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Preface

HOR 2010 is a forum to present work concerning all aspects of higher-order rewriting. The aim is to
provide an informal and friendly setting to discuss recent work and work in progress. Previous editions
of HOR were held in Copenhagen – Denmark (HOR 2002), Aachen – Germany (HOR 2004), Seattle –
USA (HOR 2006) and Paris – France (HOR 2007).

In addition to an interesting set of submissions, this year we had the following invited speakers to
whom I would like to give thanks:

• Maribel Fernández (King’s College London) who talked about Closed Nominal Rewriting: Prop-
erties and Applications and

• Silvia Ghilezan (University of Novi Sad) who talked aboutComputational Interpretations of Logic.

My appreciation also to the members of the PC (Zena Ariola, Frédéric Blanqui, Mariangiola Dezani-
Ciancaglini and Roel de Vrijer) for lending their time and expertise, to the referees, and to Delia Kesner
and Femke van Raamsdonk for providing valuable support. Thanks also to GDR-IM which awarded
funds to HOR’2010 that were used for supporting presentation of papers by students.

Finally, I would like to thank the organizers of FLoC 2010 andaffiliated events for contributing
towards such an exciting event.

Eduardo Bonelli (Universidad Nacional de Quilmes, Argentina)
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This article is devoted to the presentation of λ rex, an explicit substitution calculus with de Bruijn in-
dexes and a simple notation. By being isomorphic to λex – a recent formalism with variable names –,
λ rex accomplishes simulation of β -reduction (Sim), preservation of β -strong normalization (PSN)
and meta-confluence (MC), among other desirable properties. Our calculus is based on a novel pre-
sentation of λdB, using a swap notion that was originally devised by de Bruijn. Besides λ rex, two
other indexed calculi isomorphic to λx and λxgc are presented, demonstrating the potential of our
technique when applied to the design of indexed versions of known named calculi.

1 Introduction
This article is devoted to explicit substitutions (ES, for short), a formalism that has attracted attention
since the appearance of λσ [1] and, later, of Melliès’ counterexample [17], showing the lack of the
preservation of β -strong normalization property (PSN, for short) in λσ . One of the main motivations
behind the field of ES is studying how substitution behaves when internalized in the language it serves (in
the classic λ -calculus, substitution is a meta-level operation). Several calculi have been proposed since
the counterexample of Melliès, and few have been shown to have a whole set of desirable properties:
simulation of β -reduction, PSN, meta-confluence, full composition, etc. For a detailed introduction to
the ES field, we refer the reader to e.g. [16, 15, 20].

In 2008, D. Kesner proposed λex [14, 15], a formalism with variable names that has the entire set
of properties expected from an ES calculus. As Kesner points in [15], for implementation purposes
a different approach to variable names should be taken, since bound variable renaming (i.e., working
modulo α-equivalence) is known to be error-prone and computationally expensive. Among others, one
of the ways this problem is tackled is by using de Bruijn notation [5], which is a technique that simply
avoids the need of working modulo α-equivalence. As far as we know, no ES calculus with de Bruijn
indexes and the whole set of properties enjoyed by λex exists to date. The main target of this article is
the introduction of λ rex, an ES calculus with de Bruijn indexes that, by being isomorphic to λex, enjoys
the same set of properties. λ rex is based on λ r, a novel swapping-based version of the classic λdB [5],
that we also introduce here.

It is important to remark that the whole development was made on a staged basis: we first devised
λ r, and then made substitutions explicit orienting the definition for λ r’s meta-substitution. At that point,
we got a calculus we called λ re, which turned out to be isomorphic to λx [4, 3]. Encouraged by this
result, we added Garbage Collection to λ re, obtaining a calculus isomorphic to λxgc [4]: λ regc. Finally,
we added composition of substitutions in the style of λex to λ regc, obtaining λ rex. Thus, besides ful-
filling our original aim, we introduced swapping, a technique that turns out to behave as a natural bridge
between named and indexed formalisms. Furthermore, we didn’t know any indexed isomorphic versions
of λx nor λxgc.
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The content of the article is as follows: in Section 2 we present λ r, an alternative version of λdB.
Next, in Section 3, we introduce λ re, λ regc and λ rex, the three ES calculi derived from λ r already
mentioned. We show the isomorphism between these and the λx, λxgc and λex calculi in Section 4.
Last, in sections 5 and 6, we point out related work and present the conclusions, respectively. We refer
the interested reader to [18] for complete proofs over the whole development.

