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Preface
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erties and Applications and

¢ Silvia Ghilezan (University of Novi Sad) who talked abdigmputational Interpretations of Logic.

My appreciation also to the members of the PC (Zena Ariolagéric Blanqui, Mariangiola Dezani-
Ciancaglini and Roel de Vrijer) for lending their time angekxise, to the referees, and to Delia Kesner
and Femke van Raamsdonk for providing valuable support.nkhalso to GDR-IM which awarded
funds to HOR’2010 that were used for supporting presemtaifgapers by students.

Finally, 1 would like to thank the organizers of FLoC 2010 aaffiliated events for contributing
towards such an exciting event.

Eduardo Bonelli (Universidad Nacional de Quilmes, Argea}i
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Swapping: a natural bridge between named and indexed
explicit substitution calculi

Ariel Mendelzon Alejandro Rios Beta Ziliani
Depto. de Computacién, FCEyN, Depto. de Computacién, FCEyN, Depto. de Computacién, FCEyN,
Universidad de Buenos Aires. Universidad de Buenos Aires. Universidad de Buenos Aires.
amendelzon@dc.uba.ar rios@dc.uba.ar lziliani@dc.uba.ar

This article is devoted to the presentation of Arex, an explicit substitution calculus with de Bruijn in-
dexes and a simple notation. By being isomorphic to Aex — a recent formalism with variable names —,
Arex accomplishes simulation of f-reduction (Sim), preservation of f-strong normalization (PSN)
and meta-confluence (MC), among other desirable properties. Our calculus is based on a novel pre-
sentation of Agg, using a swap notion that was originally devised by de Bruijn. Besides Arex, two
other indexed calculi isomorphic to Ax and Axgc are presented, demonstrating the potential of our
technique when applied to the design of indexed versions of known named calculi.

1 Introduction

This article is devoted to explicit substitutions (ES, for short), a formalism that has attracted attention
since the appearance of Ao [1] and, later, of Melliés’ counterexample [17], showing the lack of the
preservation of f-strong normalization property (PSN, for short) in Ac. One of the main motivations
behind the field of ES is studying how substitution behaves when internalized in the language it serves (in
the classic A-calculus, substitution is a meta-level operation). Several calculi have been proposed since
the counterexample of Melli¢s, and few have been shown to have a whole set of desirable properties:
simulation of f-reduction, PSN, meta-confluence, full composition, etc. For a detailed introduction to
the ES field, we refer the reader to e.g. [16, 15, 20].

In 2008, D. Kesner proposed Aex [14, 15], a formalism with variable names that has the entire set
of properties expected from an ES calculus. As Kesner points in [15], for implementation purposes
a different approach to variable names should be taken, since bound variable renaming (i.e., working
modulo ¢-equivalence) is known to be error-prone and computationally expensive. Among others, one
of the ways this problem is tackled is by using de Bruijn notation [5], which is a technique that simply
avoids the need of working modulo a-equivalence. As far as we know, no ES calculus with de Bruijn
indexes and the whole set of properties enjoyed by Aex exists to date. The main target of this article is
the introduction of Arex, an ES calculus with de Bruijn indexes that, by being isomorphic to Aex, enjoys
the same set of properties. Arex is based on Ar, a novel swapping-based version of the classic Agg [5],
that we also introduce here.

It is important to remark that the whole development was made on a staged basis: we first devised
Ar, and then made substitutions explicit orienting the definition for Ar’s meta-substitution. At that point,
we got a calculus we called Are, which turned out to be isomorphic to Ax [4, 3]. Encouraged by this
result, we added Garbage Collection to Are, obtaining a calculus isomorphic to Axgc [4]: Aregc. Finally,
we added composition of substitutions in the style of Aex to Aregyc, obtaining Arex. Thus, besides ful-
filling our original aim, we introduced swapping, a technique that turns out to behave as a natural bridge
between named and indexed formalisms. Furthermore, we didn’t know any indexed isomorphic versions
of Ax nor Axgc.
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2 Swapping: a natural bridge between named and indexed explicit substitution calculi

The content of the article is as follows: in Section 2 we present Ar, an alternative version of Ag4g.
Next, in Section 3, we introduce Are, Arey. and Arex, the three ES calculi derived from Ar already
mentioned. We show the isomorphism between these and the Ax, Axgc and Aex calculi in Section 4.
Last, in sections 5 and 6, we point out related work and present the conclusions, respectively. We refer
the interested reader to [18] for complete proofs over the whole development.

2 A new presentation for Agg: the Ar-calculus
2.1 Intuition

The A-calculus with de Bruijn indexes (Agg, for short) [5] accomplishes the elimination of c-equivalence,
since a-equivalent A-terms are syntactically identical under Agg. This greatly simplifies implementa-
tions, since caring about bound variable renaming is no longer necessary. One usually refers to a de
Bruijn indexed calculus as a nameless calculus, for binding is positional — relative — instead of absolute
(indexes are used in place of names for this purpose). We observe here that, even though this nameless
notion makes sense in the classical Agg-calculus (because the substitution operator is located in the meta-
level), it seems not to be the case in certain ES calculi derived from A4g, such as: As [11], As, [12] or
At [13]. These calculi have constructions of the form a[i := b] to denote ES (notations vary). Here, even
though i is not a name per se, it plays a similar role: i indicates which free variable should be substituted;
then, these calculi are not purely nameless, i.e., binding is mixed: positional (relative) for abstractions
and named (absolute) for closures.

In general, we observe that not a single ES calculus with de Bruijn indexes to date is completely
nameless. This assertion rests on the following observation: in each and every case, the (Lamb) rule
is of the form (Aa)[s] — Aa[s']. Thus, since the term a is not altered, an “absolute binding technique”
must be implemented inside s in order to indicate which free variable is to be substituted. To further
support this not-completely-nameless assertion, we note that even though there is a known isomorphism
between the classic A-calculus and the Agg-calculus, when substitutions are made explicit in both calculi,
the isomorphism does not hold just by adding the new ES case (which would be reasonable to expect).
The problem is that Aqg’s classic definition is always — tacitly, at least — being used for the explicitation
task, thus obtaining calculi with mixed binding approaches, as mentioned earlier. As shown throughout
the rest of the paper, our (Lamb) rules will be of the form (Aa)[s] — Ad'[s'], i.e., altering both a and s to
enforce a completely nameless approach.

In order to obtain a completely nameless notion for an explicit substitutions

AdB, wWe start by eliminating the index i from the substitution operator. Then, we oA 1 2)
are left with terms of the form a[b], and with a (Beta) reduction rule that changes T
from (Aa)b — a[l :=b] to (Aa)b — a[b]. The semantics of a[b] should be (a)
clear from the new (Beta) rule. The problem is, of course, how to define it. —
Two difficulties arise when a substitution crosses (goes into) an abstraction: Ale? 1 2)
first, the indexes of b should be incremented in order to reflect the new variable ~—
bindings; second — and the key to our technology —, some mechanism should (b)
be implemented in order to replace the need for indexes inside closures (since —
these should be incremented, too). Ale? 2 1)
The first problem is solved easily: we just use an operator to progressively —
increment indexes with every abstraction crossing, in the style of At [13]. The ©

second issue is a bit harder. Figure 1 will help us clarify what we do when
a substitution crosses an abstraction, momentarily using ¢’a to denote a[b]
in order to emphasize the binding character of the substitution (by writing the

Figure 1: Bindings
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substitution construction before the term and annotating it with the substituent — which does not actually
affect binding —, it resembles the abstraction operation; thus, “reading” the term is much easier for those
who are already familiar with de Bruijn notation). In this example we use the term o?(412) (which
stands for (A12)[b]). Figure 1(a) shows the bindings in the original term; Figure 1(b) shows that bindings
are inverted if we cross the abstraction and do not make any changes. Then, in order to get bindings “back
on the road”, we just swap indexes 1 and 2! (Figure 1(c)). With this operation we recover, intuitively, the
original semantics of the term. Summarizing, all that is needed when abstractions are crossed is: swap
indexes 1 and 2 and, also, increment the indexes of the term carried in the substitution. That is exactly
what Ar does, with substitutions in the meta-level.
In Section 2.2 we define both Agg and Ar; in Section 2.3 we show that they are the same calculus.

2.2 Definitions

First of all, we define some operations on sets of naturals numbers.

Definition 1 (Operations on sets of natural numbers). Forevery N C N, k € N:
l. N+k={n+k:neN}
2.N—k={n—k:neNAn>k}
3. Nax={n:ne NAn@k}, with® € {=,<,<,>,>}

Terms for Ar are the same as those for A4g. That is:
Definition 2 (Terms for Agg and Ar). The set of terms for Agg and Ar, denoted Agg, is given in BNF by:
az=nl|aallra (n € Nxp)

Definition 3 (Free variables). The free variables of a term, FV : Agg — &?(N~y), is given by:

FV(n) = {n} FV(ab) =FV(a) UFV(b) FV(Aa) =FV(a)—1

Classical definitions

We recall the classical definitions for Agqg (see e.g. [11] for a more detailed introduction).
Definition 4 (Updating meta-operator for Agg). For every k € N, i € Ny, U;; : Agg — Agg is given
inductively by:

Uin) = n ifn<k Ul(ab) = Ui(a)UL(b)
K= n+i—1 ifn>k Ui(Aa) = AU}, (a)

Definition 5 (Meta-substitution for Agg). For every a,b,c € Agp, m,n € N5, o{{e <— o}} : Agg x N5 x
AgB — Agp is given inductively by:
m ifm<n

IS by = affn e Pbiin el
mipn el =y Ule) if Aa){{n+c} = Aafin+1+c}

m—1 ifm>n
Definition 6 (14-calculus). The Agg-calculus is the reduction system (Agp, B45), Where:

(Va,b € Agg) (@ —p,, b < (3Ccontext; c,d € Agg) (a =C[(Ac)d] Ab=Cc{l + d}]))
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New definitions

We now define the new meta-operators used to implement index increments and swaps.

Definition 7 (Increment operator — ;). For every i € N, 1; : Aqg — Agg is given inductively by:

_ B n if n<i 1i(ab) ti(a) 1i(b)
tiln) = {n+1 it n>i tiAa) = Ati(a)

Definition 8 (Swap operator — ;). For every i € N-, ] : Aqg — Agg is given inductively by:

n if n<ivn>i+l1

in) = L i+l if n=i Jilab) = Zi(a) 3i(b)
[ if n=i+1 Ji(Aa) = Alit1(a)

Finally, we present the meta-level substitution definition for Ar, and then the Ar-calculus itself.

Definition 9 (Meta-substitution for Ar). For every a,b,c € Agg, n € N+, o{e} : Agg X Aggp — Agg is
given inductively by:

nc} = {C if n=1 (@b){c) = ale}ble)
n—1 if n>1 (Aa){c} = ATi(a){to(c)}

Definition 10 (Ar-calculus). The Ar-calculus is the reduction system (Agg, f;), where:

(Va,b € Ags) (a —p, b <= (3C context; c,d € Agg) (a = C[(Ac)d] Ab=C[c{d}]))

2.3 A4 and Ar are the same calculus

We want to prove that Ar equals Agg. That is, we want to show that a{{1 < b}} = a{b}. In order to do
this, however, we should first prove the general case: a{{n < b}} = a’{b'}, with a’ and b’ being the result
of a series of swaps and increments over a and b, respectively. This comes from observing that, while
Agp increments the index inside the substitution when going into an abstraction, Ar performs a swap over
the affected term, and an index increment over the term carried in the substitution. Thus, comparing what
happens after the “crossing” of n — 1 abstractions in (A---Aa){{1 < b}} and (A --- A a){b}, we get to:

n—1 n—1
Ao-daf{n<bYy  and A AL1( Tum1(@) ) {To (T (D))}
n—1 n—1 n—1

Therefore, the idea for the proof is showing that the above terms are equal for every n € Nyy. We
formalize this idea by introducing two additional definitions: stacked swaps and stacked increments.

Definition 11 (Stacked swap). For everyi € Nyg, j € N, 1}{ : Ags — Agpg is given inductively by:
if j=0

o = { iy e

The intuitive idea behind IIJ Jisthatof: 0 (Jip1 (- Jivj1 (a)--+))

jswaps
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Definition 12 (Stacked increment). For every i € N, {': Agg — Agg is given inductively by:

o (a iti=0
fila) = {ﬂ”(To(a)) ifi >0

The intuitive idea behind 1(a) is that of: 1o (--- 1o (a)---)
N——
i increments

Based on this last two definitions, the next theorem states the relationship between Ar and Aqg meta-
substitution operators, having as an immediate corollary that Ar and Agqg are the same calculus.

Theorem 13 (Correspondence between Agg and Ar meta-substitution). For every a,b € Agg, n € Nyg:

af{n b} =1 (@ {0""' (0)}
Proof. See Appendix A. O
Corollary 14. For every a,b € Agp : a{{1 < b}} = a{b}. Therefore, Aqp and Ar are the same calculus.

Proof. Use Theorem 13 with n = 1, and conclude the equality of both calculi by definition. This result

was checked using the Cog theorem prover!. O

3 Devising the Are, Areg. and Arex calculi

In order to derive an ES calculus from Ar, we first need to internalize substitutions in the language. Thus,
we add the construction a[b] to Agp, and call the resulting set of terms Are. The definition for the free
variables of a term is extended to consider the ES case as follows: FV(a[b]) = (FV(a) — 1) UFV(b).
Also, and as a design decision, operators 1; and J; are left in the meta-level. Naturally, we must extend
their definitions to the ES case, task that needs some lemmas over Ar’s meta-operators in order to ensure
correctness. We use lemmas 26 and 27 in Appendix B for the extension of swap and increment meta-
operators:

ti(alb]) =t (@[ti(p)]  and  Li(alb]) =TLiv1(a)[J:(D)]

Then, we just orient the equalities from the meta-substitution definition as expected and get a calculus
we call Are (that turns out to be isomorphic to Ax [4, 3], as we will later explain).

As a next step in our work, we add Garbage Collection to Are. The goal is removing useless sub-
stitutions, i.e., when the index 1 does not appear free in the term. When removing a substitution, free
indexes of the term must be updated, decreasing them by 1. To accomplish this, we introduce a new
meta-operator: |;. The operator is inspired in a similar one from [19]. We first define it for the set Agp:

Definition 15 (Decrement operator — |;). For every i € N<g, |; : Agg — Agp is given inductively by:

n if n<i
Lin) = { undefined if n=i ii(ib) = f{(a) Li(b)
n—1 if n>i li(Aa) = Aliti1(a)

Note. Notice that |i(a) is well-defined iff i ¢ FV(a).

I'The proof can be downloaded from http: //www.mpi-sws.org/~beta/lambdar.v
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As for the J; and 1; meta-operators, we need a few lemmas to ensure a correct definition for the
extension of the |; meta-operator to the ES case. Particularly, Lemma 28 (see Appendix B) is used for
this purpose. The extension resembles those of the {; and 1; meta-operators:

Li(a[b]) =liv1(a)[Li(D)]

The Garbage Collection rule added to Are (GC) can be seen in Figure 2, and the resulting calculus is
called ﬂ,regc (which, as we will see, is isomorphic to Axgc [4]).

Finally, in order to mimic the behavior of Aex [15], an analogue method for the composition of
substitutions must be devised. In Aex, composition is handled by one rule and one equation:

V:i=v] —(comp) ty:=v]lx:=uly:=]] if yeFV(u)
y:=v] =c tly = v|[x :=u if yZFV(u)AxZFV(v)

tx
tx

u
u

The rule (Comp) is used when substitutions are dependent, and reasoning modulo C-equation is needed
for independent substitutions. Since in Ar-derived calculi there is no simple way of implementing an
ordering of substitutions (remember: no indexes inside closures!), and thus no trivial path for the elimi-
nation of equation C exists, we need an analogue equation.

Let us start with the composition rule: in a term of the form a[b][c], substitutions [b] and [c] are de-
pendent iff 1 € FV(b). In such a term, indexes 1 and 2 in a are being affected by [b] and [c], respectively.
Consequently, if we were to reduce to a term of the form d'[c][b'], a swap should be performed over
a. Moreover, as substitution [c| crosses the binder [b], an index increment should also be done. Finally,
since substitutions are dependent — that is, [c] affects b —, b’ should be b[c]. Then, we are left with the
term 11 (a)[fo(c)][b[c]).

For the equation, let us suppose we negate the composition condition (i.e., 1 ¢ FV(b)). Using
Garbage Collection in the last term, we have J;(a)[1o(c)][b[c]] = @o)T1(a)[To(c)][41()]. It is important
to notice that the condition in rule (Comp) is essential; that is: we cannot leave (Comp) unconditional
and let (GC) do its magic: we would immediately generate infinite reductions, losing PSN. Thus, our
composition rule and equation are:

alpllc] = comp) T1(@)[To(e)]ble]] if 1 €FV(b)
alplle] =p i@ to()l[hi ()] if 1 EFV(b)

Rules for the Arex-calculus can be seen in Figure 2. The relation rex,, is generated by the set of rules
(App), (Lamb), (Var), (GC) and (Comp); Arex, by (Beta) + rex,. D-equivalence is the least equivalence
and compatible relation generated by (EqD). Relations Arex (resp. rex) are obtained from Arex, (resp.
rex,) modulo D-equivalence (thus specifying rewriting on D-equivalence classes). That is,

Va,a’ €Are:a 7 (A)rex ad (Eib,bl €Are:a=pb _>(l)rexp 4 =D a’)

We define Arex as the reduction system (Are, Arex). We shall define Are and Areg. next. Since the rule
(VarR) does not belong to Arex, but only to Are and Areg., we present it here:

(VarR) (n+1)[c] = n

The relation re is generated by (App), (Lamb), (Var) and (VarR); Are by (Beta) + re; the relation Tegc
by re + (GC); and Arey. by (Beta) + regc. Finally, the Are and Arey. calculi are the reduction systems
(Are,Are) and (Are, Areg. ), respectively.
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(EqD)  afbllc] = Ti(@[ho(o)]li(b)] (1 EFV(b)
(Beta) (Aa)b — a[b]

(App)  (ab)c] — alc] ble

(Lamb) (Aa)[c] — A Ti(a)[To(c)]

(Var) 1[c] - ¢

(GO) alc] —  Ji(a) (1 ZFV(a))
(Comp) afbllc] = Ti(a)[to(c)]blc]] (1 €FV(b))

Figure 2: Equations and rules for the Arex-calculus

4 The isomorphisms

For the isomorphism between Aex and Arex (and also between Ax and Are; and between Axgc and
Arege), we must first give a translation from the set Ax (i.e., the set of terms for Ax, Axgc and Aex; see
e.g. [15] for the expected definition) to Are, and vice versa. It is important to notice that our translations
depend on a list of variables, which will determine the indexes of the free variables. All this work is
inspired in a similar proof that shows the isomorphism between the A and Agg calculi, found in [13].

Definition 16 (Translation from Ax to Are). For every € Ax, n € N, such that FV(¢) C {x,...,x,},

Wix,.....x,] - Ax — Are is given inductively by:
W[xl,-.-,xn] (x) = min {] X = x} W[x17~-~,xn] (lx.t) = AW[LXIWM] (l‘)
Wixt,eox)] (t Lt) = Why,x)] (t) Wixg,.ox) (u) Wixt,eox)] (Z[X = M]) = Wlx,..n) (t) [W[xl,...,xn} (u)]

Definition 17 (Translation from Are to Ax). For every a € Are, n € N, such that FV(a) C {1,...,n},

Uly,,..x,) - Are = Ax, with {xy,...,x,} different variables, is given inductively by:

Whep o] (.]) = Xj Uy, (ka) = )Lx-u[x,xl,...,x,,] (a)

Ulep ] (ab) = Uxy,.x) (a) Uley ] (b) Ulxp . (a[b]) = Uxx,.x) (a) [X = Uy x] (b)]
with x & {x1,...,x,} in the cases of abstraction and closure.

Translations are correct w.r.t. «-equivalence. That is, a-equivalent Ax terms have the same im-
age under wi,, .1, and identical Are terms have a-equivalent images under different choices of x for
up,..x,- Besides, adding variables at the end of translation lists does not affect the result; thus, uniform
translations w and u can be defined straightforwardly, depending only on a preset ordering of variables.
See Appendix C for details.

We now state the isomorphisms:

Theorem 18 (Aex = Arex, Ax = Are and Axgc = Aregc). The Aex (resp. Ax, Axgc) and Arex (resp. Are,
/lregc) calculi are isomorphic. That is,

A. wou=1Idp,e Auow = Iday
B. Vi,ue€ Ax:1 Dex(Ax,Axge) U = W(t) %krex(kre,lregc) W(”)
C. Va,beAre:a %lrex(lre,lregc) b = u(“) 7 Aex(Ax,Axge) u(b)

Proof. This is actually a three-in-one theorem. Proofs require many auxiliary lemmas that assert the
interaction between translations and meta-operators. See Appendix D for details. O
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Finally, in order to show meta-confluence (MC) for Arex, meta-variables are added to the set of
terms, and hence, functions and meta-operators are extended accordingly. Particularly, each metavariable
is decorated with a set A of available free variables. This, in order to achieve an isomorphism with Aex’s
corresponding extension (c.f. [15]). Extensions are as follows:

1. Set of terms Areop: a::=n|Xa | aa| Aa | ald] (neNs, X €{X,Y,Z,...}, A€ Z(Nyy))
2. Free variables of a metavariable: FV (X)) = A

3. Swap over a metavariable: J;(Xa) = Xu with A=A ;UA-; 1 U(AL+ 1)U (A — 1)
4. Increment over a metavariable: 1;(Xa) = Xy with A" =AU (As;+1)

Xy  withA =ALU(As;—1) ifigA

5. Decrement over a metavariable: |;(Xa) = { undefined ficA

6. Translation from Axop to Areop: Wiy, 1 1(Xa) = Xar with A" = {wp, .1(x) :x €A}
7. Translation from Aregp to AXop: Upy, 4, 1(Xa) = X with A" = {uy, 1(j) 1 j €A}

Theorem 19. The Arex and Aex calculi on open terms are isomorphic.

