · σ̂n,1 · . . . · σ̂n,kn · Ln · Σ,
– Ψ(Li) = Code〈∀[Xi]Γi | pci〉li implies pci � li �� ζ, for all 1 ≤ i ≤ n, and
– label(σ̂ij) �� ζ, for all 1 ≤ i ≤ n and 1 ≤ j ≤ ki.
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Lemma 2 (High-Step Invariant). For i ∈ 1..k, assume that machine config-
urations Πi = (Hi, Ri, Bi) and machine types Ωi = [Ψi, Γi,pci] are such that:

1. Π1 � Πk,
2. �Πi : Ωi machConfig, i ∈ 1..k, and Ωi is given by the Subject Reduction

Theorem, for i ∈ 2..k,
3. pc1 �� ζ, and
4. Γk(sp) = L ·Σk, for some L and Σk, is ζ-topped in Γi(sp), for each i ∈ 1..k.

Then all of the following hold: �H1 ≈ζ Hk : Ψ1 ∧ Ψk heap, �Ψ1,Ψk
R1 ≈ζ Rk :

Γ1 ∧ Γk regBank, �Ψ1,Ψk
R1(sp) ≈ζ Rk(sp) : Γ1(sp) ∧ Γk(sp) estackHigh, and

pci �� ζ, for all 1 ≤ i ≤ k.

Thus, if we know that the reduction starting from Π2 terminates, we obtain the
desired result that at some point the junction point L is invoked by a machine
state reachable from Π2. At this point, according to (1), the machine configu-
rations “synchronize” at a low security level program counter. The proof of the
High PC Lemma proceeds by case analysis on the definition of Π1 −→ Π ′1, using
the High Step Invariant Lemma in the case that this reduction step is a jump
to a junction point that resets the program counter to low security level.

Lemma 3 (High PC Lemma). For i ∈ 1..2, consider machine configurations
Πi = (Hi, Ri, Bi) and machine types Ωi = [Ψi, Γi,pci]. Suppose �Π1 ≈ζ Π2 :
Ω1 ∧ Ω2 machConfig, pc1 �� ζ and pc2 �� ζ, Π1 −→ Π ′1, and Π2 terminates.
Then there exist a machine configuration Π ′2 and machine configuration types
Ω′1 = [Ψ1, Γ

′
1,pc′1] and Ω′2 : [Ψ2, Γ

′
2,pc′2] such that Π2 � Π ′2 and �Π ′1 ≈ζ Π ′2 :

[Ψ1, Γ
′
1,pc′1] ∧ [Ψ2, Γ

′
2,pc′2] machConfig.

Finally, the proof of the Non-interference Theorem (Theorem 1) follows by weav-
ing reduction steps whose departing machine configurations have a low or high
security level program counter using the Low PC or the High PC Lemmas (Lem-
mas 1 and 3), respectively.

4 Conclusions, Related Work and Future Research

We present a TAL with a polymorphic execution stack, a type system enforcing
secure information flow, and a proof of non-interference. The problems stem-
ming from the absence of control flow constructs and the challenges raised by
polymorphic execution stacks are addressed by including explicit junction points
in types and introducing appropriate type directives (pushJP and jmpJP) that
manipulate them. As an added benefit, we are able to ensure that junction points
are treated as linear continuations and that pending junction points are passed
on as obligations. Since pushJP is a type directive, it may be eliminated during
execution, while jmpJP may be replaced by a standard jump instruction at run-
time. The type system keeps track of two stacks: the execution stack type and
the junction points stack. In general, two separate stacks cannot be combined
into one; however, in this case the type system enforces a discipline that allows
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this combination, where a jump to a junction point L can only be done if L is
at the top of the execution stack type.

Information flow analysis has been an active research area in the past three
decades [22]. Pioneering work by Bell and LaPadula [4], Feiertag et al. [12],
Denning and Denning [10, 11], Neumann et al. [21], and Biba [5] set the basis of
multilevel security by defining a model of information flow where subjects and
objects have a security level from a lattice of security levels. A subject cannot
read objects of level higher than its level, and it cannot write objects at levels
lower than its level.

Non-interference was first introduced by Goguen and Meseguer [13], and
there has been a significant amount of research on type systems for confiden-
tiality for high-level languages, including Volpano and Smith [24] and Banerjee
and Naumann [2]. Type systems for low-level languages have been an active sub-
ject of study for several years now, including TAL [17], STAL [16], DTAL [25],
Alias Types [23], and HBAL [1].

In his PhD thesis [20], Necula already suggests information flow analysis as
an open research area at the assembly language level. Zdancewic and Myers [28]
present a low-level, secure calculus with ordered linear continuations. This low-
level calculus, like the calculus developed by Crary et al. [9], possesses high-level
control flow structures (such as if-then-else) that simplify the analysis but
require an extra, unanalyzed, translation to obtain a real low-level executable
program. Moreover, none of these calculi includes a register bank or an execution
stack. Barthe et al. [3] define a JVM-like low-level language with a heap and
an operand stack. Instead of expressing the control dependence regions in the
language, as in SIFTAL, this work assumes the existence of trusted functions that
obtain such regions. Moreover, when a high branch is executed, the security level
of all the elements on the stack is raised and is never lowered back, even when
the execution returns to a low-security region.

We have recently learned from personal communication with Dachuan Yu
about independent work on information flow analysis for TAL-c [26], a calculus
similar in spirit to SIFTAL. Based on a preliminary manuscript we can identify
differences in the definitions of equivalence of machine configurations, where,
for example, their definition forces stacks to be of equal length, preventing the
stack from being manipulated in a high branch. TAL-c has primitives to raise
and lower the security level of the pc that delimit security regions, similar to our
pushJP and jmpJP. However, the interaction of these primitives with stack type
variables may potentially pull such variables beyond their scope, unless some
stringent closure condition is required on typing contexts.

We are currently developing a type preserving compilation scheme from a
high-level imperative language to SIFTAL, and studying unrestricted register
reuse. The community’s opinion is divided on whether registers are observable
or not. If they are, then the reuse of a register to store data of lower security level
may be seen as a leak of information, even if the data itself is not accessible.
Although SIFTAL allows the reuse of registers, the security level of a register
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remains fixed throughout execution. Lifting this restriction is the subject of
current research.

Recent developments [27, 8, 18, 19] argue that mechanisms enforcing the ab-
sence of illegal information flows are too drastic to be practical. They study
high-level languages with declassification, a controlled form of sidestepping of
confidentiality policies. A notion of declassification for TALs is required for
type preserving compilation of such languages. However, this area remains un-
explored.
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