2 A new presentation for λdB: the λr-calculus
2.1 Intuition
The λ -calculus with de Bruijn indexes (λdB, for short) [5] accomplishes the elimination of α-equivalence,
since α-equivalent λ -terms are syntactically identical under λdB. This greatly simplifies implementa-
tions, since caring about bound variable renaming is no longer necessary. One usually refers to a de
Bruijn indexed calculus as a nameless calculus, for binding is positional – relative – instead of absolute
(indexes are used in place of names for this purpose). We observe here that, even though this nameless
notion makes sense in the classical λdB-calculus (because the substitution operator is located in the meta-
level), it seems not to be the case in certain ES calculi derived from λdB, such as: λ s [11], λ se [12] or
λ t [13]. These calculi have constructions of the form a[i := b] to denote ES (notations vary). Here, even
though i is not a name per se, it plays a similar role: i indicates which free variable should be substituted;
then, these calculi are not purely nameless, i.e., binding is mixed: positional (relative) for abstractions
and named (absolute) for closures.

In general, we observe that not a single ES calculus with de Bruijn indexes to date is completely
nameless. This assertion rests on the following observation: in each and every case, the (Lamb) rule
is of the form (λa)[s]→ λa[s′]. Thus, since the term a is not altered, an “absolute binding technique”
must be implemented inside s in order to indicate which free variable is to be substituted. To further
support this not-completely-nameless assertion, we note that even though there is a known isomorphism
between the classic λ -calculus and the λdB-calculus, when substitutions are made explicit in both calculi,
the isomorphism does not hold just by adding the new ES case (which would be reasonable to expect).
The problem is that λdB’s classic definition is always – tacitly, at least – being used for the explicitation
task, thus obtaining calculi with mixed binding approaches, as mentioned earlier. As shown throughout
the rest of the paper, our (Lamb) rules will be of the form (λa)[s]→ λa′[s′], i.e., altering both a and s to
enforce a completely nameless approach.

σb(λ 1 2 )

(a)

λ (σb 1 2 )

(b)

λ (σb 2 1 )

(c)

Figure 1: Bindings

In order to obtain a completely nameless notion for an explicit substitutions
λdB, we start by eliminating the index i from the substitution operator. Then, we
are left with terms of the form a[b], and with a (Beta) reduction rule that changes
from (λa)b→ a[1 := b] to (λa)b→ a[b]. The semantics of a[b] should be
clear from the new (Beta) rule. The problem is, of course, how to define it.
Two difficulties arise when a substitution crosses (goes into) an abstraction:
first, the indexes of b should be incremented in order to reflect the new variable
bindings; second – and the key to our technology –, some mechanism should
be implemented in order to replace the need for indexes inside closures (since
these should be incremented, too).

The first problem is solved easily: we just use an operator to progressively
increment indexes with every abstraction crossing, in the style of λ t [13]. The
second issue is a bit harder. Figure 1 will help us clarify what we do when
a substitution crosses an abstraction, momentarily using σba to denote a[b]
in order to emphasize the binding character of the substitution (by writing the
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substitution construction before the term and annotating it with the substituent – which does not actually
affect binding –, it resembles the abstraction operation; thus, “reading” the term is much easier for those
who are already familiar with de Bruijn notation). In this example we use the term σb(λ12) (which
stands for (λ12)[b]). Figure 1(a) shows the bindings in the original term; Figure 1(b) shows that bindings
are inverted if we cross the abstraction and do not make any changes. Then, in order to get bindings “back
on the road”, we just swap indexes 1 and 2! (Figure 1(c)). With this operation we recover, intuitively, the
original semantics of the term. Summarizing, all that is needed when abstractions are crossed is: swap
indexes 1 and 2 and, also, increment the indexes of the term carried in the substitution. That is exactly
what λ r does, with substitutions in the meta-level.