Proof. This is proved as an extension of the proof for Theorem 18, considering the new case. A few
simple lemmas about how meta-operators alter the set of free variables are needed. We refer the reader
to [18], chapter 6, section 3 for details (space constraints disallow further technicality here). O

As a direct consequence of theorems 18 and 19, we have:

Corollary 20 (Preservation of properties). The Aex (resp. Ax, Axgc) and Arex (resp. Are, Arey.) have
the same properties. In particular, this implies Arex has, among other properties, Sim, PSN and MC.

Proof sketch for e.g. PSN in Arex. Assume PSN does not hold in Arex. Then, there exists a € SN, s.t.
a & SNj,ex- Besides, a € SN, . implies u(a) € SNy . Therefore, by PSN of Aex [15], u(a) € SNjx. Now,
since a & SN .« there exists an infinite reduction @ —j ;ex @1 —>prex 42 —>Arex * * - - Lhus, by Theorem 18,
we have u(a) —jex U(a1) —pex U(a2) —aex - - - » contradicting the fact that u(a) € SN . O

5 Related work

It is important to mention that, even though independently discovered, the swapping mechanism intro-
duced in this article was first depicted by de Bruijn for his ES calculus CAE ¢ [6], and, later, updated
w.r.t. notation — A ¢ — and compared to A v in [2]. We will now briefly discuss the main differences
between these calculi and our swapping-based approach.

Firstly, neither CA£ ¢ nor A& ¢ have composition of substitutions nor Garbage Collection, two keys
for the accomplishment of meta-confluence. In that sense, these two calculi only resemble closely our
first Ar-based ES calculus: Are. Thus, both Areg. and Arex represent a relevant innovation for swapping-
based formalisms, specially considering the fact that, as far as we know, no direct successor of CAE ¢
nor A& ¢ was found to satisfy PSN and MC.

As a second fundamental difference, both CA£¢ and AE ¢ are entirely explicit formalisms. In the
end, internalizing meta-operations is desirable, both theoretically and practically; nevertheless, the pres-
ence of meta-operations in Are, Areg. and Arex are mandatory for the accomplishment of isomorphisms
w.r.t. Ax, Axgc and Aex, respectively. Particularly, the isomorphism between Aex and Arex represents
a step forward in the explicit substitutions area. Moreover, these isomorphisms — impossible in the case
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of CAE¢ and AE¢ — allow simple and straightforward proofs for every single property enjoyed by the
calculi.

Last but not least, in CAE ¢ as well as in A€ ¢, swap and increment operations are implemented by
means of a special sort of substitution that only operates on indexes (c.f. [2]). Even though undoubtedly
a very clever setting for these operations — specially compared to ours, much more conservative —, the
fact is that we still use meta-operations. With this in mind, it may be the case that de Bruijn’s formulation
for both the swap and increment operations, if taken to the meta-level, would lead to exactly the same
functional relations between terms than those defined by our method. Consequently, this difference loses
importance in the presence of meta-operations. Nevertheless, if swap and increment meta-operations
were to be made explicit, a deep comparison between our approach and de Bruijn’s should be carried out
before deciding for the use of either.

6 Conclusions and further work

We have presented Arex, an ES calculus with de Bruijn indexes that is isomorphic to Aex, a formalism
with variable names that fulfills a whole set of interesting properties. As a consequence of the isomor-
phism, Arex inherits all of Aex’s properties. This, together with a simple notation makes it, as far as
we know, the first calculus of its kind. Besides, the Are and Are,. calculi (isomorphic to Ax and Axgc,
respectively) were also introduced. The development was based on a novel presentation of the classical
Adgg. Given the homogeneity of definitions and proofs, not only for Ar and Arex, but also for Are and
Arege, we think we found a truly natural bridge between named and indexed formalisms. We believe this
opens a new set of possibilities in the area: either by translating and studying existing calculi with good
properties; or by rethinking old calculi from a different perspective (i.e., with Ar’s concept in mind).

Work is yet to be done in order to get a more suitable theoretical tool for implementation purposes,
for unary closures and equations still make such a task hard. In this direction, a mix of ideas from
Arex and calculi with n-ary substitutions (i.e., A6-styled calculi) may lead to the solution of both issues.
Particularly, a swap-based Ao [7] could be an option. This comes from the following observation: in
Aoy, the (Lamb) rule is:

(Lamb) (Aa)[s] — Aa[f (s)]

where the intuitive semantics of f} (s) is: 1 - (s o1). We observe here that this is not nameless! The reason
is that, even though there are no explicit indexes inside closures, this lift operation resembles closely the
classic definition of the Aqg calculus (particularly, leaving lower indexes untouched). Thus, we propose
replacing this rule by one of the form:

(Lamb) — (Aa)[s] = A L(a)[f (5)]

with the semantics of 1} (s) being s o 1, and that of {} (a) being swapping a’s indexes in concordance with
the substitution s, therefore mimicking Ar’s behavior. This approach is still in its early days, but we feel
it is quite promising.

In a different line of work, the explicitation of meta-operators may also come to mind: we think this
is not a priority, because the main merit of Arex is evidencing the accessory nature of index updates.

From a different perspective, an attempt to use Arex in proof assistants or higher order unification [8]
implementations may be taken into account. In such a case, a typed version of Arex should be developed
as well. Also, adding an 1 rule to Arex should be fairly simple using the decrement meta-operator.
Finally, studying the possible relation between these swapping-based formalisms and nominal logic or
nominal rewriting (see e.g. [10, 9]) could be an interesting approach in gathering a deeper understanding
of Ar’s underlying logic.
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A Proofs for the Agg = Ar assertion

We first show the auxiliary lemmas that allow us to prove the main theorem of Subsection 2.3.
Lemma 21. For every a € Agp, n € Nog, " (a) = Uj(a)

Proof. Easy induction on n, using that [ <k <[+ j — U;;(U{(a)) = U{H*l (a) (c.f. [12], lemma 6),
and the fact that o(a) = U(a). O

Lemma 22. For every m,i € Nyg, n € N:
. m>n+i = {(m)=m
2.i<m<n+i=(m)=m+1
3. Pt(n+i)=i
Proof. Easy inductions on 7. O

Lemma 23. Forevery a,b € Agg,n € N,i € N.g:
L. {5 (ab) =T (a) ﬁ?(b)
2. §7(Aa) =2 3741 (a)
(A P3@) {1 (®)} = A g (@ {n" (b))

Proof. Easy inductions on n. O

We now restate and prove the main theorem:
Theorem (13). For every a,b € Agp, n € N~q , we have that a{{n < b}} = "' (@) {1~ (b)}.

Proof. Induction on a.
m—1 ifm>n
e a=m¢e Nyg. Then, a{{n < b}} =m{{n <+ b}} =< Ujb) iftm=n
m ifm<n
We consider each case separately:

Lom>n =3 m{ ' 0)) = m{4" ()} = m—1

Zm:n:$M1WMWWﬂ;;HW1(ﬂm%IU U )
s m<n = 9 @G = me 1) = m

Then,
m{{n < bY} =01~ (m){1" 7' (b)}
e a=cd, c,d € Agp. Use inductive hypothesis and Lemma 23.1.
e a=Ac, c € Agg. Then,

afin = bff = (Ae){{n < bl = lc{{n+1<—b}} MI” (b)) =

L.233

A B " (0)} = A {1 (B)} =01 (@ {1 (0)}
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B Extension lemmas for the J;, 7; and |; meta-operators
Lemma 24. For every a € Agg, I,j € N-g, k € N:

L k<i = Tir1(T(a)) =1x(Ti(a))

2. j =22 = Tiyj(i(a)) = Ti(Tirj(a))
Proof. Easy induction on a. O
Lemma 25. For every a € Agg, i € N5g, j € N:

Lizj+2Ni—=1¢FV(a) = Li(1j(a)) =1;(li-1(a))

2. jZ2Ni+j¢FV(a) = litj(li(a) = Tillirj(a))
Proof. Easy induction on a. 0
Lemma 26. For every a,b € Agp, i € N>o, Ji(a{b}) = Ji+1(a){Ji(b)}
Proof. Easy induction on a, using Lemma 24. O
Lemma 27. For every a,b € Agg, i € N, 1i(a{b}) =1ir1(a){1i(b)}

Proof. Use that Uy (af{1 < b}}) = Ui (a){{1 < Ui(b)}} (c.f. [12], Lemma 10 with n = 1), the fact that
1i(a) = U?(a) and Corollary 14. O

Lemma 28. For every a,b € Agp, i € N-o, i+ 1 € FV(a) Ni ¢ FV(b), we have that
bi(a{b}) = lip1(a){1:(b)}.

Proof. Easy induction on a, using Lemma 25. g

C Correction proofs for translations

We show the lemmas necessary to prove that the translations given (i.e., Wi, ., janduy, 1) are correct
w.r.t. (-equivalence.

Lemma 29. For every 7 € Ax, n € N such that FV(¢) C {xy,...,x,}, we have that Vy & {x1,...,x,},
z€ {xh' . 7xn}7 Wixg,eox) (t) = Wiy e Xk YKk 150X (I{Z = y}), with k = min {] X = Z}-

Proof. Easy induction on ¢, but using the non-Barendregt-variable-convention definition for the meta-
substitution operation (otherwise, we would be assuming that t =g u = Wi, . 1(t) = Wi, (1),
which is what we ultimately want to prove). See e.g. [3] for an expected definition. g

Lemma 30. For every r,u € Ax, n € N such that FV(t) C {xi,...,x,}, we have that t =g u —
o] (1) = Wix,....x,] (). Notice that i, . 1(u) is well-defined, since t =qu == FV(t) =FV(u).

Proof. Easy induction on ¢, using Lemma 29. Once again, the non-Barendregt-variable-convention defi-
nition for the meta-substitution operation must be used here. O

Lemma 31. For every a € Are, n € N, {xi,...,x,} distinct variables such that FV(a) C {1,...,n}, we
have that Vy & {x,...,x,}, 1 <k <n: Ul (@){xk =y} =« LI T, (a).

Proof. Easy induction on a. O
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Lemma 32. For every a,b € Are, n € N, {x,...,x,} distinct variables, x,y & {x1,...,x,} such that
FV(a) C{l1,...,n}, we have that:

1. 2'X'u[x.,x] ..... Xn) (LZ) —~a }Ly'u[y,xl,...,x,,] (Cl)
2. ULk xy,.. 0] (a) [x = ULy, 0] (b)] =allyx,..x,) (Cl) D = ULy x] (b)]

Proof. Direct in both cases, using the o-equivalence definition and Lemma 31. g

Last, we show two lemmas that assert that adding variables at the end of translation lists does not
affect the result of the translation and, thus, gives the possibility of defining uniform translations that
depend only on a preset ordering of variables.

Lemma 33. For every ¢ € Ax such that FV(¢) C {xi,...,x,}, and for every {yi,...,yn} C V, we have
that W[xl ,‘..,Xn] (t) = W[xl seensXns Y ,«)’m] (t)'
Proof. Easy induction on . U

Lemma 34. For every a € Are, {xi,...,x,} distinct variables such that FV(a) C {1,...,n}, and for every
{»1,...,ym} distinct variables such that {xi,...,x,} N {y1,...,ym} = 0, we have that Uy, ) (@) =a

u[xl see X Y1 7--~7ym] (a)'

Proof. Easy induction on a. O

Last, we show the definitions for uniform translations.
Definition 35 (Uniform translation from Ax to Are). Given an enumeration [v;,vs,...] of V, for every
t € Ax, n € Nsuch that FV () C {vy,...,v,}, we define w : Ax — Are as: w(t) = wy, ,.1(7).

Definition 36 (Uniform translation from Are to Ax). Given an enumeration [vi,vs,...] of V, for every
a € Are, n € N such that FV(a) C {1,...,n}, we define u: Are — Ax as: u(a) =uy,, . (a@).

D Isomorphisms proofs
In order to prove Theorem 18, we must show:
A. wou=1Idp,e Auow = Iday
B. Vt,u € AX:t = pex(Axixge) 4 = W(f) = Arex(hre Areg) W u)
C. Va,b € Are: @ = jrex(Aredre) b = (@) = 2ex(Ax,Axge) U(D)
For Part A, the following two lemmas are needed.
Lemma 37. For every 7 € Ax, a € Are, {xy,...,x,} variables, {y1,...,y,} distinct variables:
L BV(t) C{xi,...,x.} = FV(wp, (1) S{1,...,n}
2. FV(a) C{1,....m} = FV(up, .1(@) S{y1,--,ym}

Proof. Easy inductions on ¢ and a, respectively. O

Lemma 38. For every a € Are, t € Ax:
1. w(u(a)) =a
2. u(w(t)) =gt

Proof. Easy inductions on a and ¢, respectively, using Lemma 37. O
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Next, to prove Part B of the theorem, we need several auxiliary lemmas, that we now state.
Lemma 39. For every {xh v 7xn}’ ye {xb v axn}’ X g {xh v axn}’ W[x,xl.,...7x,,] (y) = W[x17...7xn] (y) +1.

Proof. Direct, using w’s definition. O

Lemma 40. For every 7 € Ax, i € Ny such that FV(r) C {x,...,x,} Ai <nAX; # Xii1,

ii(w[xl yeees X0 Xig 1 yeee X (t)) = Wy e Xt 1 X o] (t)

Proof. Easy induction on . 0

Lemma 41. Forevery t € Ax, m € N, x € V such that FV(¢) C {x1,...,.x,} Am <nAx & {xi1,...,xn},
W[)C],....X,n X X415 xn () Tm( x11 X ](t))

Proof. Easy induction on ¢. O

Lemma 42. Forevery r € Ax,m € N, x € V such that FV(¢) C {x},...,x,JA1 <m<n+1:
L. x ¢ {xla' .. 7xn} = m ¢ FV(W[x1,..A,xm,17x7xm7...7x,,] (t))
2. xZ{x1,..., Xm_1 JAXEFV(t) = me€ FV(W[xl,...,xmq,x,xm,....,xn] (t))

3. x g {X] yoeee 7xn} — W[xl,‘..,xn] (t) = J/m(w[xl,.‘.,xm,l,x,x,,,,..‘,xn] (t))

Proof. Easy inductions on ¢. 0

Given the auxiliary lemmas, we proceed to prove Part B of the isomorphism theorem. Item 1 of
the next lemma is enough to prove the reduction preservation under translation w for the Are and Areg.
calculi. For Arex, Item 2 — showing the preservation of the equivalence relations under translation w — is
also needed. Then, preservation for Arex follows immediately from the definition of reduction modulo
an equivalence relation.

Lemma 43. Forevery f,u € Ax:

1. I —Bx(Ax,Axge) ¥ — W(t) %lrexp(lre,lregc) W(”)
2. t=cu = W(l‘) =D W(l/l)

Proof. Part 1. Induction on ¢t. The only interesting cases are those of the explicit substitution when the
reduction takes place at the root. The rest of the cases are either trivial or easily shown by using the
inductive hypothesis. We will show the explicit substitution case in which reduction is done by using
the (Comp) rule. The other two relevant cases, (Lamb) and (GC), omitted here for a matter of space,
are proved in a similar fashion. Since we are working in the explicit substitution case, ¢ is of the form
t1[x :=t;]. Now, as the (Comp) rule is used, we have that:

5] [x = 2‘2] =1 [y = 1‘4] [x = l‘z] ;2% 13 [x = tz] [y = t4[x = l‘2” =u

with x € FV(#4). By the variable convention, we assume x # y Ay & {xi,...,x,}. Thus,

Wixt,.ox) (t3 [y = t4] [x = IQ]) = Wixx;,. (t3b/ ]) [W[xl yeeesXn] (tZ)] =

def

Whyxx,... %) (t3) [W[x,xl,...,xn] (t4)} [W[xl....,x,,] (l‘z)] _>)Lrexp
L.42.2, x € FV(t4), (Comp)

il(w[y,x,xl,..., ( ))[TO( (X150 (2‘2))][ [xxl,...,x,,](m)[W[xl.,...,xn](tz)]] =

LA40,x#y
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Wiyt ) (13) [TO (W[Xh-n:xn] (Q))] [W[Lxum,xn] (t4) [W[X17~~-7xn] (IZ)H =

L4l,y ¢FV(n)

VX1 e sXin] (t3) [Wb),xh...,xn] (tz)] [W[x,xl,...7x,,] (t4) [W[xl,.i.,x,,] (tz)]] =

w
[x def

Wiyxt e x) (t3) [Wb‘,xl,...,x,,] (tZ)] [W[xh...,x,,](t“—[x = tz])] =

= Wiy, ] (B =0y =1 i=1n]])

Part 2. Induction on the inference of t =c u. The only interesting case is when the actual equation
isused. Then, r =1y :=n|[x :=13] =c 1 [x :=13][y :=12] = u, withx £ yAx € FV(t;) ANy € FV(3). By
the variable convention, assume that {x,y} N {xj,...,x,} = 0. Proceed in a similar way than that of the
proof of Part 1 in the (Comp) case. O

Finally, to prove Part C of the isomorphism theorem, we also need several auxiliary lemmas analogue
to those used for Part B. We will now state them.
Lemma 44. For every a € Are, i € N5, {x1,...,x,} distinct variables such that FV(a) C {1,...,n}
Ai < n, we have that u[xl,.“.,x,',x,-“,‘..,xn} (a) o u[xh...,xiH,x;,...,xn] (il(a»

Proof. Easy induction on a. O

Lemma 45. For every a € Are, m € N, {x),...,x,} distinct variables, x & {x1,...,x,} such that
FV(a) C{1,...,n} Am <n,wehave that u,, . o 1(Tw(@) =aup,, . (@)

Proof. Easy induction on a. O
Lemma 46. Forevery a € Are,m € N, x €V, {xy,...,x,} distinct variables such that FV(a) C {1,...,n} A
I1<m<n+1Ax&{x1,...,x,}:

l. n¢FV(a) = x ¢ FV(u[xlw7xm_17x7xm7_“’xn] (a))

ERREE:

3' m g FV(a) == u[xl:---7xm—17x7xm7---~,xn] (a) o u[xl7--~7xn] (\l’m(a))
Proof. Easy inductions on a. O

Given, once again, the auxiliary lemmas, we will now state Part C of the isomorphism theorem. As
for Part B, Item 1 of Lemma 47 will be enough to prove preservation for the Ax and Axgc calculi, whereas
Item 2 will also be needed for the case of Aex, concluding preservation by definition of reduction modulo
an equation.

Lemma 47. For every a,b € Are :
1. a leexp(kre,lregc) b = u(a) —7Bx(Ax,Axgc) u(b)
2. a=pb = u(a) =cu(b)
Proof. For part 1, perform induction on a analogue to that of lemma 43.1. For part 2, perform induction

on the inference of @ =p b, analogue to that of lemma 43.2. In both cases, use auxiliary lemmas 44, 45
and 46. OJ
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The evaluation mechanism of pattern matching with dynamic patterns is modelled in the Pure Pattern
Calculus by one single meta-rule. This contribution presents a refinement which narrows the gap
between the abstract calculus and its implementation. A calculus is designed to allow reasoning on
matching algorithms. The new calculus is proved to be confluent, and to simulate the original Pure
Pattern Calculus. A family of new, matching-driven, reduction strategies is proposed.

Introduction: Dynamic Patterns

Pattern matching is a basic mechanism used to deal with algebraic data structures in functional pro-
gramming languages. It allows to define a function by reasoning on the shape of the arguments. For
instance, define a binary tree to be either a single data or a node with two subtrees (code on the left, in
ML-like syntax). Then a function on binary trees may be defined by reasoning on the shapes generated
by these two possibilities (code on the right).

type ’a tree = let £ t = match t with
7 | Data ’a | Data d -> <codel>
| Node of ’a tree * ’a tree | Node (Data d) r -> <code2>
| Node 1 r -> <code3>

An argument given to the function £ is first compared to (or matched against) the shape Data d (called
a pattern). In case of success, the occurrences of d in <codel> are replaced by the corresponding part
of the argument, and <code1> is executed. In case of failure of this first matching (the argument is not a
data) the argument is matched against the second pattern, and so on until a matching succeeds or there is
no pattern left.

One limit of this approach is that patterns are fixed expressions mentioning explicitly the constructors
to which they can apply, which restricts polymorphism and reusability of the code. This can be improved
by allowing patterns to be parametrised: one single function can be specialised in various ways by in-
stantiating the parameters of its patterns by different constructors or even by functions building patterns.
For instance in the following code, the function £ would take an additional parameter p which would
then be used to define the first two patterns. In this case, instantiating p with the constructor Data would
yield the same function as before, but any other function building a pattern can be used for p!

let £ p t = match t with

| pd -> <codel>
| Node (p d) r -> <code2>
| Node 1 r -> <code3>

However, introducing parameters and functions inside patterns deeply modifies their nature: they
become dynamic objects that have to be evaluated. This disrupts the matching algorithms and intro-
duces new evaluation behaviours. This paper intends to give tools to study these extended evaluation
possibilities.

E. Bonelli (Ed.): 5th International Workshop © T. Balabonski
on Higher-Order Rewriting (HOR’10) This work is licensed under the
EPTCS 49, 2011, pp. 16-30, doi:10.4204/EPTCS.49.2 Creative Commons Attribution License.
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The Pure Pattern Calculus (PPC) of B. Jay and D. Kesner [JK09, Jay09] models the behaviour of
dynamic patterns by using a meta-level notion of pattern matching. The present contribution analyses the
content of the meta pattern matching of PPC (reviewed in Section 1), and proposes an explicit pattern
matching calculus (Section 2) which is confluent, which simulates PPC, and which allows the descrip-
tion of new reduction strategies (Section 3.1). An extension of the explicit calculus is then discussed
(Section 3.2) before a conclusion is drawn.

1 The Pure Pattern Calculus

This section only reviews some key aspects of PPC. Please refer to [JK09] for a complete story with
more examples. The syntax of PPC is close to the one of A-calculus. The main difference is the re-
placement of the abstraction over a variable Ax.b by an abstraction over a pattern (with a list of matching
variables) written [6]p — b. There is also a new distinction between variable occurrences x and match-
able occurrences £ of a name x. Variable occurrences are usual variables which may be substituted while
matchable occurrences are immutable and used as matching variables or constructors.

t ou= x|X|t]| [0t -t PPC Terms

where 0 is a list of names. Letter a (resp. b, p) is used to indicate a term in position of argument (resp.
function body, pattern).

As pictured below, in the abstraction [0]p — b the list of names 6 binds matchable occurrences in
the pattern p and variable occurrences in the body b. Substitution of free variables and ¢-conversion
are deduced (see [JKO09] for details on PPC, or Figures 1 and 2 for a formal definition in an extended
setting).

One of the features of PPC is the use of a single syntactic application for two different meanings:
the term #,7, may represent either the usual functional application of a function #; to an argument #, or
the construction of a data structure by structural application of a constructor to one or more arguments.
The latter is invariant: any structural application is forever a data structure, whereas the functional appli-
cation may be evaluated or instantiated someday (and then turn into anything else, including a structural
application).

The simplest notion of pattern matching is syntactic: an argument a matches a pattern p if and only
if there is a substitution o such that a = p°. However, with arbitrary patterns, this solution generates
non-confluent calculi [vO090]. To recover confluence, syntactic matching can be used together with
a restriction on patterns, as for instance the rigid pattern condition of the lambda-calculus with pat-
terns [KvOdVO08]. The alternative solution of PPC allows a priori any term to be a pattern, and checks
the validity of patterns only a posteriori, when pattern matching is performed. In particular, the restriction
on patterns applies only once the evaluation of the pattern is completed. This allows a greater freedom
of evaluation and a greater polymorphism of patterns, and hence a greater expressivity.

This is done by a more subtle notion of matching, called compound matching, which tests whether
patterns and arguments are in a so-called matchable form. A matchable form denotes a term which is
understood as a value, or in other words a term whose current form is stable and then allows matching.
Matchable forms are described in PPC at the meta-level by the following grammar:

d == Zx|dt PPC data structures
m = d|[0]t—t PPC matchable forms
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Compound matching is then defined (still at the meta-level) by the following equations, taken in order.

fa/e 2} = {x—a} ifxeo
fe/o s} = {} ifx ¢ 6

faraz o prp2} = {ai/o pr}w{ar/e p2} if ajaz and pyp, are matchable forms
fa/op} = L if a and p are matchable forms, otherwise
{a/o p} = wait otherwise

Its result, called a match and denoted by p, may be a substitution (written &), a matching failure
(written L) or the special value wait. The latter case represents undefined cases of matching, when the
pattern or the argument has still to be evaluated or instantiated before being matched.

Decomposition of compound patterns in the equations above is associated with an operation & of
disjoint union which ensures linearity of patterns: no matching variable should be used twice in the same
pattern, or confluence would be broken [Klo80]. Its formal definition is:

e ¥ is commutative.

1l wp =_1 forany p (even wait).

waitWp =wait forp # L.

o1 W oy = L if domains of o7 and o, overlap.

01 W 07 1s the union of 07 and 0, otherwise.

Finally, PPC has to deal with a problem related to the dynamics of patterns: a matching variable
may be erased from a pattern during its evaluation. In this case, no part of the argument would be bound
to this matching variable and then no term would be substituted to the corresponding variable. Hence
free variables would not be preserved, which would make reduction ill-defined (see Example 1). This is
avoided in PPC by a last (meta-level) test, called check: the result {a /¢ p} of the matching of a against
p is defined as follows.

o if{a/gp}=_Lthen{a/g p} = L.
o if {a/o p}} = o with dom(c) # 6 then {a /y p} = L.
o if {a /o p}} = 0 withdom(c) = 6 then {a/y p} = ©O.

Remark that {a /¢ p} is not defined if {a /o p}} = wait.
Finally, the reduction — ppc of PPC is defined by a unique reduction rule (applied in any context):

([6lp—b)a —p, blolort

where for any b and o the expression 5° denotes the application of the substitution ¢ to the term b, and
b* denotes some fixed closed normal term L.

Example 1. Lett be a PPC term. The redex ([x]¢éX — x) (ét) reduces to t: the constructor ¢ matches itself
and the matchable % is associated to t. On the other hand, ([x,y|éx — xy) (¢ét) reduces to L: whereas
the compound matching is defined and successful, the check fails since there is no match for y and the
result would be ty where y appears as a free variable. The redex ([x]¢% — x) (¢) also reduces to L since
a constructor will never match a structural application. And last, ([x|y% — x) (¢t) is not a redex since the
pattern yxX has to be instantiated.
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2 Explicit Matching

This section defines the Pure Pattern Calculus with Explicit Matching (PPCgyy), a calculus which gives
an account of all the steps of a pattern matching process of PPC. The first point discussed is the iden-
tification of structural application (Section 2.1). An explicit calculus is then fully detailed (Section 2.2)
and some of its basic properties are proved (Section 2.3). Explicit formulations of simpler pattern calculi
already appear in [CKO04, For02, CFK04].

2.1 Explicit Data Structures

Firstly, a new syntactic construct is introduced to discriminate between functional and structural appli-
cations (as in [FMSO06] for the rewriting calculus for instance). Any application is supposed functional a
priori, and two reduction rules propagate structural information. The explicit structural application of ¢
to u is written 7 e u.

t u= x|X|t|ter|[O]t -1 PPC, terms
d = ZX|tet PPC, data structures

Xt —>e Xeof
(trotr) 13 —e (t1017) 013

The identity morphism embeds PPC into PPC,. The subset of PPC, defined by PPC is referred to as
the set of pure terms. On the other hand, a “forgetful” morphism maps PPC, terms back to PPC terms
(or pure terms):

[x] = x
[#] = =%
[nn] = [ulle]
[[tlotz]] = [[l‘l]][[tzﬂ
[6lp—o] = [6][p] - [2]

Some PPC, data structures are not mapped to data structures of PPC, for instance ([6]p — b) e a.
However, for any pure term ¢, if t —% ¢’ and ¢ is a PPC, data structure, then 7 is a PPC data structure
(proof by induction on ¢). One can also observe that for every PPC data structure ¢, there exists a
reduction r —} ¢’ with ¢’ a PPC, data structure. Call well-formed a term 7 such that [t] —} 7.

2.2 Explicit Pattern Matching

Another new syntactic object has to be introduced to represent an ongoing matching operation. The basic
information contained in such an object are: the list of matching variables, a partial result recording what
has already been computed, and a representation of what has still to be solved.

This new object is called matching and is written (6|u|A) with 8 a list of names, u a decided
match (that means, L or a substitution), and A the collection of submatchings that have still to be solved
(a multiset of pairs of terms). For now on, we will consider only decided matches, written i (wait does
not exist as such in PPCgy).

The complete new grammar is:

t = x|X|tt|ter|[O]t =1t |1(0|u|A) PPCpy terms
d == ZX|tet PPCpgy data structures
m = d|[0]t—t PPCg) matchable forms
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The set of free names of a term 7 is fn(t) =

Free variables

fo(x)
(%)
(i)
fo(tiety)
fv([6]p - b)
o(t(0]u|A))

Free matchables
Jm(x)

Jm(%)

fM(flfz)

fm(ty o))

fm([6]p—b)

Jm(1(6]u[A))

where if A = (ay, p1)...

(@n; pa) then fin(m(A))

fo(t)U fm(t).
{x}
0
() U fu(t)
() U fu(t)
M(p)U(fv(b)\0)
(fv(#)\ 8) U fr(codom(p)) U fv(A)

0

{x}

Jm(t) U fm(t2)
Jm(t1) U fm(tz)
(fm(p)\ 0)U fim(b)

fm(t) U fin(codom(i)) U fin(m (&) U
— U fin(a) and fin(m(A)) =

(fim(m2(A))\ 6)
U, fm(pi).

Figure 1: Free names of a PPCgyy term

=

=
QQC\

Q

(u)

(rou)
([6]p — b)
(z(0]ulA))°

Q

(o

= Oy x € dom(0o)
= X x & dom(o)
= X

— o0

= t%eu

= ([6]p° = 0°)

17(0|u|A%)

0N (dom(oc)U fn(o))
0N (dom(o)U fn(o)

0
0

)

where in A° (resp. %) the substitution propagates in all terms of A (resp. of the codomain of ).

Figure 2: Substitution in PPCgyy
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Initialisation
([6]p—=b)a —p b(6]0|(a,p))

Structural application

A

Xt —e Xeof
(trotr) 13 —e (t1012) 013

Matching
Since A has been defined as a multiset of pairs of terms, its elements are not ordered. In the following
rules (a, p)A denotes the (multiset) union of A with the singleton {(a, p)}.

The first three matching rules are for successful matching steps.
b(0|ul(a,®)A) —m b(OluW{x— a}|A) ifxe 0 and fn(a)NO =0
b(OL](£,2)A) —n b(O|p|A) ifxg 6
b(O|u|(areax, prepr)A) —u b(0|ul(a1,p1)(az, p2)A)

The last six matching rules are for failure, and could be summed up as “for any other matchable forms a
and p, let b(0|u|(a, p)A) reduce to b (6| L|A)”.

b(O|p|(5,8)A) —>, b(O|L|A) ifx&Oandx#y
b{(0|u|(ai eaz,X)A) —, b(O|LIA) ifxg6
b(0|u|([6u]pa = ba,X)A) —n b(B|L|A) ifxgZ6
b(O|u|(%,p1ep2)A) —m b(6|L[A)
b(01u|([6a]pa = ba,p1ep2)A)  —m  b(B]L|A)
b(0|1|(a,[0plpp = bp)A) —m b(O|L|A)

Resolution
b(0|c|0) —, b° ifdom(c)=06 (substitution rule)
b(0|lc|0) —, L ifdom(c)#6
b(0|L|A) —, L

Figure 3: Rules of PPCgyy
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A pure term of PPCgy, is a term without any structural application or matching (that means a PPC
term). As in PPC, the symbol L used as a term denotes a fixed closed pure normal term.

Free variables and matchables are defined in Figure 1 as a natural extension of PPC mechanisms
to explicit matching. Similarly, a notion of (meta-level) substitution is deduced from this definition
(Figure 2). Finally, a notion of a-conversion is associated, and from now, on it is supposed that all bound
names in a term are different, and disjoint from free names.

New rules for matching are of three kinds: an initialisation rule — p which triggers a new matching
operation, several matching rules —,, corresponding to all possible elementary matching steps and
three resolution rules —, that apply the result of a completed matching. The complete set of rules of
PPCgyy is given in Figure 3.

Reduction — gy of PPCgy, is defined by application of any rule of —p, —>,, —>,; Or —, in
any context. The subsystem —, = —, U —, U —, computes (when possible) already existing
pattern matchings but does not create new ones.

2.3 Confluence and Simulation properties

This section states and proves four theorems on basic properties of PPCgy, and its links with PPC. The
first one is a result on the normalization of already existing pattern matchings.

Theorem 1. —, is confluent and strongly normalizing.

Proof.

e We define two well-founded orders < 4 and <, whose lexicographic product contains ,<—.
This will enforce strong normalization.

— <_y sorts terms with respect to the nesting of matchings. It is based on an over-approximation
of the depth of potentially nested matchings (matchings that are syntactically nested or that
may become such after some substitutions). For any lists of names 6;, decided matches y;,
and lists of pairs of terms A;, the sequence (6;|u1|A1);...; (6, Uy|Ay) is called a potentially
nested chain of length n if for each i € {1...n— 1} one of these conditions holds:

« Nesting: (6,;1|Wi+1]Ai+1) appears in A; or in the codomain of ;.

* Potential nesting: a variable of 6;; appears in A; or in the codomain of y;.
The set of maximal chains of a term ¢ is the set of all potentially nested chains that can be
built using the matchings appearing in ¢ and that can not be extended (neither by the left nor
by the right) using other matchings of ¢. For this extraction, remember that all bound names
in ¢ are supposed to be different, and disjoint from free names. The depth of ¢ is the multiset
of the lengths of the maximal chains of ¢.
Example 2. Write t = ¢ (0]0|(x,¢)(x,é)) (x|x+ y(y|0[(&,9)) |0). The term t contains
three matchings and has one maximal chain of length 3, which is

(010](x,6)(x,6) ) : (x|x—=>y (y[0](2,9)) 0) : {¥[0](¢,9))

The reduction t —, 1" = ¢&{0|0](y1 (y1]0/(&,51)).&) (y2 (0210|(¢,)2)),¢) ) yields a new
term t' which still contains three matchings (one was reduced and disappeared but another
one was duplicated) and admits two maximal chains of length 2, namely

(010](y1 (1110](8,51)),6) (v2 (0210](8,52)),€) ) s {y1 0] (&, %))
(010](y1 (110](2,51)),8) (v2 (72101(8,52)),8) ) 5 (3210 (&,52) )
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The usual order on natural integers gives a well-founded order on the lengths of potentially
nested chains. <_4 is defined as the multiset extension of this order, applied to the depths of
terms. It strictly decreases for any reduction by the substitution rule, and is less or equal for
any other reduction.

— <. is the natural order on the size of terms, defined as follows:

L(x) = 1
SE) = 1
y(l‘[l‘z) = y(t1)+y(tz)+2
y(l‘l 0t2> = y(l‘])—i-y(lz)—i-]
S([8]p—b) = FL(p)+7(b
y(b<9’.u‘A>> = y(b)+‘y(J—)+Zx€dom(,u)y(.ux)+Z(a,p)ekAk(y<a)+‘5ﬂ(p))

where we write e €; A when the element e appears in the multiset A with multiplicity k.
< & strictly decreases for any reduction except by the substitution rule.

e Matching rules generate some critical pairs, most of which are trivially convergent. The most
subtle case is the reduction of a non linear matching:

Oluw{x—ai}f(ax, £)A) pe— (Oluf(a,%)(az,)A) —p (BluW{x—ar}|(a1,£)A)

Since W is a disjoint union of substitutions, both sides can be reduced to (6|_L|A).
Finally, —, is weakly confluent, and then confluent by Newman’s Lemma [Ter03].

O]

The second theorem states the confluence of —gy,. Since the reduction of PPCgy, is defined by
several rules, the result does not fall into the modular framework of [JK09]. It is proved here directly by
the Tait and Martin-Lo6f’s technique. The main construction of the proof is the definition (in Figure 4)
of a parallel reduction relation = enjoying the diamond property (Lemma 3). The relation = is first
linked to —> g7 in Lemma 1.

Lemmal. —gy C = C —y

Proof.
e —ry C — by induction on the definition of —gyy.

e — C —},, by induction on the definition of =

Lemma 2. Ift = 1’ and 6 => ¢’ then t® = 1'®.
Proof. By induction on the derivation of 1 = 1'. O
Lemma3. <—— C =—«—

Proof. Suppose t| <=t = ;. Induction on the derivations of t = #; and t = 15:
o If one of the reductions is by “Id”, the conclusion is immediate.

e [f one reduction is by a “Cgr” rule, and the other by a “Cgr”, “Init”, “Struct”, or “Match” rule, then
the induction hypothesis applies straightforwardly.
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Id.
t=>t
Cgr.
=1 h=1 =1 h=1 p=7p b=
ity = 1|t} rety =>1t]et) [0lp—-b=[0]p' >V

b=V = pu' A=A
b {0]u]A) — b (O]w[A)

Init.
p=7p b=V a=—d
([6]p = b)a=b'(6/0](d’, p"))

Struct.
pp— =t =1 13 =1}
2t=Ret (t1oty) 13 = (1] o1}) o1}

Match.
b=bv u=u a=—d A= N
b(0|u|(a,£)A) = b'(6|u" W {x— a'}A')

x€0,fn(a)no =0

b= u=pu' A= N

x&0
b Ol DA) — o (ola)

b=1" U= u A= AN a; = d. pi =P}
b(0|u|(ar eaz, p1ep2)A) = b'(0|1'|(a}, py)(a), Py)A)

b=—=10b A= N

a and p other matchable forms
b(6|u|(a, p)A) = b' (6] L|A")

Res.
b= c—o0 dom(c) # 6
— dom(c) =0 b{O|L|A) = 1
b(0|c|0) = (b')° b(6|c|0) = L (B1-LA)

As in Figure 3, the last “Match” rule could be explicited in six fail rules.
Parallel reduction is straightforwardly extended:

o to decided matches (ut) by applying = to all terms in the codomain of a substitution (with more-
over L = ).

e to multisets of pairs of terms (A) by applying = to all terms.

Figure 4: Definition of parallel reduction relation =
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e [f one reduction is by a “Cgr” rule and the other by a “Res” rule, there is one non trivial case:
suppose #; (8]01|0) <=1 (6|c|0) => t5*. By induction hypothesis there are 73 and 03 such that
1y => 13 <=1, and 6| => 03 <= 0. Then we can derive 1, (6|0} |0) =>t5°. Finally, by Lemma 2
we conclude that 152 = 13°.

o If both reductions are by a “Init” rule, then the induction hypotheses apply straightforwardly.
o Idem for two “Struct” or two “Match” rules.

e Case where both reductions are by a “Res” rule. Reductions to L are straightforward. Then
consider the following case: 1! <=1 (6|0|0) = t;>. By induction hypotheses 1, => 13 <=1,
and 0] = 03 <= 0». By Lemma 2 1]' = 15° <=1;".

O
Theorem 2. PPCgyy is confluent.

Proof. Since = has the diamond property (Lemma 3), its transitive closure =>* also enjoys the di-
amond property ([Ter03]). Moreover Lemma 1 implies —};, = =", and then —%,, enjoys the
diamond property. Finally, — gy, is confluent. O

The last two theorems establish a link between the calculus with explicit matching PPCgy and the
original implicit PPC.

Lemma 4. If {a /o p} = 1 with U a decided match, then for any Ly and A there are 1 with [u'] = u
and a reduction

(810l (a,p)A) (—e U —m)" (BlHo W 1']A)
Proof. Induction on {a /g p}.
o {{a/o i} withx € 6 or {£/p £} withx & 6: immediate.

e {aap /o ppo} with aag and ppy matchable forms. Hence a = a,...a; and p = p,,...p; with a,
and p,, constructors. Then a,...ajag —} a,®...ea;eay and p,,...p1po —>s Pm® ... ® p1 ® po.

Suppose n > m, then {{000/9 ppOH’ = {{amn-an /9 pn} © {anfl /9 pnfl} W.. 4 {{aO /9 pO} and
(Bluol(ane...eap,pme...e po)Ay —* (0|Uo|(ame...eay, pn)(an—1,pn—1)..-(ao, po)A). Case on
pn =%

— If x € 6 then the matching reduces to (0|uoW {x+— ane®...ea,}|(an—_1,pn—1)...(ao, po)A).

— If x ¢ 6 then the matching reduces to (6|)|(an—1, pn—1)-.(ao, po)A) with = po or pj= L.

In any of these two cases, the induction hypothesis gives the conclusion. In the case where m > n,
the same method allows to derive a reduction to .

e Cases of matching failure: for instance {£ /¢ y}}. The following reduction gives the conclusion:
(0]k0[ (£, 51)A) —e (6|Ho[(£,5 @ 1)A) —p (6] L[A).

O
Theorem 3. For any terms t and t' of PPC, if t —sppct’ then t —,, 1.