In Section 2.2 we define both λdB and λ r; in Section 2.3 we show that they are the same calculus.

2.2 Definitions
First of all, we define some operations on sets of naturals numbers.

Definition 1 (Operations on sets of natural numbers). For every N ⊂ N, k ∈ N:

1. N + k = {n+ k : n ∈ N}
2. N− k = {n− k : n ∈ N∧n > k}
3. N⊕k = {n : n ∈ N∧n⊕ k}, with ⊕ ∈ {=,<,≤,>,≥}

Terms for λ r are the same as those for λdB. That is:

Definition 2 (Terms for λdB and λ r). The set of terms for λdB and λ r, denoted ΛdB, is given in BNF by:

a ::= n | aa | λa (n ∈ N>0)

Definition 3 (Free variables). The free variables of a term, FV : ΛdB→P(N>0), is given by:

FV(n) = {n} FV(ab) = FV(a)∪FV(b) FV(λa) = FV(a)−1

Classical definitions

We recall the classical definitions for λdB (see e.g. [11] for a more detailed introduction).

Definition 4 (Updating meta-operator for λdB). For every k ∈ N, i ∈ N>0, Ui
k : ΛdB → ΛdB is given

inductively by:

Ui
k(n) =

{
n if n≤ k
n+ i−1 if n > k

Ui
k(ab) = Ui

k(a)Ui
k(b)

Ui
k(λa) = λUi

k+1(a)

Definition 5 (Meta-substitution for λdB). For every a,b,c ∈ ΛdB, m,n ∈ N>0, •{{•← •}} : ΛdB×N>0×
ΛdB→ ΛdB is given inductively by:

m{{n← c}} =





m if m < n
Un

0(c) if m = n
m−1 if m > n

(ab){{n← c}} = a{{n← c}}b{{n← c}}
(λa){{n← c}} = λa{{n+1← c}}

Definition 6 (λdB-calculus). The λdB-calculus is the reduction system (ΛdB,βdB), where:

(∀a,b ∈ ΛdB)
(
a →βdB b ⇐⇒ (∃C context; c,d ∈ ΛdB)(a = C [(λc)d]∧b = C [c{{1← d}}])

)



4 Swapping: a natural bridge between named and indexed explicit substitution calculi

New definitions

We now define the new meta-operators used to implement index increments and swaps.

Definition 7 (Increment operator – ↑i). For every i ∈ N, ↑i : ΛdB→ ΛdB is given inductively by:

↑i(n) =

{
n if n≤ i
n+1 if n > i

↑i(ab) = ↑i(a) ↑i(b)
↑i(λa) = λ ↑i+1(a)

Definition 8 (Swap operator – li). For every i ∈ N>0, li : ΛdB→ ΛdB is given inductively by:

li(n) =





n if n < i ∨ n > i+1
i+1 if n = i
i if n = i+1

li(ab) = li(a) li(b)
li(λa) = λ li+1(a)

Finally, we present the meta-level substitution definition for λ r, and then the λ r-calculus itself.

Definition 9 (Meta-substitution for λ r). For every a,b,c ∈ ΛdB, n ∈ N>0, •{•} : ΛdB×ΛdB → ΛdB is
given inductively by:

n{c} =

{
c if n = 1
n−1 if n > 1

(ab){c} = a{c}b{c}
(λa){c} = λ l1(a){↑0(c)}

Definition 10 (λ r-calculus). The λ r-calculus is the reduction system (ΛdB,βr), where:

(∀a,b ∈ ΛdB)
(
a→βr b ⇐⇒ (∃C context; c,d ∈ ΛdB)(a = C [(λc)d]∧b = C [c{d}])

)

2.3 λdB and λr are the same calculus
We want to prove that λ r equals λdB. That is, we want to show that a{{1← b}} = a{b}. In order to do
this, however, we should first prove the general case: a{{n← b}}= a′{b′}, with a′ and b′ being the result
of a series of swaps and increments over a and b, respectively. This comes from observing that, while
λdB increments the index inside the substitution when going into an abstraction, λ r performs a swap over
the affected term, and an index increment over the term carried in the substitution. Thus, comparing what
happens after the “crossing” of n−1 abstractions in (λ · · ·λ︸ ︷︷ ︸

n−1

a){{1← b}} and (λ · · ·λ︸ ︷︷ ︸
n−1

a){b}, we get to:

λ · · ·λ︸ ︷︷ ︸
n−1

a{{n← b}} and λ · · ·λ︸ ︷︷ ︸
n−1

l1(· · · ln−1(a) · · ·){↑0 (· · ·↑0 (︸ ︷︷ ︸
n−1

b) · · ·)}

Therefore, the idea for the proof is showing that the above terms are equal for every n ∈ N>0. We
formalize this idea by introducing two additional definitions: stacked swaps and stacked increments.

Definition 11 (Stacked swap). For every i ∈ N>0, j ∈ N, m j
i : ΛdB→ ΛdB is given inductively by:

m j
i (a) =

{
a if j = 0
m j−1

i (li+ j−1(a)) if j > 0

The intuitive idea behind m j
i (a) is that of: li (li+1 (· · · li+ j−1 (︸ ︷︷ ︸

j swaps

a) · · ·))
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Definition 12 (Stacked increment). For every i ∈ N, ⇑i: ΛdB→ ΛdB is given inductively by:

⇑i(a) =

{
a if i = 0
⇑i−1(↑0(a)) if i > 0

The intuitive idea behind ⇑i(a) is that of: ↑0 (· · ·↑0 (︸ ︷︷ ︸
i increments

a) · · ·)

Based on this last two definitions, the next theorem states the relationship between λ r and λdB meta-
substitution operators, having as an immediate corollary that λ r and λdB are the same calculus.

Theorem 13 (Correspondence between λdB and λ r meta-substitution). For every a,b ∈ ΛdB, n ∈ N>0:

a{{n← b}}= mn−1
1 (a){⇑n−1(b)}

Proof. See Appendix A.

Corollary 14. For every a,b ∈ ΛdB : a{{1← b}}= a{b}. Therefore, λdB and λ r are the same calculus.

Proof. Use Theorem 13 with n = 1, and conclude the equality of both calculi by definition. This result
was checked using the Coq theorem prover1.

3 Devising the λre, λregc and λrex calculi
In order to derive an ES calculus from λ r, we first need to internalize substitutions in the language. Thus,
we add the construction a[b] to ΛdB, and call the resulting set of terms Λre. The definition for the free
variables of a term is extended to consider the ES case as follows: FV(a[b]) = (FV(a)−1)∪ FV(b).
Also, and as a design decision, operators ↑i and li are left in the meta-level. Naturally, we must extend
their definitions to the ES case, task that needs some lemmas over λ r’s meta-operators in order to ensure
correctness. We use lemmas 26 and 27 in Appendix B for the extension of swap and increment meta-
operators:

↑i(a[b]) =↑i+1(a)[↑i(b)] and li(a[b]) =li+1(a)[li(b)]

Then, we just orient the equalities from the meta-substitution definition as expected and get a calculus
we call λ re (that turns out to be isomorphic to λx [4, 3], as we will later explain).

As a next step in our work, we add Garbage Collection to λ re. The goal is removing useless sub-
stitutions, i.e., when the index 1 does not appear free in the term. When removing a substitution, free
indexes of the term must be updated, decreasing them by 1. To accomplish this, we introduce a new
meta-operator: ↓i. The operator is inspired in a similar one from [19]. We first define it for the set ΛdB:

Definition 15 (Decrement operator – ↓i). For every i ∈ N>0, ↓i : ΛdB→ ΛdB is given inductively by:

↓i(n) =





n if n < i
undefined if n = i
n−1 if n > i

↓i(ab) = ↓i(a) ↓i(b)
↓i(λa) = λ ↓i+1(a)

Note. Notice that ↓i(a) is well-defined iff i 6∈ FV(a).