Proof. Suppose t —ppc t'. There is a context C|] such that = C[([0]p — b)a] —>ppc C[b'] =1 and
{a /e p}} = 1 with u a decided match.
By Lemma 4 ([6]p — b)a —p b(0|0|(a,p)) (—re U —>p)* b(6|1]0).
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Case on U:
e Ifu=_1thend' =L and b(6|L|0) —, L.
e Else it = 0 and:
- If dom(c) = 6 then b’ = b° and b (0|c|0) —, b°.
- Else ¥’ = L and b (6] L|0) —, L.
O

The map [-] is naturally extended to any PPCgy, term, set of PPCgy terms and decided match, as well
as the notion of well-formedness. Then, for any t and A not containing any explicit matching, define the
semantics of the matching (6|u|A) by:

[6ulal = [ulw | &) {lal/o [P1}
(a,p)eA
Note that the semantics can be wait.
Lemma 5. For any well-formed u, W', A and A’ which do not contain any explicit matching,
if (Olu]|A) —m (B]u'|A") or (6|u|A) —e (O]p/|A) then [6|u|A] = [6]u'|AT].

Proof. Case on the reduction rules. O

Lemma 6 ([JKO09]). Ift —ppc l‘/, then t° —ppc ¢'o.

Let 1 be a PPCgy term, and ¢ the unique normal form of # by —,,. Write ¢| and call purification of
the term [#']. Note that the purification may not be a pure term if there is an unsolvable matching in it.

Theorem 4. For any well-formed terms t and t' of PPCgy,
ift —spyt' andt] andt'| are pure, thent| =1t} ort| —ppct'].

Proof. Induction ont — gy t'.

e Caset = ([0]p - b)Ja —p b(6|0|(p,a)) =1'. The term '] is pure, then there is a sequence
bl (810|(p),al)) (—re U—>m)" b (0|1|A) —, " where [¢"] =1'| and where A=0orpu = L.
By Lemma 5, [u] = {al /o pl}. Then, by case on matching resolution, t, —sppc [t"] =] .

e Other base cases: if 1 —, ¢/, thenr| =1'] .

e Caset =b(0|u|A) —gm b'(0|u|A) =1'. The term ¢| is pure. Then (8|u|A) —7 (0|u'|A")
where ' =Qorp’' = L. Ifu' = 1 ordom(u’) # 0, thent,=1¢'| = L. Suppose A =0 and u' = o
with dom(c) = 6. Hence ¢t = (b])° and ¢’ = (b'|)°. By induction hypothesis b, —sppc b,
and then by Lemma 6 ¢ —ppc 1| .

e Other inductive cases are straightforward.

O

This section introduced the new calculus PPCgy, for explicit matching with dynamic patterns, and
proved its confluence. It also expressed a bidirectional simulation between PPC and PPCgy,: first any
reduction of PPC is reflected in PPCgy by a sequence. On the other hand, a reduction of PPCgjs can
be mapped on zero or one step of PPC if and only if its source and its target are well-formed and can be
purified. Next section discusses how this new calculus can be used.



T. Balabonski 27

3 Discussion

3.1 Reduction Strategies

Pattern matching raises at least two new issues concerning reduction strategies (i.e. the evaluation order
of programs). One is related to the order in which pattern matching steps are performed, the other
concerns the amount of evaluation of the pattern and of the argument performed before pattern matching
is solved.

Some remarks about the order of pattern matching steps.

PPCg); uses a multiset as the third component of a matching (6|ut|A) to represent all the remaining work.
The calculus is thus able to cover all the possible orders of pattern matching steps. A particular strategy
may be enforced by giving more structure to the multiset A and by adapting the matching reduction rules.
Example 3. Suppose that A is now a list of pairs of terms, and (a,p)A denotes the usual “cons”: it
builds the list whose head is (a,p) and whose tail is A. Then the rules of Figure 3 implement a depth-
first, left-to-right pattern matching algorithm.

Example 4. Now assume the list structure of Example 3 and replace the right member of the reduction
rule (6|u|(ay®az,piep2)A) —m (0|1|(ar,p1)(az, p2)A) by (6|u|A(ar, p1)(az, p2)). Then pattern
matching is done in a completely different order!

More generally, if some permutations of the elements of A are allowed, lots of richer matching behaviours
may be described in PPCgy,.

Pattern and argument evaluation: what is needed?

In PPC, a naive evaluation strategy for a term ([6]p — b)a could be: evaluate the pattern p and the
argument a, then solve the matching (atomically). As the usual call-by-value, this solution may perform
unneeded evaluation of the argument, for instance in parts that are not reused in the body b of the
function. The most basic solution to this problem, call-by-name, allows the substitution of non-evaluated
arguments. But how can such a solution be described in a pattern calculus?

In the context of pattern matching, some evaluation of the argument has to be done before pattern
matching is solved. However the exact amount of needed evaluation depends on the pattern. Hence
pattern matching enforces some kind of call-by-value where the notion of value is context-sensitive.
Moreover, even the evaluation of the pattern may depend on the argument!

This makes the description of a strategy performing a minimal evaluation of the dynamic pattern
and the argument rather difficult. One may keep for the object-level a compact formalism like PPC
by defining complex meta-level operations finely parametrised by terms. This is done in [KLLR10] to
describe standard reductions in a simpler pattern calculus. In contrast to this solution, we want to show
here how the richer syntax of PPCg), allows a simple description of such a reduction strategy.

Indeed PPCgy allows to interleave pattern and argument reduction with pattern matching steps.
This finer control allows for instance an easy definition of a “matching-driven” reduction, as pictured in
Figure 5.

The idea here is to trigger pattern matchings as soon as possible. Then the pattern and the argument
are evaluated until they become matchable, and one or more pattern matching steps are performed be-
fore the story goes on. A formal definition of a strategy implementing this picture is by restricting the
reduction under a context to the only four rules given in Figure 6.

Moreover, it can be checked that the list structure of Example 3 associated with the rules of Figure 3
and the context rules of Figure 6 gives a deterministic reduction strategy for PPCgy; (which means that
any term has at most one authorised redex).
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if matching variable

Reduce pattern Perform pattern
to matchable form matching steps
/}‘Q) ‘J
“V”b%‘?"? Reduce argument to
® matchable form

Select next pair

Figure 5: Matching-driven reduction strategy

n — t
tity — it

p— 7
b(0|ul(a,p)A) — b(0|u|(a,p’)A)

a —»
—

b(0]l(@ DA x#o

b(6|u|(d',£)A)

a — d
b<9|:u’(aap1.p2)A — b<9|.u|(a/7pl°l92)A>

Figure 6: Context rules for matching-driven reduction

b(0|t|(a,2)A) —, b (0]TU{x}|A) ifx€ O, xZTand fn(a)NO =0
b(6|6|0) —, b°
b(0]t|0) —, L ift#£86
b(O|LIA) —s, L

Figure 7: Partial substitution rules
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3.2 An Extension: Partial Substitution

Relaxing the matching procedure generates new possibilities of evaluation, which may bring more partial
evaluation, more sharing or more parallelism. We explore here an extension of PPCgjs where the partial
result of a matching can be applied to the function body before the matching process is completed.

Example 5. Consider the following reduction:

(Ixl&z = (([0]x = b)¢)) (é1)

—5 (52— (b(0]0](¢,x)))) (&)
The matching (0|0|(¢é,x)) is blocked because of the presence of the variable x in the pattern. Still, the
external application can be evaluated:

s (b(000](6.0)) (x0](er.2)

2 (BO01(E)) (W0l(or.ie2)

—sm (b(OI0](.)) (x01(¢.9)(1,2)

o (BO0I(E)) (x> EH(1,2)
Now, the external matching (x|{x+— ¢}|(t,z)) is also blocked because of the variable z. However, its
partial result is a substitution for x which, if applied, may unlock the internal matching. Indeed, allowing
this partial substitution could lead to a reduction like:

— (01N (il 2)

—m (b(0[0]0)) (x[{x— ¢}[(1,2))

—r bix{x—=}(1,2))

L3 \S}

3

where the internal matching is finally solved!
This kind of power may be of interest in two situations:

e By allowing more reduction in open terms, we gain more partial evaluation capabilities. This may
be interesting for greater sharing and efficient evaluation [HG91].

e Suppose now that z is replaced in the example by a possibly big term. In a parallel implementation
we could complete the external matching and evaluate the internal one in parallel. As pointed out
in [FMS06], this might represent another gain in efficiency.

A light variation on PPCgyy gives this new power to our formalism. The principle of this variant is to
systematically apply partial results (substitutions) as soon as they are obtained. Hence they do not need
to be remembered in the object representing ongoing matching operations. Only a list of used variables
is remembered for linearity verification.

The object representing a matching is now (6|t|A) where 7 is either L or the list of the names of
the matching variables that have already been used. Now the test of disjoint union of substitutions is
replaced by a simple test against 7, while the final check compares 6 and 7.

Initialisation, structural application, and most matching rules are the same in this variant. The only
differences are for the first matching rule and the resolution rules, which are now as in Figure 7.

Any PPCgy term can be translated into a term of this new calculus by applying the following trans-
formation: turn any b (0|c|A) into b° (8|dom(c)|A) (there is nothing to change in a failed matching).

The simulation between PPCgys and this extension is only one way: any reduction of PPCgys is
mapped by the previous morphism to a reduction sequence, but the converse is not true. Indeed the
calculus with partial substitution allows new reductions, as pictured in Example 5. Confluence for this
variant seems to be provable using the same technique as for plain PPCgyy.
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Conclusion

The Pure Pattern Calculus is a compact framework modelling pattern matching with dynamic patterns.
However, the conciseness of PPC is due to the use of several meta-level notions which deepens the
gap between the calculus and implementation-related problems. This contribution defines the Pure Pat-
tern Calculus with Explicit Matching, a refinement which is confluent and simulates PPC, and allows
reasoning on the pattern matching mechanisms.

This enables a very simple definition of new reduction strategies in the spirit of call-by-name, which
is new in this kind of framework since the reduction of the argument of a function depends on the pattern
of the function, pattern which is itself a dynamic object. In the same direction, it would be interesting to
express standardisation in pattern calculi (as presented for example in [KLR10]) using explicit matching.
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In this paper we outline how a simple compiler can be complseecified using higher order rewrit-
ing in all stages: parsing, analysis/optimization, andecenhission, specifically using tleesx.sf.net
system for a small declarative language called “X” inspiogcdkQuery (for which we are building a
production quality compiler in the same way).

1 Introduction

A compiler typically consists of a parser generating anrabsisyntax tree (AST) for some source lan-
guage (SL), a “normalization” to a canonical form in an inmtediate language (IL), some rewrites in-
serting analysis results into and performing simplificagiaf the IL, and finally code emission to the
target language (TL).

Normalize i
sL Parse AST 1z IL Emit TL

)

Rewrite

Each arrow in the diagram can be understood as a rewriting:
1. parsing to an AST is a rewriting from the string of charegte the input file to a term representing
the source program, usually formalized and implementedgusome variation of context free
grammars12);

2. normalization of the AST into the IL involves rewrite ral eliminate “syntactic sugar” and other
redundant aspects of the source language;

3. rewriting of the IL involves adding annotations, simplifiions, and sometimes using parts of the
program itself like rewrite rules (for example for inlinirdgefined functions); often some rewrites
depend on the result of other rewrites (like an optimizatiepending on an analysis); finally,

4. code emission is usually a direct expansion of the “firdshke program into sequences (or tem-
plates) of instructions that are directly executable byramater.
We'll show how each of these steps is specified using the CRSbé¢s [L8, 19], an implementation of
a variation of Combinatory Reduction Systemig][ The actual samples we’'ll present below are mere
toys, of course, but they do illustrate the ideas in a marirari¢ consistent with a production compiler
that we are building for XQueryZJ.

We first summarize the CRSX system notation, including theresions, in Sectiof, before we
introduce the parser specification in Sect®followed by the normalizer rules in Sectign Section5
then explains a few simple sample rewrites, and Sedi@nesents code emission rules. Finally, we
conclude and discuss some related work in Seciion

E. Bonelli (Ed.): 5th International Workshop
on Higher-Order Rewriting (HOR’10)
EPTCS 49, 2011, pp. 325, doi:10.4204/EPTCS.49.3
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2 CRSX Summary

Our setting isCombinatory Reduction Systeifid] as realized by the “CRSX” systenij]. Here we
briefly summarize the used notation and where it differs frefarence CRS.
Terms are constructed from the basic grammar

t:=v|{e]C[s,...,g | {e}M[t,... 1] (Terms)
su=Vt|t (Scope)
ex=M|egv:t|egC:t (Environment)

where variablesy, are written with a lower case letter (including compositétsilike v"$x"), meta-
variables,M, must include a hash mark)(in the name, and all other units (including literal contsan
are constructors;.

Term formation is as shown, where constructige$C[s, ... ,s| are non-standard in two ways:

e Each subterm of a construction iseope which may include a vector of distinct variable “binders”
(Vdenotesnvs. .. v, for n > 0), which can then occur as variables inside the scope (Withusual
caveat that the innermost possible scope is used for eatibupar variable name; this is the only
location where the formalism accepts abstraction).

e Each construction has an associagedironmentcomponent, which is a collection of mappings
from constructors and variables to terms (in addition tonpting meta-variables for pattern
matching against environments).

Meta-applicationge}Mft, ... t] are used in rewrite rules of the form
nameoptiond : pattern— contraction

with the following extended version of the CRS conventions:
e Thenamebecomes the name of the rule; it can be replaced withd use a default name.

e Theoptionsis a comma-separated list of instructions to relax the requent that all used meta-
variables occur exactly once on each side of the rule, thatghbles are explicitly scoped, and
that all pattern meta-applications permit all in-scopeal@es (to avoid accidentaj-style rules).

e Thepatternis a term that must be a construction wherein contained aygéeations are applied
exclusively to distinct bound variables. The pattern defiwbat the rule willmatch specifically
the rule will match any subterm where the top constructocires including have the same number
of parameters and binders on the parameter scopes, matthieguired environment members,
and matching the shape of each parameter term recursivétyting addition that pattern meta-
applications match any corresponding parameter term geedvonly the included bound variables
occur in the matched term (as usual for CRS; we give examaies | The mapping from the meta-
variables with the parameter bound variables to the reai tnd its bound variables is called
a valuationn CRSX extends valuations to also menole environment meta-variablesd free
variablesto parts of the matched term.

e The— is the Unicode U2192 character.

e The contractionexplains what the matched subterm should be replaced withéoyewrite step.
Constructions stand for themselves. Meta-applicatioasdsfor copies of what the meta-variable
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matched where in turn the matched bound variablessabstitutedby the corresponding argu-
ments provided in the contraction meta-application, inal§IRS fashion. Variables bound in the
contraction just stand for themselves but free variablgestand for occurrences of the variable
they matched or, as a special feature can be declared “fsgsith means a new globally unique
fresh variable is created J]. Environments in the contraction can reference matchel@ment
meta-variables extended with additional bindings.

Finally, the CRSX parser permits the following abbreviaidorrowed from\ calculus and program-
ming languages:

Parenthesis are allowed around every term(tds the same als
c V.t abbreviate|v;.c[v,. - - - C[vy.t]---]] (think Axyzt);
tito abbreviate® [ty ,t,] and is left recursive sitats is the same ad;to)ts;

t ;1> abbreviatesCons [t1,t2] and is right recursive with the addition that omitted segraeor-
respond tadNil, so (t1;ty;) corresponds to the teriCons [t1, $Cons [tp,$Ni1]1]; and

empty bracketg] can be omitted.

3 Parser

The first component of our X compiler is the parsing from X synto the AST, which are terms in
a higher-order abstract syntax representatitd} §f X. Thus the parser has to be instructed for every
production in the language how the AST subterm for that pcddn must look, including what binders
should be introduced and how they can occur. Fidushiows the actual file used to achieve this with
the CRSX system’s PG parser generator. (Note that like a8 fised by the CRSX system, the parser
generator file is a Unicode text file which permits us to useigpeharacters.)

The grammar itself is specified as follows:

// introduces comments.

The first line declares the external “class” name we’ll ugdlie parser as well as the default and
other externally visible non-terminals that the parserlmaexplicitly requested to parse.

The rest of the file consists of units that start with a namenoresspecial keyword and end with a
period.

The unit starting withneta gives the special notation used for meta-variables whetingriules
involving parsed expressions; we’'ll return to this in thiédwing section and here just remark that
we use a hotation for meta-variables inside parsed textwhia subset of the CRSX meta-variable
notation, and the unit starting witkip declares the white space convention.

In general, non-terminals are written in angle brackeke 4P>, terminals (or defined tokens) are
written as simple identifiers, like, and literal tokens are written as strings like".

Units starting with a non-terminal name are the proper pctdos. In productions, non-terminals
and terminals stand for themselves, we use parenth@sfer grouping, and vertical bal for
choice—all else is annotations, explained below. So thétfirs productions could have been
written as

<P> ::
<E> ::

<E> .
<S> (II’II <E> I)
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// Grammar for X (simple XQuery-like language) .
class net.sf.crsx.samples.x.X : <P>, <E>, <S>, <@>

meta[<E>] ::= "#<PRODUCTION_NAME>" i?, "[", "]" . // Meta-applications over AST.
skip =" " | "\r" | "\n" | "\t" . // White space.

<P> ::= {program} <E> . // Program.

<E> ::= <S>:#S (","_$ [#S] <E> | [#S]) . // Expression.

<S> ::= "(" (<E> | {empty}) ")" // Simple expression.

<Q> ::

token

<N> ::

token

<L> ::

token
token
token

[=]

w R

"element"_$ <N> "{" <E> "}"
{query} <Q>

"if"_$ <S> "then" <S> "else" <S>
{call} <N> "(" (<E> | {empty}) ")"
v_7

{literal} <L>

"for"_$ v_x "in" <S> <Q>[x] // Query.
"let"_$ v_x ":=" <S> <Q>[x]

"where"_$ <S> <Q>

"return"_$ <S>

= "$" n . // Variable tokens.
n_$ . // Names.

= [A-Za-z_] [A-Za-z0-9_-1% .
1.% . // Literals.

=il s .

= [0-9]+ .

= nomn (“[\;] | u;;ll)* noyn

Figure 1:x.pg—parsing X to AST.
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// for $x in child(doc()) for $y in child(doc()) where eq($x,$y) return plus($x,$y)

"program" [
"query" [
"for" [
"call"["child", "call"["doc", "empty"l],
v'gx" .
"for" [
"call"["child", "call"["doc", "empty"]l],
v'gy" .
"where" [
"call"["eq", ","[v"$x", v"$y"1],
"return" ["call"["plus", ","[v"$x", v"$y"]111111]1]

Figure 2: Example parse from X program to AST.

if we were not interested in generating an AST term.

e Units starting withtoken give the regular expression for the defined token. We useettional
regular expression syntax with character classes writiefl $ (negated by a preceding and
including ranges), choice with, optionality and repetition wittr++*, and literal characters as
strings.

The purpose of the parsing, however, is to build an AST forpidssed X program. This is achieved by
the annotations in the productions.

e The default behaviour is that tokens are (parsed but) igharel non-terminals are parsed and

submitted as subterms to the current context.

e When a production includes a hame in braces,{ikeogram} in the<P> production, this specifies
that the production generates an AST term with thegaggram with all following subtrees as
children (specifically up to the end of the current choice).

e When a token is followed by$ then this specifies that an AST term using the token as the tag

with all following subtrees as children (up to the end of thersunding choice). So in then>
production, then token is directly used as the tag (with no children sinceela®e no following
parsed non-terminals).

e When a generated subterm is followed by a colgnand a meta-variable name starting with a hash

#, then this means that the subtree generated from the nmirggdris not echoed to the context but
stored with that name for later use in an inserted term in Eobtacketq]. ... So, for example,
we can read theE> production as follows:

1. Parse th&Ss> subterm and remember it &S instead of including it in the context.

2. If the next token is a comma then the result is a term rooyed tomma-tag and with two
subtems: the one stored#sgenerated b{#S] and the one generated by the followixEp.

3. Otherwise, the result is just what was storedt&igenerated by (the seconfs] without
any additional tag.

(The fact that a tag can be omitted is a powerful feature thahjis us to confuse the&> and<s>
non-terminals in the normalization rules, as we shall see.)
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e An annotation of x, wherex can be any lower case variable name identifier, promotesoi®nt
value to ascoped identifier definitioand makedx] after a single non-terminal in the same pro-
duction indicate that the scope ofs that non-terminal. So, for example, in the first choicehef t
<Q> production, ther token is used as a variable name which is scoped irQhesubterm.

e Finally, _7 after a token indicates that the token must b@eeurrenceof a bound variable.

In summary, the parser specification looks like many othatrabt syntax tree generation notations,
such as MetaPRL9] or ANTLR Tree Grammarsl[5], except for the additional direct support for higher
order abstract syntax by explicitly specifying the scopng a pleasantly compact way to generate terms
where tokens are used directly as constructors, which esdihe size of large parsers considerably.
Figure2 shows a sample AST printed by the CRSX engine for the term shiothe comment. The
generated tags are quoted because they would otherwisestaker for other CRSX syntax; similarly,
actual CRSX variables that do not start with a lower casereite written as"$x", etc, which allows
us to retain the original X names in the AST. Notice how the A8/ binds two variables, one for
each"for" construct, following the CRSX constraint that binders anéy gpermitted on construction
subterms.

4 Normalization

Our sample intermediate language is a variant of nestatiaehl algebradl, 5] modified to make the
binders of dependent operators explicit so we can expleihigher-order rewriting capabilities,g, we
write the map operator as

Map|Depl[id.py], pi]

with an explicitDep dependency abstraction to scope the “context tuple” (ysdehoted by a context
sensitive symbol likaD in relational algebra).
The actual normalization rules are shown in Fig8rand exercise most of the features of CRSX:

e We first check that we have the grammar from SecBdmaded. The grammar enables two nota-
tions:

1. In CRSX syntaxyP[. . .] denotesnline parsingof the ... text using th&P> production of
some grammar (that must have been loaded in advance).