1The proof can be downloaded from http://www.mpi-sws.org/~beta/lambdar.v
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As for the li and ↑i meta-operators, we need a few lemmas to ensure a correct definition for the
extension of the ↓i meta-operator to the ES case. Particularly, Lemma 28 (see Appendix B) is used for
this purpose. The extension resembles those of the li and ↑i meta-operators:

↓i(a[b]) =↓i+1(a)[↓i(b)]

The Garbage Collection rule added to λ re (GC) can be seen in Figure 2, and the resulting calculus is
called λ regc (which, as we will see, is isomorphic to λxgc [4]).

Finally, in order to mimic the behavior of λex [15], an analogue method for the composition of
substitutions must be devised. In λex, composition is handled by one rule and one equation:

t[x := u][y := v] →(Comp) t[y := v][x := u[y := v]] if y ∈ FV(u)
t[x := u][y := v] =C t[y := v][x := u] if y 6∈ FV(u)∧ x 6∈ FV(v)

The rule (Comp) is used when substitutions are dependent, and reasoning modulo C-equation is needed
for independent substitutions. Since in λ r-derived calculi there is no simple way of implementing an
ordering of substitutions (remember: no indexes inside closures!), and thus no trivial path for the elimi-
nation of equation C exists, we need an analogue equation.

Let us start with the composition rule: in a term of the form a[b][c], substitutions [b] and [c] are de-
pendent iff 1 ∈ FV(b). In such a term, indexes 1 and 2 in a are being affected by [b] and [c], respectively.
Consequently, if we were to reduce to a term of the form a′[c′][b′], a swap should be performed over
a. Moreover, as substitution [c] crosses the binder [b], an index increment should also be done. Finally,
since substitutions are dependent – that is, [c] affects b –, b′ should be b[c]. Then, we are left with the
term l1(a)[↑0(c)][b[c]].

For the equation, let us suppose we negate the composition condition (i.e., 1 6∈ FV(b)). Using
Garbage Collection in the last term, we have l1(a)[↑0(c)][b[c]]→(GC)l1(a)[↑0(c)][↓1(b)]. It is important
to notice that the condition in rule (Comp) is essential; that is: we cannot leave (Comp) unconditional
and let (GC) do its magic: we would immediately generate infinite reductions, losing PSN. Thus, our
composition rule and equation are:

a[b][c] →(Comp) l1(a)[↑0(c)][b[c]] if 1 ∈ FV(b)
a[b][c] =D l1(a)[↑0(c)][↓1(b)] if 1 6∈ FV(b)

Rules for the λ rex-calculus can be seen in Figure 2. The relation rexp is generated by the set of rules
(App), (Lamb), (Var), (GC) and (Comp); λ rexp by (Beta) + rexp. D-equivalence is the least equivalence
and compatible relation generated by (EqD). Relations λ rex (resp. rex) are obtained from λ rexp (resp.
rexp) modulo D-equivalence (thus specifying rewriting on D-equivalence classes). That is,

∀a,a′ ∈ Λre : a→(λ )rex a′ ⇐⇒
(
∃b,b′ ∈ Λre : a =D b→(λ )rexp b′ =D a′

)

We define λ rex as the reduction system (Λre,λ rex). We shall define λ re and λ regc next. Since the rule
(VarR) does not belong to λ rex, but only to λ re and λ regc, we present it here:

(VarR) (n+1)[c]→ n

The relation re is generated by (App), (Lamb), (Var) and (VarR); λ re by (Beta) + re; the relation regc
by re + (GC); and λ regc by (Beta) + regc. Finally, the λ re and λ regc calculi are the reduction systems
(Λre,λ re) and (Λre,λ regc), respectively.
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(EqD) a[b][c] = l1(a)[↑0(c)][↓1(b)] (1 6∈ FV(b))

(Beta) (λa)b → a[b]
(App) (ab)[c] → a[c] b[c]
(Lamb) (λa)[c] → λ l1(a)[↑0(c)]
(Var) 1[c] → c
(GC) a[c] → ↓1(a) (1 6∈ FV(a))
(Comp) a[b][c] → l1(a)[↑0(c)][b[c]] (1 ∈ FV(b))

Figure 2: Equations and rules for the λ rex-calculus

4 The isomorphisms
For the isomorphism between λex and λ rex (and also between λx and λ re; and between λxgc and
λ regc), we must first give a translation from the set Λx (i.e., the set of terms for λx, λxgc and λex; see
e.g. [15] for the expected definition) to Λre, and vice versa. It is important to notice that our translations
depend on a list of variables, which will determine the indexes of the free variables. All this work is
inspired in a similar proof that shows the isomorphism between the λ and λdB calculi, found in [13].