2. Inside parsed text#P denotesany subterm where &P> subterm is allowed; for disam-
biguation, such subterms further permit a numeric marker#pP2. (This is what theneta
declaration in Figurd. is for.)

The first rule then expresses thatkr-program containing akeE> subterm (they all do) rewrites to
the shownAlgebraic-term, where th@l-subterm is the one representing the compilation scheme
that will lead to the entire AST being normalized recursjvel

¢ Notice that the right hand side of the first rule introducesralér: id is bound in the invocation
of N. In all the rules fomN we shall explicitly refer to this variable, however, in teosases it will
(locally) be afree variable where we do not know the binder.
Thus all the following rules include theptionFree [id] to indicate that the pattern can us&to
match a free variable. (This is otherwise not permitted &slikkely to be the result of mistyping.)
Matching of free variables in this way is inherently probkgio for confluence, because it breaks
the confluence of developments: if the variable is substkily something then the rule no longer
applies! Thus we need an assurance tzatables that are matched against and substitued are
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// N: Normalization scheme: compile from X AST to nested relational algebra IL.

N[(

$CheckGrammar [’net.sf.crsx.samples.x.X’] ; // we need to parse X fragments

// Program.
N[%P[ #E ]1 — Algebraic[Deplid.N[#E, id]]] ;

// Expressions: N[expression, input-tuple] rewrites to operator.

-[Freelidl] : N[%E[ ( #S , #E ) ], idl — Concat[N[#S, id], N[#E, idl] ;
-[Freelid]l] : N[%S[ O ], idl — Empty ;

~[Free[id]] : N[%S[ #L ], id] — Literal[#L] ;

-[Free[id]] : N[%S[[ element #N {#E} H, id] — Element[Literal [#N], N[#E, id]l] ;
- [Freel[id]] : N[%SH #N (#E) ﬂ, id] — Calll[#N, N[#E, id]] ;

-[Free[id]] : N[%S[ if #S then #S1 else #S2 |, id]
— Conditional [N[#S, id], N[#S1, id], N[#S2, idl]l ;

-[Free[f,id]] : N[f, id] — Extract([id, f] ;

// Queries.
-[Free[id]] : N[%S[[ #Q ]], id] — NQ[#Q, id, t.t] ;

// NQ[query source, input-variable, t.prefix-operator[t]]

-[Free([id] ,Fresh[f]] :
NQ[%Q[ for $v in #S #Q[$v] ], id, t.#op[tl]
— NQ[#Q[£], id, id3.MapConcat[Dep[id2.
Map [Dep[idl.Tuple[ACons[f id1l, ANil]l]], N[#S, id2]]1], #op[id3]1]] ;

- [Free[id] ,Fresh[f]] :
NQL%Q[ let $v := #S #Q[$v] ], id, t.#opl[tl]
— NQ[#Q[£], id, id2.MapConcat[Dep[idl.Tuple[(f N[#S, id1];)]1], #op[id2]1]1] ;

-[Free[id]] :
NQ[%Q[ where #S #Q |, id, t.#op[t]]
— NQ[#Q, id, id2.Select[Dep[idl.N[#S, id1]], #opl[id2]]1] ;
- [Freel[id]] :
NQL%Q[ return #S ]|, id, t.#opl[tl]
— Map[Dep[id1.N[#S, id1]], #opl[id]] ;

)]

Figure 3:N.crs—normalizing X terms to nested-relational algebra.
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Algebraic[
(Dep id .
Map [
(Dep id1l . Call["plus", Concat[Extract[idl, v"$x"], Extract[idl, v"$y"111),
Select[
(Dep id1_1 . Call["eq", Concat[Extract[idi_1, v"$x"], Extract[idi_1, v"$y"111),
MapConcat [
(Dep id2 .
Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANilll), Call["child", Call["doc", Emptylll),
MapConcat [
(Dep id2_1 .
Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANil]]), Call["child", Call["doc", Emptylll),
id]111)]

Figure 4: Normalized version of sample query.

disjoint. For the present system this is ensured by the AST data stesdbeing pure input data in
the sense that no rule produces an AST construction, and fodat is allowed to escape from
theN wrapper. (The other way to ensure non-substitution is taterglobally fresh free variables
since only bound variables can be substituted.)

e The next block of rules defines all the easy cases of norntializaf sequences, literals, element
creation, function calls, conditional, and finally field edtion, which does not involve any X
syntax because all fields are converted to free field taghlasaas we shall see.

e Finally, queries are translated backwarékUsing an “operator accumulator” third argument with
theNQ helper compilation scheme. The first two rules of tlaescheme involve replacing a bound
variable with a globally fresh one, which is achieved by tise of higher-order matching and
rewriting:

1. the pattern of the rules includes the fragm#mi$v], which establishes that tk@> subterm
should be matched with “tracking” of all occurrences of taegable bound by théor or let
construct, respectively (the notation used here is deterthby themeta declaration in the
parser description file);

2. the rules include the optidfresh [f], which makes the useflvariable in the rules denote
a fresh variable instance for each rewrite;

3. the replacement (montractior) of the rules includes the fragme# [£], which substitutes
the variable matched in that position with the new freshaldef.

If we try to normalize the same term as before, CRSX outputatwghshown in Figuré. Notice how
the bound variables from the X program are now converted kb f&gs, which are free variables in the
CRSX representation of the nested-relational algebra.

5 Rewriting
The purpose of using a relational algebra intermediateuage is usually to rewrite queries to a more
optimized form. Figuré contains a few such standard optimizations:

e The rules are not related to a compilation scheme and carffireisat any time. This means that
implementations should do some kind of completion procedig] to ensure that the rules are
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// R scheme: basic traditional relational optimizationms.

R[(

RemoveDepMap [Weak [#dop]] : Depl[idl.MapConcat [#dop[], id1]] — #dop ;
Productize[Weak [#op1]] : MapConcat [Dep[id.#op1[]], #op2] — Product[#opl, #op2] ;
)]

Figure 5:R.crs—simple relational optimizations.

Algebraic[
(Dep id .
Map [
(Dep idl . Call["plus", Concat[Extract[idl, v"$x"], Extract[idl, v"$y"]111),
Select[
(Dep id1_1 . Call["eq", Concat[Extract[idl_1, v"$x"], Extract[idi_1, v"$y"111),

Product [
Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANill]), Call["child", Call["doc", Emptylll],
Product [
Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANill]), Call["child", Call["doc", Emptyll],
id1111)1

Figure 6: Rewritten version of sample query.

applied properly, for example inserting a check for the ipgibn of these rules whenbzep term
in one of the involved constructors is created.

e The RemoveDepMap rule includes the specialeak [#dop] option. This option states that the
pattern for thettdop meta-variablemay have an incomplete list of binders to indicate that the
missing binders do not occur (free) in matching subterms. e¥y#oit this in the pattern by not
listing the one bound variabled1, as an argument to the meta-applicatiost&bp to ensure that
the subterm matching the meta-application does not coniin which permits us to use it in
the replacement without providing a substitution f@rl. Thus the rule states that nesting of a
dependent operator can be ignored if the dependent opei@smot in fact depend on the nested
tuple.

e Similarly, theProductize rule states that if the dependent operator of nesting isoeident of

the dependency then the two can be rewritten to a simple ptodine final rewrite here merely
permits delaying tests, which allows combining the tests.

We shall not show any specific rules that perform annotatidgrjust mention that they typically take the
form of an “annotation scheme” like
{id:#cType}Typel[id] — #cType
where an environment ifi}s is used to pass the types of variables to the individuaksuistand construct
their type (for the specifics of the CRSX environment notaiee the appendix). For more complex
analyses, inference rules like _
pEp2:ity p+(i:t))Fpr:t
p - Map[Depi.py, o] : t
are encoded with generated rule schemes that rewrite téten§d}-7[p| to -![t] when the rules can
provep + p:t, which is encoded for the above rule as follows (shown witlomiions):
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{#rho}"7" [Map[Dep i.#p1[i], #p2]]

— {#rho}"F77" [V i."F?1"[i, #p1l[il, #p2, {#rhol}"r7"[#p2]1]1] ;

{#rho}"F71"[i, #p1l, #p2, "F!"[#t2]]

— {#rho}"F72"[i, #pl, #p2, #t2, {#rho;i:#t2}"F7"[#p1]l] ;

{#rho}"F72" [i, #pl, #p2, #t2, "F1"[#t]] — "F11"[i, #pl, #p2, #t2, #t] ;
{#rho}"F?7"[V i."F1I"[i, #pll[i], #p2, #t2, #t]] — "HI"[#t] ;

that introduce helper translation schemes to build theflpfibe inference rules in a strictly deterministic
left to right fashion. (This is automated by a CRSX meta-isystem in the real compiler.)

6 Code Emission

The generated code will use data flow macros, as is estathljgfaetice for such compilers, but using
higher-order terms. The rules for code emission are shoviigare 7, and correspond closely to the
usual operational semantics of the nested-relationalabqes:

The top level emission translation schemg,iwhich creates a “main” target program with explicit
binders for the input and output channels.

The body of the main program is a “pipe,” which connects tipeifrio the program and the program
to the output. It is implemented b§Pipe, the workhorse that creates a pair of a handler and a
cursor, where the cursor is iterated over once for each vakeived by the handler: this iteration

is what enables the identification of “tuple” with the usufthime” because a tuple of values sent
to a handler is the same as the frame of registers receivetehtetation code through the cursor.

The subscehemi2 translates each algebraic construct to an explicit data fimmcatenation, for
example, is achieved by doing the code in sequence with btdghe same handler.

Function call is interesting as the data flow architecturtatie that the way to instantiate a new
frame for executing the function is to create a handler tal $ke function’s arguments to and then
invoke the function including the handler to which the réshlbuld be sent.

Records (in relational algebra called “tuples”) are repnésd as terms by recursive lists with a
member per field.

We use CRSX variables as “data flow register” representedely tihgs, cursors representing the
current value of an iteration, and handlers that can reagiltes for iteration; one can say that we
use free CRSX variables similar to the way traditional codeegation uses an “infinite register
model.”

Control instructions combine existing pieces of code; Theitch code generator is the only
branch construct that receives a single value on a handiedelegates to the branch marked with
that value (or, for elements, the tag of the value).

The data manipulation macros correspond to usual regsé&up, frame copy, and frame merge
operations.

The last rules show how relational algebraic operatorsrareskated into pipes and merges.

Running our example through code emission gives the relsoltis in Figures.t

1The mechanisms used are rather crude. Notice for exampléteRroduct operators result in the code building element
containers to cache the columns.
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// E scheme: emit executable "pipeline code" from nested-relational algebra.

E[(

// Main program is a pipe from input cursor to output handler.
E[Algebraic[Dep id.#op[id]]] — TMain[in out.TPipe[h.TCopy[in, h], c.E2[#opl[cl, outll] ;

// E2[ operator, handler ] generates code for operator to send the result value to the handler.

-[Free[h]] : E2[Concat [#1, #2] , hl — TSeq[E2[#1, h], E2[#2, h]l] ;
-[Free[h]] : E2[Empty , h] — TNoop ;

-[Free[h]] : E2[Literal [#N] , h] — TLiteral[#N, h] ;

-[Free[h]] : E2[Element[#1, #2] , h]

— TMakeElement[labelh.E2[#1, labelh], contenth.E2[#2, contenth], h] ;

-[Free[h]] : E2[Call[#fun, #args], h]l — TCall[#fun, argsh . E2[#args, argsh], h] ;
-[Freelc,f,h]] : E2[Extractl[c,f] , h] — TPickl[c, f, h] ;
- [Free[h]] : E2[Tuple[#fs] , h] — MkT[#fs, TDNil, vh.TNoop, h] ;

// Helper to generate tuples.

-[Freel[f,h]] : MkT[ACons[f #, #fs], #td, vh.#e[vh], h]

— MKT[#fs, TDCons[f, #td], vh.TSeql[E2[#,vh], #e[vhl], hl ;

-[Free[h]] : MkT[ANil , #td, vh.#e[vh], h]l — TMakeTuple[#td, vh.#e[vh]l, h] ;

-[Free[h]] : E2[Conditional [#,#1,#2], h]
— TSwitch[caseh . E2[#, caseh], TCase[True, E2[#1, h], TOtherwise[E2[#2, h]]]1] ;

// Basic queries.

-[Free[h]l] : E2[Map[Dep id.#dop[id], #], hl] — TPipe[hl.E2[#, h1], c1.E2[#dop[c1], h]] ;
-[Free[h]] : E2[Select[Dep id.#dopl[id], #I, hl

— TPipe[h1.E2[#, hil,

cl.TSwitch[caseh . E2[#dopl[cl], caseh], TCase[True, TCopylcl, h], TOtherwise[TEmptyl]l]l] ;

-[Free[h]] : E2[MapConcat[Dep id.#dopl[id]l, #], h]
— TPipe[h1.E2[#, h1], cl1.TPipe[h2.E2[#dop[c1], h2], c2.TMergelcl, c2, hl]l] ;

-[Free[h]] : E2[Product[#1, #2], h]
— TPipe[h2.TMakeElement [1h.TLiteral [’Columns’, 1h], ch.E2[#2,ch],
c2.TPipe[h1.E2[#1, h1], c1.TPipe[h2.TCall["child", nh.TCopyl[c2,nh]], c3.TMergelcl, c3, hl111] ;

)]

Figure 7:E.crs—emit code.
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TMain[
in out .
TPipe[
h. TCopyl[in, hl,
id .
TPipel
hl .
TPipel
hi_ 1 .
TPipel
h2 .
TMakeElement [
1lh. TLiteral[Columns, 1h],
ch .
TPipe[
h2_1. TMakeElement[lh_1. TLiteral[Columns, lh_1], ch_1. TCopyl[id, ch_1]1],
c2 .
TPipe[
hi 2 .
TPipe[
h1_3. TCall["child", argsh. TCall["doc", argsh_1. TNoop, argsh], h1_3],
id1l. TMakeTuple[TDCons[v"$x", TDNill, vh. TSeq[TCopy[idl, vh], TNoopl, hi1_2]11,
cl. TPipe[h2_2. TCall["child", nh. TCopy[c2, nh]], c3. TMergelcl, c3, chll]ll],
c2_1 .
TPipel[
hi 4 .
TPipe[
h1_5. TCall["child", argsh_2. TCall["doc", argsh_3. TNoop, argsh_2], hil_5],
id1_1. TMakeTuple[TDCons[v"$y", TDNill, vh_1. TSeq[TCopyl[idi_1, vh_1], TNoopl, hi_4]1],
c1_1. TPipe[h2_3. TCall["child", nh_1. TCopy[c2_1, nh_1]11, c3_1. TMergelci_1, c¢3_1, h1_1111],
id1_2 .
TSwitch[
caseh .

TCall["eq", argsh_4. TSeq[TPick[id1_2, v"$x", argsh_4], TPick[id1_2, v"$y", argsh_4]], caseh],
TCase[True, TCopy[idl_2, h1], TOtherwise[TEmptylll],

id1_3 .

TCall["plus", argsh_5. TSeq[TPick[id1_3, v"$x", argsh_5], TPick[id1_3, v"$y", argsh_5]], outl]]]

Figure 8: Sample emitted code.

One important issue that we have to resolve in practice i®t@lythe optimizations to be applied
beforecode generation. This requires a study of the critical pfitbe system. The system as presented
here, for example, has an overlap betweerRéveDepMap optimization rule and th&2 MapConcat
rule. The solution in this case it traditional completion as that will effectively mean thdtaptimiza-
tions have to be equivalently implemented in the IL and TLratiher we simple block the cases for code
generation that can be handled by an optimization rule. 8at¢kuaE2 MapConcat rule looks like this:

-[Free[h]] : E2[MapConcat[Dep id.$[NotMatch,#dop[],#dop[id]], #], h]
— TPipe[hl.E2[#, h1], cl1.TPipe[h2.E2[#dop[cl], h2], c2.TMergelcl, c2, hll] ;

(In practice, such choices are delegated to an analysi® ptlaish drops cookies of some kind into the
term to serve as enablers of the overlapping rewrite steps.)
7 Discussion

At the end what remains is to put all the pieces together. Tierds the top-level X symbol introduced
by parsing. We add a small “driver file” that essentially reesE[N[q]] for queriesq.
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I have found that this kind of architecture is quite consisteith what compiler development teams
expect even if the notations used are of a more formal naltiame most developers usually work with.
The support for traditional “compiler block diagrams” likee one in the introduction, where the fact
that each analysis and translation is specified indepelydmakes using a structured approach realistic.
The chaotic nature of the resulting execution of the spextifio comes out as an advantage and our im-
plementation using a standard functional innermost-reésttategy often ends up interleaving the stages
of the compilation in interesting ways, for example eliniing dead code before type checking, usually
making mistakes in dependencies blatantly obvious. (ltdesvriting permits tweaking the reduction
order or using tricks such as completion to discover bad mtdgrecies early.) However, debugging of
rule systems is very different from usual debugging in thetakes show up as “unsimplified blobs or
term,” which is different from actual crashes (and requéteist discipline in naming the various modular
components in a globally identifyable way, something weehside-stepped in this brief presentation).

Although we have not covered it here, we have observed tkakilirite systems obtained can even
themselves be translated mechanically to low-level codakimg it feasible to implement the actual
production compiler direclty from the rewrite rules. Imgant factors in this has been the disciplined
use of systems that can be transformed into orthogonal reatst systems, for which a table-driven
normalizing strategy can be used in almost all cases (teer@érformance penalty for some substitution
cases).

The CRSX system implements higher order rewriting fullyhie form of CRS, thus can handle full
substitution and thus express transformations such asnigli However, it turns out that many specific
systems share with the small ones presented here the propatthey use only “explicit substitution”
style rewrites, which only permits observing variablék [ndeed it seems that the fact that the approach
is notfunctional or a full logical framework is an advantage: thkpressive power of explicit substitution
is strictly smaller (in a complexity sense) than generatfioms.

Finally, a crucial component in using rewriting for speaily large rule sets as is the case in the real
compiler is the strict shape requirements on rules: bdgieakry aspect of a rule that is not strictly
linear and only substitutes bound variables for bound éegawithout any constraints is an error unless
it is explicitly requested: this purely syntactic approaeliches numerous errors early.

Related Work. The area of verifying a compiler specification is well es&i®#d using both hand-
written and mechanical proof$§]] Work has also been done on linking correct compiler speatitin
and implementations using generic proof theoretic tob#§. [ Tools supporting mechanical generation
of compilers from specifications, such as SDF+ASFdnd Stratego4], have focused on compilers
restricted to first-order representations of intermediatguages used by the compiler and on using
explicit rewriting strategies to guide compilation. Oumdjs the opposite: to only specify dependencies
between components of the compiler and leave the actualtirayvstrategy to the system (in practice
using analysis-guided rule transformations coupled wigeeric normalizing strategy).

We are only aware of one published work that uses higher dedgures with compiler construc-
tion, namely the work by Hickey and Nogin on specifying coles using logical framework®]. The
resulting specification looks very similar to ours, and iedi®ne can see the code synthesis that could
be done for their logic system as similar to the code germratie are employing. Also, both systems
employ embedded source language syntax and higher-ordaetbsyntax. However, there are differ-
ences as well. First, CRSX is explicitly designed to implatjast the kind of rewrite systems that we
have described, and is tuned to generate code that drivesdrenation through lookup tables. Second,
variables are first class in CRSX and not linked to meta-lebstraction, thus closer to the approach
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used by explicit substitution for CRS][and “nominal” rewriting [/]. This permits us, for example, to
use an assembly language with mutable registers. Third naetfat the focus on local rewriting rules is
easier to explain to compiler writers, and the inclusionmfimnments and inference rules in the basic
notation further helps. Finally, the CRSX engine has normasslstrategy so we find the notion of local
correctness easier to grasp.

What's Next? With CRSX we continue to experiment with pushing the envelfgr supporting more
higher-order features without sacrificing efficiency.

An important direction is to connect with nominal rewritingd understand the relationship between
what the two formalisms can express.

Another interesting direction for both performance andlysisiis to introduce explicitveakening
operators that “unbind” a given bound variable in a part®&dope. While used in this way with explicit
substitution PO, 10], the interaction with higher-order rewriting is not yeeatr.

In companion papers we explain the details of the transidatiom the supported three forms of
rules, “recursive compilation scheme,” “chaotic annatatrules,” and “deterministic inference rules,”
into effective native executables, and we explain anrmtatithat make it feasible to avoid rewriting-
specific static mistakes.

Acknowledgements. The author is grateful for insightful comments by the anoaymreferees in-
cluding being made aware of the work in logical frameworks.
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First-order applicative term rewriting systems provide a natural framework for modeling higher-order
aspects. In earlier work we introduced an uncurrying transformation which is termination preserving
and reflecting. In this paper we investigate how this transformation behaves for innermost termina-
tion and (innermost) derivational complexity. We prove that it reflects innermost termination and
innermost derivational complexity and that it preserves and reflects polynomial derivational com-
plexity. For the preservation of innermost termination and innermost derivational complexity we
give counterexamples. Hence uncurrying may be used as a preprocessing transformation for inner-
most termination proofs and establishing polynomial upper and lower bounds on the derivational
complexity. Additionally it may be used to establish upper bounds on the innermost derivational
complexity while it neither is sound for proving innermost non-termination nor for obtaining lower
bounds on the innermost derivational complexity.

1 Introduction

Proving termination of first-order applicative term rewrite systems is challenging since the rules lack
sufficient structure. But these systems are important since they provide a natural framework for modeling
higher-order aspects found in functional programming languages. Since proving termination is easier
for innermost than for full rewriting we lift some of the recent results from [8] from full to innermost
termination. For the properties that do not transfer to the innermost setting we provide counterexamples.
Furthermore we show that the uncurrying transformation is suitable for proving upper bounds on the
(innermost) derivational complexity.

We remark that our approach on proving innermost termination also is beneficial for functional pro-
gramming languages that adopt a lazy evaluation strategy since applicative term rewrite systems mod-
eling functional programs are left-linear and non-overlapping. It is well known that for this class of
systems termination and innermost termination coincide (see [5] for a more general result).

The remainder of this paper is organized as follows. After recalling preliminaries in Section 2, we
show that uncurrying preserves innermost non-termination (but not innermost termination) in Section 3.
In Section 4 we show that it preserves and reflects derivational complexity of rewrite systems while
it only reflects innermost derivational complexity. Section 5 reports on experimental results and we
conclude in Section 6.
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2 Preliminaries

In this section we fix preliminaries on rewriting, complexity and uncurrying.

2.1 Term Rewriting

We assume familiarity with term rewriting [1, 17]. Let F be a signature and V a set of variables disjoint
from F. By 7 (F,V) we denote the set of terms over F and V. The size of a term ¢ is denoted |t|. A
rewrite rule is a pair of terms (¢, 7), written £ — 7, such that ¢ is not a variable and all variables in 7 occur
in £. A term rewrite system (TRS for short) is a set of rewrite rules. A TRS R is said to be duplicating if
there exist a rewrite rule £ — r € R and a variable x that occurs more often in r than in /.

Contexts are terms over the signature F U {[J} with exactly one occurrence of the fresh constant
O (called hole). The expression C[t] denotes the result of replacing the hole in C' by the term ¢. A
substitution ¢ is a mapping from variables to terms and ¢o denotes the result of replacing the variables
in ¢ according to o. Substitutions may change only finitely many variables (and are thus written as
{z1+—t1,..., 2+ tn}). The set of positions of a term ¢ is defined as Pos(t) = {e} if ¢ is a variable and
as Pos(t) = {e}U{iq | ¢ € Pos(t;)} if t = f(t1,...,t,). Positions are used to address occurrences of
subterms. The subterm of ¢ at position p € Pos(t) is defined as t|, =t if p =€ and as t|, = t;|, if p = iq.
We say a position p is to the right of a position q if p = p¢p; and ¢ = q1jg» with p; = q; and ¢ > 5. For
a term ¢ and positions p,q € Pos(t) we say t|, is to the right of ¢|, if p is to the right of ¢.

A rewrite relation is a binary relation on terms that is closed under contexts and substitutions. For a
TRS R we define —x to be the smallest rewrite relation that contains R. We call s = t arewrite step if
there exist a context C, a rewrite rule £ — r € R, and a substitution o such that s = C[¢o] and t = C[ro].
In this case we call o a redex and say that o has been contracted. A root rewrite step, denoted by
s —% t, has the shape s = {0 — 70 =t for some ¢ — r € R. A rewrite sequence is a sequence of rewrite
steps. The set of normal forms of a TRS R is defined as NF(R) = {t € T(F,V) | t contains no redexes}.
A redex {0 in a term t is called innermost if proper subterms of o are normal forms, and rightmost
innermost if in addition £o is to the right of any other redex in ¢. A rewrite step is called innermost
(rightmost innermost) if an innermost (rightmost innermost) redex is contracted, written - and -,
respectively.

If the TRS R is not essential or clear from the context the subscript ¢ is omitted in — and its
derivatives. As usual, =" (—*) denotes the transitive (reflexive and transitive) closure of — and —" its
m-th iterate. A TRS is terminating (innermost terminating) if —* (™) is well-founded.

Let P be a property of TRSs and let ® be a transformation on TRSs with ®(R) = R’. We say ®
preserves P if P(R) implies P(R’) and ® reflects P if P(R’) implies P(R). Sometimes we call P
preserving if ® preserves P and P reflecting if ® reflects P, respectively.

2.2 Derivational Complexity

For complexity analysis we assume TRSs to be finite and (innermost) terminating.

Hofbauer and Lautemann [10] introduced the concept of derivational complexity for terminating
TRSs. The idea is to measure the maximal length of rewrite sequences (derivations) depending on the size
of the starting term. Formally, the derivation height of a term ¢ (with respect to a finitely branching and
well-founded order —) is defined on natural numbers as dh(¢,—) = max{m € N | t =" v for some u}.
The derivational complexity dcg (n) of a TRS R is then defined as deg (n) = max{dh(t, »>r) | [t| < n}.
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Similarly we define the innermost derivational complexity as ideg (n) = max{dh(t, <+ ) | |t| < n}. Since
we regard finite TRSs only, these functions are well-defined if R is (innermost) terminating. If dcg (n)
is bounded by a linear, quadratic, cubic, ... function or polynomial, R is said to have linear, quadratic,
cubic, ... or polynomial derivational complexity. A similar convention applies to idcg (n).

For functions f,g: N — N we write f(n) € O(g(n)) if there are constants M, N € N such that
fn) < M-g(n)+ N foralln € N.

One popular method to prove polynomial upper bounds on the derivational complexity is via trian-
gular matrix interpretations [13], which are a special instance of monotone algebras. An F-algebra A
consists of a non-empty carrier A and a set of interpretations f 4 for every f € F. By [a] 4(+) we denote
the usual evaluation function of A according to an assignment « which maps variables to values in A.
An F-algebra A together with a well-founded order > on A is called a monotone algebra if every f 4
is monotone with respect to >. Any monotone algebra (.4, >-) induces a well-founded order on terms:
s >4 t if for any assignment « the condition [a] 4(s) > [a] 4(f) holds. A TRS R is compatible with a
monotone algebra (A, > 4) if [ -4 r foralll —r € R.

Matrix interpretations (M, ) (often just denoted M) are a special form of monotone algebras. Here
the carrier is N for some fixed dimension d € N\ {0}. The order > is defined on N? as (uy,...,uq) >
(v1,...,vq) if up >y v; and u; >y v; for all 2 < i < d. If every f € F of arity n is interpreted as
fm(@, .., 2n) =Fizi+-- '—i-Fna:_,'L—Ffwhere F; e N4 forall 1 <i<nand fe N¢ then monotonicity
of >~ is achieved by demanding F;(; 1) > 1 for any 1 <4 < n. Such interpretations have been introduced
in [2].

A matrix interpretation where for every f € F all F; (1 < ¢ < n where n is the arity of f) are upper
triangular is called friangular (abbreviated by TMI). A square matrix A of dimension d is of upper
triangular shape if A(; ;) < 1and A(; j) =0if ¢ > j forall 1 <4,j < d. The next theorem is from [13].

Theorem 1. If a TRS R is compatible with a TMI M of dimension d then dcg (n) € O(n?).

Recent generalizations of this theorem are reported in [14, 18].

2.3 Uncurrying

This section recalls definitions and results from [8].

An applicative term rewrite system (ATRS for short) is a TRS over a signature that consists of
constants and a single binary function symbol called application which is denoted by the infix and left-
associative symbol o. In examples we often use juxtaposition instead of o. Every ordinary TRS can be
transformed into an ATRS by currying. Let F be a signature. The currying system C(F) consists of the
rewrite rules

fi-l—l(xlv-'wxi?y) — fi(xlv"wxi)oy

for every n-ary function symbol f € F and every O < ¢ < n. Here f,, = f and, for every 0 < ¢ < n, f; is
a fresh function symbol of arity 7. The currying system C(F) is confluent and terminating. Hence every
term ¢ has a unique normal form ¢)¢(r). For instance, f(a,b) is transformed into f a b. Note that we
write f for fo.

Next we recall the uncurrying transformation from [8]. Let R be an ATRS over a signature F. The
applicative arity aa(f) of a constant f € F is defined as the maximum n such that fotjo---ot, is
a subterm in the left- or right-hand side of a rule in R. This notion is extended to terms as follows:
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R U(R) Rlumr) Ry Ralu(r)
ider —x idox —id;(x) idi(z) =z ide —x idi(z) =z
fe—idfz idi(z)oy —ida(z,y) fi(x) —ida(f,z) fo—idfx fi(x) = ida(f, )
foxr —fi(x) dry—zy idy(z,y) > xoy

Table 1: Some (transformed) TRSs

aa(t) = aa(f) if ¢ is a constant f and aa(t;) — 1 if t = ¢; ot,. Note that aa(t) is undefined if the head
symbol of ¢ is a variable. The uncurrying system /(R) consists of the rewrite rules

filzr,...,zi) oy = fir1(z1,...,2:,y)

for every constant f € F and every 0 < i < aa(f). Here fo = f and, for every i > 0, f; is a fresh
function symbol of arity i. We say that R is left head variable free if aa(t) is defined for every non-
variable subterm ¢ of a left-hand side of a rule in R. This means that no subterm of a left-hand side in
R is of the form ¢ ot, where ¢; is a variable. The uncurrying system U/ (R), or simply U, is confluent
and terminating. Hence every term ¢ has a unique normal form ¢|;,. The uncurried system R|;, is
the TRS consisting of the rules ¢];, — r|;, for every / — r € R. However the rules of R|;, are not
enough to simulate an arbitrary rewrite sequence in R. The natural idea is now to add U (R), but still
RlumryUU(R) is not enough as shown in the next example from [8].

Example 2. Consider the TRS R in Table 1. Based on aa(id) =2 and aa(f) = 1 we get three rules in
U(R) and can compute R;()- The TRS R is non-terminating but R;,z) UU(R) is terminating.

Let R be a left head variable free ATRS. The 7-saturated ATRS R, is the smallest extension of R
such that fox — rox € R, whenever { — r € R, and aa(¢) > 0. Here x is a variable that does not
appear in £ — 7. In the following we write U} (R) for Ryl r) UU(R). Note that applicative arities are
computed before n-saturation.

Example 3. Consider again Table 1. Since aa(id) =2 but aa(id z) = 1 for the rule id z — = in R this
explains the rule id x y — z y in R,). Note that ¢/;(R) is non-terminating.

For a term ¢ over the signature of the TRS ¢4} (R), we denote by t].o the result of identifying different
function symbols in ¢/, that originate from the same function symbol in F. For a substitution o, we write
oy for the substitution {x — o (z)dy | x € V}.

From now on we assume that every ATRS is left-head variable free.
We conclude this preliminary section by recalling some results from [8].

Lemma 4 ([8, Lemma 20]). Let o be a substitution. If t is head variable free then t}, ol = (to)dy. O
Lemma 5 ([8, Lemma 15]). If R is an ATRS then —r = =R, ]

Lemma 6 ([8, Lemmata 26 and 27]). Let R be an ATRS. If s and t are terms over the signature of U, (R)

then (1) s =gy, tifand only if slor =R tler and (2) s —y timplies s|or = tler. ]

Lemma 7 ([8, Proof of Theorem 16]). Let R be an ATRS. If s = t then sly, _>Z+(R) ty- ]
n

Consequently our transformation is shown to be termination preserving and reflecting.

Theorem 8 ([8, Theorems 16 and 28]). Let R be an ATRS. The ATRS 'R is terminating if and only if the
TRS Uy (R) is terminating. O
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3 Innermost Uncurrying

Before showing that our transformation reflects innermost termination we show that it does not pre-
serve innermost termination. Hence uncurrying may not be used as a preprocessing transformation for
innermost non-termination proofs.

Example 9. Consider the ATRS R consisting of the rules
fe—fa f—g

In an innermost sequence the first rule is never applied and hence R is innermost terminating. The TRS
Uy (R) consists of the rules

fi(z) — f1(x) fog fi(x) > gox foxr —fi(x)

and is not innermost terminating due to the rule f; (z) — f;(z).

The next example shows that s —'>R t does not imply sl —i>;+(73) tly,- This is not a counterexample
n

to soundness of uncurrying for innermost termination, but it shows that the proof for the “if-direction” of
Theorem 8 (which is based on Lemma 7) cannot be adopted for the innermost case without further ado.

Example 10. Consider the ATRS R consisting of the rules
fog a—b gxr—h

and the innermost step s = f a -z ga =t. We have s|; = foa and tly = gi1(a). The TRS U;(R)
consists of the rules

f—og a—b gi(z) —h gox — gi(x)

We have sy —i>U;(R) g oa but the step from goa to t];, is not innermost.

The above problems can be solved if we consider terms that are not completely uncurried. The next
lemmata prepare for the proof. Below we write s [> ¢ if ¢ is a proper subterm of s.

Lemma 11. Let R be an ATRS. If s is a term over the signature of R, s € NF(R), and s —}, t then
t € NF(Ryly)-

Proof. From Lemma 6(2) we obtain s)» =t} . Note that s]» = s because s is a term over the signature
of R. If t ¢ NF(Ryly) then t =g, |, u for some term u. Lemma 6(1) yields to —gr, ule and
Lemma 5 yields s —% ule. Hence s ¢ NF(R), contradicting the assumption. The proof is summarized
in the following diagram:

*

S t u
u J RT}»J'Z/{ J
Lemma 6(2) crvx Lemma 6(1) cryx
S\l,c/ = t\l/C’ —_—792 ’UJ\LC/
Y
R
Lemma 5
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* *
Lemma 12. -/, - > C > - —
Proof. Assume s —;, t > u. We show that s > - —, u by induction on s. If s is a variable or a constant
then there is nothing to show. So let s = s; 0 s5. We consider two cases.

e If the outermost o has not been uncurried then ¢t = t; ot; with s; —;, t; and sy —;, t2. Without
loss of generality assume that £ &> u. If | = u then s > s; —;, t;. If ¢; > u then the induction
hypothesis yields s| > - —;, u and hence also s > - —/, u.

o If the outermost o has been uncurried in the sequence from s to ¢ then the head symbol of s; cannot

be a variable and aa(s;) > 0. Hence we may write s; = fotjo---ot; and t = fi1(t],...,1},55)
with ¢ —7; t;» forall 1 < j <iand sy —;; s5. Clearly, t;- > u for some 1 < j <iors) >t Inall
cases the result follows with the same reasoning as in the first case. 0

The next lemma states (a slightly more general result than) that an innermost root rewrite step in an
ATRS R can be simulated by an innermost rewrite sequence in U, (R ).

Lemma 13. For every ATRS R the inclusion ;< - —'>$2 C Ayt

UHR) " g holds.
n

Proof. We prove that s —'>ZJ;; (R) rly0ly < ro whenever s < (o —'>§2 ro for some rewrite rule ¢ — r
in R. By Lemma 4 and the confluence of U/,

s 53y (00) oy = Loy =y r) Tyl i 1o

It remains to show that the sequence s _I>z*4 (E{T)iu and the step £]/0y U (R) 71340y are innermost
with respect to U, (R). For the former, let s =/, C[u] =y C[u'] =, (€o)}y, with u =, u’ and let ¢ be
a proper subterm of u. Obviously fo —;, Clu] > t. According to Lemma 12, {o > v —7, t for some
term v. Since {o =% ro, the term v is a normal form of R. Hence t € NF(R,;l;;) by Lemma 11. Since
u =, v/, t is also a normal form of ¢. Hence t € NF(U;;(R)) as desired. For the latter, let ¢ be a proper
subterm of (o)ly,. According to Lemma 12, {o > u —;, t. The term v is a normal form of R. Hence
t € NF(Ryly) by Lemma 11. Obviously, t € NF(U) and thus also t € NF(U;(R)). O

The next example shows that it is not sound to replace #% by #R in Lemma 13.

Example 14. Consider the ATRS R consisting of the rules
f—g fe—ogx a—b
Consequently the TRS U4;;(R) consists of the rules

fog fi(z) — gi(x) a—b foxr—fi(x) goxr — gi(z)

We have fi(a) j< foa sz goa but fi(a) %Z}f(R) - ;74 goa does not hold. To see that the latter
n

does not hold, consider the two reducts of goa with respect to —7,: gi(a) and goa. We have neither

fi(a) _I>Z$(R) gi(a) nor f(a) _I>Z;;(R) goa.

In order to extend Lemma 13 to non-root positions, we have to use rightmost innermost evaluation.
This avoids the situation in the above example where parallel redexes become nested by uncurrying.

Lemma 15. For every ATRS R the inclusion ;< - l>73 C —iﬂ;( - & holds.

R)
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Proof. Let s <t = C[lo] e C[ro] = u with o _I>§z ro. We use induction on C. If C'= [ then
s 4t 5% u. Lemma 13 yields s —'>Z;7 R) " 1< . For the induction step we consider two cases.

e Suppose C'=[Josjo---0s, and n > 0. Since R is left head variable free, aa(?) is defined.
If aa(¢) =0 then s =t/ 05} 0---08), < loosjo---0s, Lrroosjo---o0s, with ¢/ ys Lo
and s;. < s for 1 < j < n. The claim follows using Lemma 13 and the fact that innermost
rewriting is closed under contexts. If aa(¢) > 0 we have to consider two cases. In the case where
the leftmost o symbol in C' has not been uncurried we proceed as when aa(¢) = 0. If the leftmost
o symbol of C has been uncurried, we reason as follows. We may write {o = fowujo---ouy
where k < aa(f). Wehavet = foujo---ougosjo---os, andu =roosjo---os,. There exists
an 4 with 1 <4 < min{aa(f),k+n} such that s = f;(u},...,u},s},...,s;,_p)osi , jo---os),
with u} ;¢ u; for 1 < j <k and s} ;j« s; for 1 < j < n. Because of rightmost innermost
rewriting, the terms u,...,ug,S1,...,S, are normal forms of R. According to Lemma 11 the
terms u,...,u},s),...,s, are normal forms of R,J;,. Since i —k < aa(¢), R, contains the rule
loxyo---0ox;_ —roxjo---ox;_j wherexy,...,x;_j are pairwise distinct variables not occurring
in £. Therefore 7 = o U{x| > s1,...,T;_ > S;_ } is a well-defined substitution. We obtain

$ _I>Z{7+7(’R,) f’i(ul\l/l,h"'7uk\l/lxl781\l/l/[7'"78i*k\l/u)os7,:7k+lO'“Os’lrl

i p ,
—>Z,{;;(72) (TO$1 o..'oxi_k)\LuTiuosi_k+1 0---08,
Zj;<— (TO‘TIO"'Oxi*k)TOSifkﬂ»lO"'Osn:TUOS]O"'OSn:t

where we use the confluence of I/ in the first sequence.

e In the second case we have C' = s; 0 C". Clearly C'[(o] Sr C'[ro]. If aa(s;) < 0 or if aa(s;)
is undefined or if aa(s;) > 0 and the outermost o has not been uncurried in the sequence from
tto s then s = s} os i+ s;0C'[lo] g s10C'[ro] = u with s} j< s; and &' j< C'[lo].
If aa(s;) > 0 and the outermost o has been uncurried in the sequence from ¢ to s then we may
write s; = fowujo---ouy where k < aa(f). We have s = fi1(u,...,u,s") for some term s’

with &' jj<— C'[¢o] and u} ;< u; for 1 <i < k. In both cases we obtain s’ #%(R) - = C'[ro]
n

from the induction hypothesis. Since innermost rewriting is closed under contexts, the desired

s _I>Z;;(R) - /14— u follows. O

By Lemma 15 and the equivalence of rightmost innermost and innermost termination [16] we obtain
the main result of this section.

Theorem 16. An ATRS R is innermost terminating if Uy (R) is innermost terminating. O

4 Derivational Complexity

In this section we investigate how the uncurrying transformation affects derivational complexity for full
and innermost rewriting.

4.1 Full Rewriting

It is sound to use uncurrying as a preprocessor for proofs of upper bounds on the derivational complexity:
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Theorem 17. If R is a terminating ATRS then dcg (n) € O(dey (r)(n))-

Proof. Consider an arbitrary maximal rewrite sequence tg —r t| =g t2» =R -+ =R t,, Which we can
transform into the sequence

+ + + +
tOiL{ HZ/{,J;(R) tli«b{ 4)2/{;(72) tZ\LZ,{ 4)1/{;;(72) . %M,J;(R) th,u

using Lemma 7. Moreover, fo = ) toly holds. Therefore, dh(to, =) < dh(to, =4 ()). Hence
n
der (n) < deys(r)(n) holds for all n € N. O

Next we show that uncurrying preserves polynomial complexity. Hence we disregard duplicating
(exponential complexity, cf. [9]) and empty (constant complexity) ATRSs. A TRS R is called length-
reducing if R is non-duplicating and |¢| > |r| for all rules ¢ — r € R. The following lemma is an easy
consequence of [9, Theorem 23]. Here for a relative TRS R/S the derivational complexity deg /s(n) is
based on the rewrite relation —5 /s which is defined as =5 - =5 - —%.