Definition 16 (Translation from Λx to Λre). For every t ∈ Λx, n ∈ N, such that FV(t)⊆ {x1, . . . ,xn},
w[x1,...,xn] : Λx→ Λre is given inductively by:

w[x1,...,xn](x) = min
{

j : x j = x
}

w[x1,...,xn](t u) = w[x1,...,xn](t) w[x1,...,xn](u)
w[x1,...,xn](λx.t) = λw[x,x1,...,xn](t)
w[x1,...,xn](t[x := u]) = w[x,x1,...,xn](t)

[
w[x1,...,xn](u)

]

Definition 17 (Translation from Λre to Λx). For every a ∈ Λre, n ∈ N, such that FV(a)⊆ {1, . . . ,n},
u[x1,...,xn] : Λre→ Λx, with {x1, . . . ,xn} different variables, is given inductively by:

u[x1,...,xn]( j) = x j

u[x1,...,xn](ab) = u[x1,...,xn](a) u[x1,...,xn](b)
u[x1,...,xn](λa) = λx.u[x,x1,...,xn](a)
u[x1,...,xn](a[b]) = u[x,x1,...,xn](a) [x := u[x1,...,xn](b)]

with x 6∈ {x1, . . . ,xn} in the cases of abstraction and closure.

Translations are correct w.r.t. α-equivalence. That is, α-equivalent Λx terms have the same im-
age under w[x1,...,xn], and identical Λre terms have α-equivalent images under different choices of x for
u[x1,...,xn]. Besides, adding variables at the end of translation lists does not affect the result; thus, uniform
translations w and u can be defined straightforwardly, depending only on a preset ordering of variables.
See Appendix C for details.

We now state the isomorphisms:

Theorem 18 (λex∼= λ rex, λx∼= λ re and λxgc∼= λ regc). The λex (resp. λx, λxgc) and λ rex (resp. λ re,
λ regc) calculi are isomorphic. That is,

A. w◦u = IdΛre ∧ u◦w = IdΛx

B. ∀t,u ∈ Λx : t→λex(λx,λxgc) u =⇒ w(t)→λ rex(λ re,λ regc) w(u)

C. ∀a,b ∈ Λre : a→λ rex(λ re,λ regc) b =⇒ u(a)→λex(λx,λxgc) u(b)

Proof. This is actually a three-in-one theorem. Proofs require many auxiliary lemmas that assert the
interaction between translations and meta-operators. See Appendix D for details.
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Finally, in order to show meta-confluence (MC) for λ rex, meta-variables are added to the set of
terms, and hence, functions and meta-operators are extended accordingly. Particularly, each metavariable
is decorated with a set ∆ of available free variables. This, in order to achieve an isomorphism with λex’s
corresponding extension (c.f. [15]). Extensions are as follows:

1. Set of terms Λreop: a ::= n | X∆ | aa | λa | a[a] (n ∈ N>0, X ∈ {X ,Y,Z, . . .} , ∆ ∈P(N>0))

2. Free variables of a metavariable: FV(X∆) = ∆

3. Swap over a metavariable: li(X∆) = X∆′ with ∆′ = ∆<i∪∆>i+1∪ (∆=i +1)∪ (∆=i+1−1)

4. Increment over a metavariable: ↑i(X∆) = X∆′ with ∆′ = ∆≤i∪ (∆>i +1)

5. Decrement over a metavariable: ↓i(X∆) =

{
X∆′ with ∆′ = ∆<i∪ (∆>i−1) if i 6∈ ∆
undefined if i ∈ ∆

6. Translation from Λxop to Λreop: w[x1,...,xn](X∆) = X∆′ with ∆′ = {w[x1,...,xn](x) : x ∈ ∆}
7. Translation from Λreop to Λxop: u[x1,...,xn](X∆) = X∆′ with ∆′ = {u[x1,...,xn]( j) : j ∈ ∆}

Theorem 19. The λ rex and λex calculi on open terms are isomorphic.