Lemma 18. Let R be a non-empty non-duplicating TRS over a signature containing at least one symbol
of arity at least two and let S be a length-reducing TRS. If RUS is terminating then dcryus(n) €

O(der/s(n)). O
Note that the above lemma does not hold if the TRS R is empty.

Theorem 19. Let R be a non-empty ATRS. If deg (n) is in O(n”) then deg, 1, u(n) and deye (w) (n) are
in O(nF).

Proof. Let dcr(n) be in O(n*) and consider a maximal rewrite sequence of R, 1y, /u Starting from an
arbitrary term £:

t0 PRyl U TR LU TR Ly U Em

By Lemma 6 we obtain the sequence tole =® tiler =R *+* =R tmde. Thus, dh(to,—r, |, u) <
dh(tolc, —r). Because [toler| < 2[to|, we obtain deg, |, 14(n) < deg(2n). From the assumption the
right-hand side is in O(n*), hence deg, 1, /u(n) is in O(n¥). Since dcg(n) is in O(n*), R must be
non-duplicating and terminating. Because I/ is length-reducing, Lemma 18 yields that dcu;;(R) (n) also
is in O(n"). O

In practice it is recommendable to investigate dcg, |, /2¢(n) instead of deygs(w) (n), see [19]. The next
example shows that uncurrying might be useful to enable criteria for polynomial complexity.

Example 20. Consider the ATRS R consisting of the two rules
addz 0 — add x (sy) — s (add x y)
The system U;;(R) consists of the rules

addy(z,0) = x adda(z,s1(y)) — s1(adda(z,y))
add; (x) oy — adda(x,y) add oz — add;(x) sox —s1(x)
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The 2-dimensional TMI M
o o 11\ 11\ . 5 10\ 0
0
addM =SM = OM = (1>

orients all rules in L{;(R) strictly, inducing a quadratic upper bound on the derivational complexity of
Uy (R) according to Theorem 1 and by Theorem 17 also of R. In contrast, the TRS R itself does
not admit such an interpretation of dimension 2. To see this, we encoded the required condition as a
satisfaction problem in non-linear arithmetic over the integers. MiniSmt [20]' can prove this problem
unsatisfiable by simplifying it into a trivially unsatisfiable constraint. Details can be inferred from the
website mentioned in Footnote 4.

4.2 Innermost Rewriting

Next we consider innermost derivational complexity. Let R be an innermost terminating TRS. From a
result by Krishna Rao [16, Section 5.1] which has been generalized by van Oostrom [15, Theorems 2
and 3] we infer that dh(¢,~s% ) = dh(¢,~5% ) holds for all terms ¢.

Theorem 21. If R is an innermost terminating ATRS then idcg (n) € (’)(idcu;]r (®)(1)).

Proof. Consider a maximal rightmost innermost rewrite sequence t) S t| —>Rr t2 SR -+ >R tm.
Using Lemma 15 we obtain a sequence

+ + i+ +

i I+ /i
o =yrr) Bt Zurr) B2 Zurr) T Tup(R) T

for terms t,t),...,t;, such that t; —;, t; for all 1 <7 < m. It follows that dh(t, 1) = dh(to, Br) <
O

dh(to, —¢#(w)) and we conclude ideg (n) € O(ideys(w) (1))

As Example 9 showed, uncurrying does not preserve innermost termination. Similarly, it does not
preserve innermost polynomial complexity even if the original ATRS has linear innermost derivational
complexity.

Example 22. Consider the non-duplicating ATRS R consisting of the two rules
f—s f(sz)—s(s(fx))

Since the second rule is never used in innermost rewriting, idc (n) € O(n) is easily shown by induction
on n. We show that the innermost derivational complexity of I£;(R) is at least exponential. The TRS
Uy (R) consists of the rules

f—s fl(x)—>sl(x) fl(sl(x))%sl(sl(fl(x))) fox—>f1(m) sox—>sl(x)

and one can verify that dh(f]'(s;(x)), —i>u7+](7g)) > 2" for all n > 1. Hence, idcys(r)(n+3) 2 2" for all
n = 0.

"http://cl-informatik.uibk.ac.at/software/minismt/
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Table 2: Innermost termination for 213 ATRSs.

subterm matrix (1) matrix (2) matrix (3) matrix (4)
—/+ —/+ —/+ —/+ —/+
42 /55 67 /102 111/142 113 /144 114 /145

Table 3: (Innermost) derivational complexity for 195 (213) ATRSs.

TMI (1) TMI (2) T™I (3) TMI (4)
-/+ —/+ -/+ -/+
de 3/4 10/ 14 12/26 12 /28
ide 3/4 10/14 12 /26 12/28

5 Experimental Results

The results from this paper are implemented in the termination prover T7Tp [12].2 Version 7.0.2 of
the termination problem data base (TPDB)* contains 195 ATRSs for full rewriting and 18 ATRSs for
innermost rewriting. All tests have been performed on a single core of a server equipped with eight dual-
core AMD Opteron® processors 885 running at a clock rate of 2.6 GHz and 64 GB of main memory.

Experiments* give evidence that uncurrying allows to handle significantly more systems. For proving
innermost termination we considered two popular termination methods, namely the subterm criterion [7]
and matrix interpretations [2] of dimensions one to four. The implementation of the latter is based on
SAT solving (cf. [2]). For a matrix interpretation of dimension d we used 5 — d bits to represent natural
numbers in matrix coefficients. An additional bit was used for intermediate results. Both methods are
integrated within the dependency pair framework using dependency graph reasoning and usable rules as
proposed in [3, 4, 6].

Table 2 shows the number of systems that could be proved innermost terminating. In the table + (—)
indicates that uncurrying has (not) been used as preprocessing step, e.g., for the subterm criterion the
number of successful proofs increases from 42 to 55 if uncurrying is used as a preprocessing transforma-
tion. For the setting based on matrix interpretations the gains are even larger. In the table, the numbers
in parentheses denote the dimensions of the matrices.

Table 3 shows how uncurrying improves the performance of TT> for derivational complexity. In this
table we used TMISs as presented in Theorem 1. Coefficients of TMIs are represented with max{2,5 — d}
bits; again an additional bit is allowed for intermediate results. If uncurrying is used as preprocessing
transformation, TMIs can, e.g., show 14 systems to have at most quadratic derivational complexity while
without uncurrying the method only applies to 10 systems. Since T7T» has no special methods for
proving innermost derivational complexity, the numbers in rows dc and idc coincide.

’http://cl-informatik.uibk.ac.at/software/ttt2/
Shttp://termination-portal.org/wiki/TPDB
4http://cl-informatik.uibk.ac.at/software/ttt2/10hor/
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6 Conclusion

In this paper we studied properties of the uncurrying transformation from [8] for innermost rewriting and
(innermost) derivational complexity. The significance of these results has been confirmed empirically.

For proving (innermost) termination of applicative systems we mention transformation A [3] as
related work. The main benefit of the approach in [3] is that in contrast to our setting no auxiliary
uncurrying rules are necessary. However, transformation .A only works for proper ATRSs without head
variables in the (left- and) right-hand sides of rewrite rules. Here proper means that any constant always
appears with the same applicative arity.

We are not aware of other investigations dedicated to (derivational) complexity analysis of ATRSs.
However, we remark that transformation A preserves derivational complexity.This is straightforward
from [11, Lemma 2.1(3)].

As future work we plan to incorporate the results for innermost termination into the dependency pair
processors presented in [8].
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This work gives some insights and results on standardisétiocall-by-name pattern calculi. More
precisely, we define standard reductions for a pattern kedauith constructor-based data terms and
patterns. This notion is based on reduction steps that @&@etkto match an argument with respect
to a given pattern. We prove the Standardisation Theoremsbyguthe technique developed by
Takahashi [14] and Crary [2] for-calculus. The proof is based on the fact that any developozan
be specified as a sequence of head steps followed by intechadtions, i.e. reductions in which no
head steps are involved.

1 Introduction

Pattern Calculi: Several calculi, calleghattern calculj have been proposed in order to give a formal
description of pattern matching; i.e. the ability to analyise different possible forms of the argument of
a function in order to decide among different alternativériton clauses.

The pattern matchingoperation is the kernel of the evaluation mechanism of aééhformalisms,
basically because reduction can only be fired when the angupaessed to a given function matches its
pattern specification. An analysis of various pattern del@msed on different notions of pattern matching
operations and different sets of allowed patterns can bedfau([8].

Standardisation: A fundamental result in th&-calculus is theStandardisation Theorgmvhich states
that if a termM B-reduces to a ternN, then there is atandard3-reduction sequence frofd to N
which can be seen as a canonical way to reduce terms. Thi$ hesuseveral applications, e.g. it is
used to prove the non-existence of reduction between geenst One of its main corollaries is the
quasi-leftmost-reduction theorem, which in turn is usegdrtave the non-existence of a normal form for
a given term.

A first study on standardisation for call-by-namecalculus appears in [3]. Subsequently, several
standardisation methods have been devised, for examp&eftion 11.4, [14], [9] and [13].

While leftmost-outermost reduction gives a standard exgafor call-by-name\ -calculus, more re-
fined notions of reductions are necessary to define stanttatéges for call-by-valuad -calculus [13],
first-order term rewriting systems [6, 15], Proof-Nets ;.

All standard reduction strategies require the definitiosaheselectededex by means of a partial
function from terms to redexes; they all give priority to gedected step, if possible. This selected redex
is sometimes calledxternal[11], but we will refer here to it as theead redexf a term.

It is also worth mentioning a generic standardisation pfd2f that can uniformly treat cal-by-name
and call-by-value\ -calculus. Itis parameterized over the set of values thawdb fire the beta-reduction
rule. However, the set of values are defined there in a glaraes while in pattern calculi being a value
strongly depends on the form of the given pattern.

Standardisation in Pattern Calculi: For call-by-nameA-calculus, any term of the forfAx.M)N is
a redex, and the head redex for such a term is the whole teripattern calculi any term of the form

E. Bonelli (Ed.): 5th International Workshop © D.Kesner, C.Lombardi & A.Rios
on Higher-Order Rewriting (HOR’10) This work is licensed under the Creative Commons
EPTCS 49, 2011, pp. 58-72, doi:10.4204/EPTCS.49.5 Attribution-Share Alike License.
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(Ap.M)N is a redex candidate, but not necessarily a redex. The pgamim such terms can be more
complex than a single variable, and the whole term is not ex@dhe argumenN does not matclp,

e., if N does not verify the structural conditions imposedpyln this case we will choose as head
a reduction step lying insidd (or even insidep) which makesp andN be closer to a possible match.
While this situation bears some resemblance wih-by-valueA -calculus [13], there is an important
difference: both the fact gfA p.M)N being a redex, and whether a redex indieould be useful to get
p andN closer to a possible match, dependbmth N and p

The aim of this contribution is to analyse the existence ofaadardisation procedure for pattern
calculi in a direct way, i.e. without using any complicatetteding of such calculi into some general
computational framework [10]. This direct approach aimgubto evidence the fine interaction between
reduction and pattern matching, and gives a standardisatgorithm which is specified in terms of
the combination of computations of independent terms witiigl computations of terms depending
on some pattern. We hope to be able to extend this algorithppcoach to more sophisticated pattern
calculi handling open and dynamic patterns [7].

The paper is organized as follows. Section 2 introduces #beultis, Section 3 gives the main
concepts needed for the standardisation proof and the raairits, Section 4 presents some lemmas
used in the main proofs, Sections 5 and 6 show the main rassdts in the Standardisation Theorem
proof and then the theorem itself; finally, Section 7 conekidnd gives future research directions.

2 The calculus

We will study a very simple form of pattern calculus, corisigtof the extension of standaid-calculus
with a set of constructors and allowing constructed pagtefinis calculus appears for example in Section
4.1in[8].

Definition 2.1 (Syntax) The calculus is built upon two different enumerable setsyofl®ls, the vari-
ables xy,z,w and the constants g, b; its syntactical categories are:

Terms  M,N,Q,R == x|c|ApM|MM DataTerms D := c|DM
Patterns p,q == x|d DataPatterns d = c|dp

Free and bound variables of terms are defined as expected|asweconversion.

Definition 2.2 (Substitution) A susbsitutiorf is a function from variables to terms with finite domain,
wheredom(6) = {x : 6(x) # x}. The extension 06 to terms is defined as expected. We denote

0 = {X3/Mg,...,%a/Mn} whereverdom(6) C {x1,...,%,}. Moreover, forf, v substitutions, X a set of
variables, we define
var(6) = dom(0)U (Uxedom fv( ))
ve = (Uxedom {X/V QX ) U (UXE dom(v)—dom(6 {X/VX})
6 ’X = UXEXﬂdom {X/QX}

Definition 2.3 (Matching) Let p be a pattern and M a term which do not share common vas$abl

Matching on p and M is a partial function yielding a substibut and defined by the following rules

(& on substitutions denotes disjoint union with respect ta tthemains, being undefined if the domains
have a non-empty intersection):
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d<®D p<®N 6,6, defined
x < XNFN c<Pc dp <%0 DN

We write p< M iff 30 p <® M. Remark that p< M implies that p is linear.

Definition 2.4 (Reduction step) We consider the following reduction steps modutoonversion:

M — M N— N p<?N M — M
— SAppL ——— SAppR SBeta ——— — SAbs
MN — M'N MN — MN’ (Ap.M)N — 6M ApM — Ap.M’

By working moduloa-conversion we can always assume in ri#B84ta) that p andN do not share
common variables in order to compute matching.

Lemma 2.5 (Basic facts about the calculus)

a. (data pattern/term structure) Let@ DataPatterns (resp. De DataTerms), then d=cp; ... pn (resp.
D =cM;...M,) for some n> 0.

b. (data patterns only match data terms) LeedataPatterns, M a term, such that &« M. Then
M € DataTerms.

c. (minimal matches) If p<® M thendom(8) = fv(p).
d. (uniqueness of match) If¢® M and p<% M, then6;, = 6,.

Crucial to the standardisation proof is the concept of dgvalent, we formalize it through the rela-
tion>, meaningM >N iff there is a development (not necessarily complete) watlreeM and targeiN.

Definition 2.6 (Term and substitution development) We define the relation on terms and a corre-
sponding relatiorn» on substitutions. The relationis defined by the following rules:

/
DRefl MEM oAb
M>M Ap.M>Ap.M
M>M' NN MeM 6p 8 p<®N
—— DApp DBeta
MN>M'N’ (Ap.M)N>6'M’

and» is defined as follows8 » 6’ iff dom(6) = dom(6’) andVx € dom(6) . Ox> 6

2.1 Head step

The definition of head step will take into account the tefthp.M)N even if p <« N. In such cases, the
head redex will be insidBl as the patterns in this calculus are always normal forms il not be the
case for more complex pattern calculi).

The selection of the head redex insiNedepends on botiN and p. This differs from standard
call-by-valueA -calculus, where the selection depends onlyNon

We show this phenomenon with a simple example. d.btc be constants and = (aR; )Ry, where
R; andR; are redexes. The redexesNmeeded to achieve a match with a certain patgrind thus the
selection of the head redex, depend on the paftern

Take for example different patterpg = (ax)(by), p2 = (abx)y, ps = (abx)(cy), ps = (ax)y, and con-
sider the termQ = (A p.M)N. If p= p1, then it is not necessary to reduge(because it already matches
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X) but it is necessary to redu€®, because no redex can match the patbgtrhenceR, will be the head

redex in this case. Analogously, fpg it is necessary to redud®, but notR,, for ps both are needed (in
this case we will choose the leftmost one) gmddoes matciN, hence the whol€) is the head redex.
This observation motivates the following definition.

Definition 2.7 (Head step) The relations? (head step) and; (preferred needed step to match pattern
p) are defined as follows:

M —h>|\/|/ p<<eN N«;;N/
—— HAppl HBeta HPat
MN—h>M’N (/\p.M)N?GM (A p.M)N?()\ p.M)N’
M — M’ D~ D M~sM d< D
h PatHead di/ Patl P - Pat2
M ~s M/ DM ~+ D'M DM ~+ DM
d dp dp

The rulePatHead is intended for data patterns only, not being valid for Valdgoatterns; we point this
by writing ad (data pattern) instead of@(any pattern) in the arrow subscript inside the conclusion.

We observe that the rule analogousHBat in the presentation of standard reduction sequences for
call-by-valueA -calculus in both [13] and [2] reads

N? N’
(Ap.M)N - (Ap.M)N/

reflecting theN-only-dependency feature aforementioned.

We see also that a head step in a term (ik@.M)N determined by ruléiPat will lie inside N, but
the same step will not necessarily be considered head if algsaiN alone.

It is easy to check that ¥ ~p» M’ thenp 4 M, avoiding any overlap betweétBeta andHPat and

also betweeratl andPat2. This in turn implies that all terms have at most one headx:edée remark
also that the head step depends not only on the patternws&umit also on the match or lack of match
between pattern and argument.

Lemma 2.8 (Basic facts about head steps)

a. (head reduction only if abstraction in head) Let M be a tewunch that M? M’ for some M. Then
M= ()\ p.M01)M1. ..Mpwithn> 1.

b. (head reduction only if no match) Let M be a term such thattfw’ for some M, d € DataPatterns.
Then dg M.

C. (vg only if —h> or data term) Let p be a pattern and let M be a term such tha%»l\ﬂ/l’ for some M.
Then either Me DataTerms or M - M’

Proof Item (a) is trivial. Item (b) uses Item (a) and L. 2.5:(b).nit¢c) is trival by definition of~;. O
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3 Main concepts and ideas needed for the standardisation pod

In order to build a standardisation proof for constructasduhpattern calculi we chose to adapt the one
in [14] for the call-by-nam@ -calculus, later adapted to call-by-valdecalculus in [2], over the classical
presentation of [13].

The proof method relies ontedevelopmentproperty stating that any development can be split into
a leading sequence of head steps followed by a developmeuritiaih no head steps are performed,; this
is our Corollary 5.4 which corresponds to the so-called fmil@mma” in the presentations by Takahashi
and Crary.

Even for a simple form of pattern calculus such as the onespted in this contribution, both the
definitions (as we already mentioned when defining head )ségykthe proofs are non-trivial extensions
of the corresponding ones for standardalculus, even in the framework of call-by-value. As mené&d
before, the reason is the need to take into account, for tawob/ing the application of a function to
an argument, the pattern of the function parameter wherdishgcivhether a redex inside the argument
should be considered as a head redex.

In order to formalize the notion of “development without ooences of head steps”, amernal
developmentelation will be defined. The dependency on bbtland p when analysing the reduction
steps from a term lik¢A p.M)N is shown in the ruléApp?2.

Definition 3.1 (Internal development) The relationss (internal development) an'gfp (internal devel-
opment with respect to the pattern p) are defined as follows:

Refl  _ MEMT o M#ApMy MEM NeN .
int ; - pp
M > M )\lelr;t)\pM/ Mng M/N/
MM NN N>N p<N NN
P |App2 ————— PMatch PConst
int NN, N |[r;t N/ int ’
(ApM)N > (Ap.M')N p N>cN
N ¢ DataTerms N'& N/ DTyD MsM d&D
-~ PNoCData — PCDataNol
N B gpN DM T4, D'M’

int

D>D' MppM d<D pgM

int

DM © g, D'M/

PCDataNo2

D-D' MeM' d<D p<M dp< DM

int

DM &g, D'M’
Remark that rulé®CDataNo3 is useful to deal with non-linear patterns.

Thus for exampleab((Ay.y)c) igtaxx abc sinceab>ab, (Ay.y)crc, ax < ab, x < (Ay.y)c but axx &
ab((Ay.y)c). _ '
We observe also that K & N’ or N 'gtp N’ thenN>N'.

PCDataNo3

The following lemma analyses data / non-data preservation
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Lemma 3.2 (Development and data)

a. (internal development cannot create data terms) Leg MataTerms, N such that ME N. Then
N ¢ DataTerms

b. (development from data produces always data) Let BataTerms, N such that M>-N. Then Ne
DataTerms

The formal description of the h-development condition satdorm of an additional binary relation.
This relation corresponds to the one caléang parallel reductionn [2].

Definition 3.3 (H-development) We define the relationﬁsand:. Let M,N be termsy, 8 substitutions.

int

a. MEN iff (@M>N, (i)3Qs.t.M —h>* Qigt N, (i) Vp.3Qps.t.M %Qp >pN.
b. v : 6 iff (i) Dom(v)=Dom), (i) ¥xe Dom(v). 25 ox.

The clausdiii) in the definition oﬁﬁ shows the dependency on the patterns that was already moted i

the definitions of head step and internal development.

This clause is needed when proving that all developmenth-developments; let's grasp the reason
through a brief argument. Suppose we want to prove that dajgwent insideN in a term like(A p.M)N
is an h-development. The rules to be used in this casdRae(Def. 2.7) andApp2 (Def. 3.1). Therefore
we need to perform an analygislative to the pattern pand this is exactly expressed by clayg® .
Consequently the proof of clau¢i®) for a term needs to consider clau@@ (instantiated to a certain
pattern) for a subterm; this is achieved by including claii§ein the definition and by performing an
inductive reasoning on terms.

4 Auxiliary results
We collect in this section some results needed to completenttin proofs in this article.

Lemma 4.1 (pattern-head reduction only if there is no match)
Let M,N be terms, p a pattern, such that4>54 N. Then p£& M.

Proof Using L. 2.8:(b). O

Lemma 4.2 (development cannot lose matches)
Let M,N be terms, p a pattern, such thatNN and p<¥ M. Then p<® N for somed such thatv » 6.

Proof Induction onp <Y M. The axioms can be checked trivially. For the rule,Net= M1M;, N =
NiN2, p= pipz andv = vy W vy ; pis linear since it matches a term . The only rules applicatm®/fi> N
are DRefl or DApp; DBeta is not applicable becaudd; € DataTerms. If DRefl was used, the lemma
holds trivially takingd = v. If DApp was used, we apply the IH on both hypotheses obtaipirg® N
with v; » 6 ; by L. 2.5:(c) and the linearity op we know8 = 6, & 6, is well-defined,; it is easy to check
that 0 satisfies the lemma conditions. O

t
Lemma 4.3 (Q p cannot create match)

Let M,N be terms, p a pattern, such thatiS~I/|D N. Then p£& M implies p& N.
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Proof Induction onM 'Qtp N by rule analysis

PMatch not applicable ap <« M.

PConst in this case the conditiop <« M implies p <« N equates taVl £ p impliesN = p, asp is a
constant.

The rule premise readd igt N: if rule IRefl was used theiN # p by hypothesis, else thi%t rule
conclusions exclude the possibility Nfbeing a constant.

PNoCData M ¢ DataTermsandM igt N by rule hyp., therN ¢ DataTermsby L. 3.2:(a), finallyp « N
by L. 2.5:(b).

PCDataNol By the IH, as rule hyp. includes botmigtd D’ andd <« D beingM = DT andp=dp.

PCDataNo2 Similar to the former considering= dp’ and usingTl igp, T andp £ T.

PCDataNo3 In this caseM =DM/, p=dp,d < D, p' <% M’ anddp « DM’. We necessarily have
that® W 6’ is not defined hencp is not linear so thap <« N also holds.

]

Lemma 4.4 (left-pattern-head implies whole-pattern-headl
Let p, p2 be patterns and WM N1, M, be terms such that M? N;. Then MM, pM[_)} N1 Mo.
1 1P2

Proof Itis clear thatp; ¢ Var, because there is i such thatv; > N; if X € Var.

If PatHead applied inM; H N, thenMy ? N1, by HAppl M1M> ? N1 M, and finally byPatHead
MiMao ~~ NiMy.

If epiltFIZer Patl or Pat2 applied inM; H N1, thenM; is clearly a data term, Thdd;M, F;l/Bz N1 M, by
Patl. O

Lemma 4.5 (matching is compatible with substitution)
Let M be a term, p a pattern anél a substitution such that & M. Then for any substitutiom, the
following holds: p<Y vM wherey = v |¢,(p).

Proof By induction on the match. The axioms can be checked trwgiiten L. 2.5:(c).
We analyze the rule applied in this context

d<M; p<®M,
dp = p «=890: M = M{M>

Applying the IH on both hypotheses and then using the ruleggiyp < (V®lev@)#(V&)lsum) M;My; an
easy check ofv61) [¢y(d) W(V62) |zv(p)= (V(61H 82)) |£4(ap) CONCludes the proof. O

Lemma 4.6 (development is compatible with substitution)
Let M,N be terms and, 8 substitutions, such that N andv » 6. ThenvM > 6N

Proof By induction onM >N by rule analysis.
For DRefl the thesis amounts oM > 8M, which can be checked by a simple inductionMnDAbs
andDApp can be simply verified by the IH.



D.Kesner, C.Lombardi & A.Rios 65

For DBeta first we mention a technical result which will be used. Betr be substitutions such that
dom(T) Nvar(8) =0, then
((QT) ‘dom(r) ) 6=0r (1)
this can be easily checked comparing the effect of applyath bubstitutions to an arbitrary variable.
Let's analyze the rule premises and conclusion appliedisgncibntext

My >M] T T p <’ My
= (Ap.M)Mo>T'M] =N

As we can freely choose the variables appearing,iwe assumév(p) N (var(v)Uvar(8)) = 0. By
L. 2.5:(c) we knowdom(7) = dom(T’") = £v(p).

We apply the IH orM; > M) and also orrxr> 'x for eachx € dom(T) to concludevM; > 6M; and
(VT) lgon(r)® (BT') |aon(r) respectively. Furthermore, from<™ M2 and L. 4.5 we concludp < VTlaon(r)
VM>.

We useDBeta from the three conclusions above to obtain

= (AP.YM1)(VM2) > ((8T') |aon(r) ) (EM1)

To checkBN = B(1T'M}) = ((8T') |gon(r) ) (BM}) it is enough to verify
67" = ((6T') |aon(r) ) 0, the latter can be easily checked by (1).

Lemma 4.7 (head reduction is compatible with substitution)
(i) Let M,N be terms and a substitution such that I\Ah+ N. ThenvM —h> VN.

(ii) Let M,N be terms, p a pattern angda substitution such that Mp» N. ThenvM wp» VN.

Proof (sketch)
Both items are proved by simultaneous IndUCtIOI’i\bFH N andM w N.

We use L. 4.5 for casklBeta, the IH and L. 4.5 for casPat2, and just the IH for the remaining
cases. O

5 H-developments

The aim of this section is to prove that all developments adevelopments.
We found easier to prove separately that the h-developnogdiition is compatible with the language
constructs, diverging from the structure of the proofs in [2

Lemmab.1 % is compatible with abstraction)
Let M,N be terms such that bﬁ’IN. ThenmAg.M ?/\q.N for any pattern q.

Proof Part(i) trivially holds by hyp.(i) andDAbs.
Part(ii): by hyp. (i) andlAbs we getAq.M B g-N. ThenQ=Aqg.M.
Part(iii) : if p € VarthenPMatch applies, ifpis a constant or a compound data pattern th€onst

or PNoCData apply respectively a&Aq.M) i (Ag.N). In all cases we obtaifA g.M) 'Qtp (Ag.N). Then
Q=AgM. O
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Lemmab.2 % is compatible with application)
Let My, M2, N1, N, be terms such that M}: N; and lei N,. Then MMZE N1N,.

Proof Part(i) is immediate by the hypothesé¥ andDApp.

Let’s prove parfii). _

We first use hypothesig) on MlENl to obtainM; ?* Q1 i N; and subsequently appiAppl to
M1 —h>* Q; to get

M1M> —h>* Q1M (2

EitherQ; is an abstraction or not.

AssumeQ); is not an abstraction. Sin€g, v N1 andMz>N,, we applylAppl so thatQi M, v N1Ny;
this together with (2) gives the desired result.

Now assumé; = A p.Q12. We use the hyp(iii)) on M2?N2, obtainingM, ~;* Q2 igtp N, and then
we applyHPat to get

QiM, —h>* Q:1Q 3

Moreover, asQ; = A p.Q12 ig N1, the only applicable rules ai®efl or IAbs, and in both casell; =
A p.N12 andQ12> N12.

We now usdApp2 with premisegQ1o>N1o andQ, igp N, to get
QUQ=(ApQi)Q% © (ApNiNa = NN, 4)
The desired result is obtained by (2), (3) and (4).

Let's prove par(iii) .

If peVarwe are done byi) andPMatch; we thus getM; M, igtp NiN> so thatQ = M1 M,.

If p= cthen using(ii) we obtainM;M> —h>* Q igt N1N, for someQ ; we applyPatHead andPConst
to getM1M, v} QandQ igtc N1N> respectively, concluding the proof for this case.

Considerp = p1p; with p; a data pattern angh a pattern.

We use the hyp(iii)) on Ml? N1, gettingM; g? Q1 'gtpl Ni. Let us defineR; as follows: if there
is a data term in the sequenig T;k]’ Qq thenR; is the first of such terms; otherwi$d is Q;. In both
casedVl; T;} R T:I) Q1. We necessarily havd; —h>* Ry by PatHead, thenM;M, —h>* RiM, by HApp1 and
subsequentiyvi;M, ~; RiM> by PatHead.

We concludeVi;M, fpe Q1My, trivially if Q; = Ry, and applyingPatl to Ry v;} Q: to obtainR;M> ~*p»
Q1M otherwise.
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If Q1= (Aq.Q}) then we use the hygiii) on leﬁ Ny gettingM» % Q2 igtq No.

We apply HPat to M, ~q»* Q2 getting Q1M» ?* Q1Q2; therefore we obtairQ; M, 3;» Q1Q> by
PatHead.
In the other sid&®; = (Aq.Q}) >Ny, thereforeN; = (Aq.N;) andQ} >N;.

We applylApp2 to Q;>Nj and Q; igq N, to obtainQ;Q» ig NiNp, thereforeQ;Q» igtp NiNo by
PNoCData. We thus get the desired result takiQg = Q1Qo.

If Q1 is not an abstraction ar@h ¢ DataTerms, then onlyPConst or PNoCData can justifyQ; igt Pt
Ny, thus implyingQq A N3; this together with the hypothesiy M2 >N, givesQ; M2 i NiN2 by IApp1,
henceQ:M, 'Qtp NiN, by PNoCData. We get the desired result by takiqp = Q1 Mo.

If Q1 € DataTermswe anaylise the different alternatives_for the matchingveenpp; andQle.

Assumep; < Q. In this case we appli? CDataNol to Q; 'gtpl N1 andM, >N, to obtainQ; M, 'gtp
N:N, and thus the desired result holds by tak@g= Q:Mo.

Assumep; < Q1 andp, < M. In this case we use the hyfiii) on MzENz to getM, g» Q; igpz N>,
2

then applyPat2 to getQ;M» % Q1Q>. Finally fromQ, 'Qtpl N; andQ, 'Qtpz N, we obtainQ;Q» 'Qtp N1N>

by eitherPCDataNo2, PCDataNo3 or PMatch. We get the desired result by takiQp = Q1Qo.
Finally assumep < Q1 andp; < Q2. In this case the hypotheses imply in particufan>N; and

M, >Ny, We thus conclud€; M, 'Etp N1N, using eithePMatch or PCDataNo3 (depending on whether
p < Q1My or not), getting the desired result by takiQg = Q1 Mo.
|

Now we proceed with the proof of the h-development propéertye generalization of the statement
involving : is needed to conclude the propés can be seen in tiiEBeta case below.

Lemma 5.3 (Generalized h-developments property)
Let M,N be terms and, 8 substitutions, such that MN andv : 6.

ThenvMEGN

Proof By induction onM >N analyzing the rule used in the last step of the derivation.

DRefl in this caseN = M, we proceed by induction av
e M =x¢&€ Dom(v), in this case/M = vx b 6x = 6N by hypothesis.
e M =x¢Dom(v), in this case/M = x > X = ON.
e M = MMy, in this casaMlEQMl and vMZiGMz hold by the IH. The desired result is

obtained by L. 5.2.
e M =Ap.Mg, inthis case/MlieMl holds by the IH. The desired result is obtained by L. 5.1.

1In [2] the compoatibility of h-development with substituti®is stated as a separate lemma; for pattern calculi we cotild
find a proof of compatibility with substitution independerftthe main h-development result.
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DADbs in this caseM = A p.M1,N = A p.Nz, M1 > Nj.

Using the IH onM1>N; we obtainleEQNl, the desired result is obtained by L. 5.1.
DApp in this caseM = MiM3, N = NN, M > N;.

Using the IH on both rule premises we obtail; E 6N;, the desired result is obtained by L. 5.2.
DBeta Let's write down the rule instantiation

Mio>Nip2 T o T q < Mo

M = (/\ q.Mlz)Mz > T’le =N
(i) can be obtained by hypothedds- N andv : 0, and then L. 4.6.

For [ (iii) if p€ Var]we are done byi) andPMatch.
For [ (iii) if p=d]and also for(ii) : we know bothM ? ™M1 andM ~; TM1o, then by L. 4.7

vM —h> V(tM12) and vM N; V(TM12) (5)

We apply the IH on eachx> 1'x, obtaining(v1)x = v(1X) > 0(1'x) = (81")x for all x e Dom(T).
Moreover, ifx € Dom(v) — Dom(T) then(v1)x = vx > 6x = (61')x by hypothesis.
Consequentlyyt z 61’. Now we use the IH oM15> Ny, taking vt : 61’ as second hypothesis

to obtain
V(TMy12) = (VT)My12 lﬁ (QT/)N;LZ: Q(T/le) = 06N

This result along with (5) concludes the proof for both parts

Corollary 5.4 (H-development property)
Let M,N be terms such that MN. Then I\/I;N.

6 Standardisation
The part of the standardisation proof following the prooftloé h-development property coincides in
structure with the proof given in [2].

First we will prove that we can get, for any reduction invalyihead steps that follows an internal
development, another reduction in which the head stepstate deginning. The name given to the
Lemma 6.1 was taken from [2].

This proof needs again to consider explicitly the relatioglative to patterns, for similar reasons to
those described when introducing h-development in se@&ion

Lemma 6.1 (Postponement)

@) if™m TN - R then there exists some terrhsuich that M? N>R

(i) for any pattern p, if Migtp N ? R then there exists some terr[; dlch that Mw; NI’O> R
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Proof For (i), if the rule used irM 'Et N is IRefl, then the result is immediate takilNj = R. Therefore,
in the following we will ignore this case.
We prove(i) and(ii) by simultaneous induction avi taking into account the previous observation.

variable in this case it must bBl = M for both (i) and(ii) and neitheiM ? RnorM ~p» Rfor anyp,R.

abstraction in this caseN must also be an abstraction for bdthand(ii) and neitheN —h> RnorN ~; R
for any p,R.
application in this caseVl = M1M;
We prove(i) first, analysing the possible forms kel
e AssumeM; is not an abstraction
In this casdApp1 applies, so we knoW = N1Np, M; igt N1, andMa > Ny.
SinceM, ig N1, N1 is not an abstraction, then the only applicable ruIeNolr? Ris HAppl,
henceR = RN, andN; —h> R;.

Now we use the IH oM, igt N, ? R: to getMy —h> N; >Ry, then we obtairM = M1M; —h>

N;M by HApp1.
Finally we applyDApp to Nj >Ry andMz >N, to getN; Mz > RN, = R, which concludes the
proof for this case.

e Now assumévl; = A p.M12 andp <« M»

SinceM = (A p.M12)M; ig N, the only rule that applies iB\pp2, thenN = (A p.N12)Ny,

M1, Ni2, andM, igtp N». By L. 4.3 we obtainp « Ny, so the only applicable rule iN =
(A p.Ni2)N2 —h> Ris HPat, thenR = (A p.N12)Rx andN, wp» Ro.

Now we use the IHii) on M 'gtp N ~~ Ry, to getMa ~~ N5 > Ry.
p p

We obtainM = (A p.M12)M2 2 (Ap.M12)N; by HPat, then we get(A p.M12) > (A p.Ni2)

by DAbs on M12> Nyo, finally we applyDApp to the previous result and; > R, to obtain
(A p-M12)N5 1> (A p.N12)R2 = Rwhich concludes the proof for this case.

e Finally, assumé/; = A p.My, andp <¥ M,
Again, the only rule that applies M = (A p.M12)M, TN is [App2, thenN = (A p.N12)Ng,

M1 N12, andMo igtp N,. Now, by L. 4.2 we obtairp <? N, for some substitutio® such
thatv » 6, then the applied rule iN - Ris HBeta (the caséiPat being excluded by L. 4.1),

henceR = 6N,
It is clear thatM ? VM12. By L. 4.6 we obtairvM12> 8Np» = R, which concludes the proof

for this case.

For (ii) we proceed by a case analysispof

If p € Varthen there is n& such thaiN ? R for any termN.

If p< Mthen by L. 4.2p< N, and therefore by L. 4.1 there can beRsuch thaiN > R.
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If p=cthenp« M, henceM igtp N ~p» RimpliesM ig N 7 R asPConst andPatHead are the
only possibilities for this case respectively. We use fiaiio obtainM 7 N>R, andM > N’ by
PatHead which concludes the proof for this case.

If p=dp, andM ¢ DataTerms, then the only possibilities fav! igtp N 5 R arePNoCData and

PatHead respectively, theim igt N —h> R. We use pari) to obtainM ? N>R, andM ~; N’ by
PatHead which concludes the proof for this case.

Now assumep = d pp, M € DataTerms, andp <« M. We must analyse three possibilities

e d & Ms.
In this case onlyPCDataNol applies forM 'gp N, thereforeN = N;N, with My 'gtd N; and
Mz>No. By L. 4.3 we knowd « N; and moreoveN; is a data term (as can be seen by L. 3.2)
thus not having head redexes, so the only possible rulelf%r Ris Patl, thenR = RN,

with N1 «a—> Ry.

Now we use the IH on the derivatidi; 'gtd N; " R; to getMy " N; >Ry, thereforeM =
M1My ~~ NiMz by Patl.
p
Moreover as\; >Ry andMz >N, henceN; M >R N> = R, which concludes the proof for this
case.
e d< Mjandp, « Ma. _
In this case onlyPCDataNo2 applies forM 'Etp N, thereforeN = N;N, with My >N; and
Mo 'Qtpz Ny. By L. 4.2 and L. 4.3 respectively, we obtain batk« N; andp, « N,. Moreover
N is a data term (as can be seen by L. 3.2) thus not having heagedHence the only
possibility forN ~p» Ris Pat2, thenR = N;R, with N, ~p» R,
2

We now use the IH o, & p, Ny < Roto getMy = Nj> R, and byPat2 M = MiMy ~ MiN;
2
We also us®App onM; >Nz andNj >R, to getM1N; >N R, = R, which concludes the proof
for this case.
e d< My, p2 < My anddp, € M1M.

d < Mz implies (L 2.5:(b))M; € DataTerms so that fromM = M1M, 'Qtp N we can only
haveN = NiN, with M1>N; andMy>No. L. 4.2 givesd < N; andpy, < No. L. 3.2:(b) gives
N € DataTerms. To showN ~~ Rwe have three possibilitie®atHead is not possible since

p
N € DataTerms (c.f. L 2.8:(a)),Patl is not possible sincd < M; (c.f. L 4.1),Pat2 is not
possible sincgy < Np (c.f. L 4.1).

O

Corollary 6.2 _ _
Let M,N, R be terms such that W N —h> R. TherdN’ s.t. M ?* N B R.

Proof Immediate by L. 6.1 and Corollary 5.4. O
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Now we generalize the h-development concept to a sequendevelopments. The name given to
Lemma 6.3 was taken from [2].

Lemma 6.3 (Bifurcation)

int
Let M,N be terms such that M*N. Then M—h>* R>* N for some term R.

Proof Induction on the length d¥1>* N. If M = N the result holds trivially.
int

AssumeM > Qr*N. By C. 5.4 and IH respectively, we obtai —h>* Slg QandQ —h>* T >* N for

some term$SandT. Now we use Corollary 6.2 (many times) Srilrlt Q 7* Tto getS—h>* Rigt T.

; int
ThereforeM —h>* S—h>* R'Qt T >* N as we desired. O

Using the previous results, the standardisation theoranitac very simple proof.

Definition 6.4 (Standard reduction sequence)The standard reduction sequences are the sequences of
terms M;...; M, which can be generated using the following rules.
Mz;...;Mk M1—>M2 Ml;.. ‘M

k
h
StdHead StdAbs
Mi;...; Mg (Ap-My);...; (A p.My)

Mz;...iMj N Ng
(M1Np);...(MjN1); (MjN2);...; (Mj Ny)

Theorem 6.5 (Standardisation)
Let M,N be terms such that M N. Then there exists a standard reduction sequenge.WN.

int
Proof By L. 6.3 we haveM —h>* R>* N; we observe that it is enough to obtain a standard reduction
sequence;...;N, because we subsequently apptgHead many times.
Now we proceed by induction dd
e N € Var; in this caseR= N and we are done.

e N = Ap.Ng; in this caseR= A p.R; andR; >* N;. By IH we obtain a standard reduction sequence
R1;...; Ny, then byStdAbs so iSR=Ap.Ry;...;Ap.Ns =N.

e N = NNy, soR=RR, andN;>*R. We use the IH on both reductions to get two standard
reduction sequencds;...; R, then we join them usin§tdApp.

O

7 Conclusion and further work

We have presented an elegant proof of the Standardisatieor&im for constructor-based pattern calculi.

We aim to generalize both the concept of standard reductidritee structure of the Standardisation
Theorem proof presented here to a large class of patteralicahcluding both open and closed variants
as the Pure Pattern Calculus [7]. It would be interestingate@tsufficient conditions for a pattern calculus
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to enjoy the standardisation property. This will be closspirit with [8] where an abstract confluence
proof for pattern calculi is developed.

The kind of calculi we want to deal with imposes challengest #re currently not handled in the
present contribution, such as open patterns, reduciblea(dic) patterns, and the possibility of having
fail as a decided result of matching. Furthermore, the pogyilufi decidedfail combined with
compound patterns leads to the convenience of studyingsfofimherently parallelstandard reduction
strategies.

The abstract axiomatic Standardisation Theorem developgs] could be useful for our purpose.
However, while the axioms of the abstract formulation ohdirdisation are assumed to hold in the proof
of the standardisation result, they need to be defined arifiiedefor each language to be standardised.
This could be nontrivial, as in the case of TRS [6, 15], whemgeta-level matching operation is involved
in the definition of the rewriting framework. We leave thipimas further work.
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