Proof. This is proved as an extension of the proof for Theorem 18, considering the new case. A few
simple lemmas about how meta-operators alter the set of free variables are needed. We refer the reader
to [18], chapter 6, section 3 for details (space constraints disallow further technicality here).

As a direct consequence of theorems 18 and 19, we have:

Corollary 20 (Preservation of properties). The λex (resp. λx, λxgc) and λ rex (resp. λ re, λ regc) have
the same properties. In particular, this implies λ rex has, among other properties, Sim, PSN and MC.

Proof sketch for e.g. PSN in λ rex. Assume PSN does not hold in λ rex. Then, there exists a ∈ SNλdB s.t.
a 6∈ SNλ rex. Besides, a∈ SNλdB implies u(a)∈ SNλ . Therefore, by PSN of λex [15], u(a)∈ SNλex. Now,
since a 6∈ SNλ rex, there exists an infinite reduction a→λ rex a1→λ rex a2→λ rex · · · . Thus, by Theorem 18,
we have u(a)→λex u(a1)→λex u(a2)→λex · · · , contradicting the fact that u(a) ∈ SNλex.

5 Related work
It is important to mention that, even though independently discovered, the swapping mechanism intro-
duced in this article was first depicted by de Bruijn for his ES calculus Cλξ φ [6], and, later, updated
w.r.t. notation – λξ φ – and compared to λυ in [2]. We will now briefly discuss the main differences
between these calculi and our swapping-based approach.

Firstly, neither Cλξ φ nor λξ φ have composition of substitutions nor Garbage Collection, two keys
for the accomplishment of meta-confluence. In that sense, these two calculi only resemble closely our
first λ r-based ES calculus: λ re. Thus, both λ regc and λ rex represent a relevant innovation for swapping-
based formalisms, specially considering the fact that, as far as we know, no direct successor of Cλξ φ
nor λξ φ was found to satisfy PSN and MC.

As a second fundamental difference, both Cλξ φ and λξ φ are entirely explicit formalisms. In the
end, internalizing meta-operations is desirable, both theoretically and practically; nevertheless, the pres-
ence of meta-operations in λ re, λ regc and λ rex are mandatory for the accomplishment of isomorphisms
w.r.t. λx, λxgc and λex, respectively. Particularly, the isomorphism between λex and λ rex represents
a step forward in the explicit substitutions area. Moreover, these isomorphisms – impossible in the case
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of Cλξ φ and λξ φ – allow simple and straightforward proofs for every single property enjoyed by the
calculi.

Last but not least, in Cλξ φ as well as in λξ φ , swap and increment operations are implemented by
means of a special sort of substitution that only operates on indexes (c.f. [2]). Even though undoubtedly
a very clever setting for these operations – specially compared to ours, much more conservative –, the
fact is that we still use meta-operations. With this in mind, it may be the case that de Bruijn’s formulation
for both the swap and increment operations, if taken to the meta-level, would lead to exactly the same
functional relations between terms than those defined by our method. Consequently, this difference loses
importance in the presence of meta-operations. Nevertheless, if swap and increment meta-operations
were to be made explicit, a deep comparison between our approach and de Bruijn’s should be carried out
before deciding for the use of either.

6 Conclusions and further work
We have presented λ rex, an ES calculus with de Bruijn indexes that is isomorphic to λex, a formalism
with variable names that fulfills a whole set of interesting properties. As a consequence of the isomor-
phism, λ rex inherits all of λex’s properties. This, together with a simple notation makes it, as far as
we know, the first calculus of its kind. Besides, the λ re and λ regc calculi (isomorphic to λx and λxgc,
respectively) were also introduced. The development was based on a novel presentation of the classical
λdB. Given the homogeneity of definitions and proofs, not only for λ r and λ rex, but also for λ re and
λ regc, we think we found a truly natural bridge between named and indexed formalisms. We believe this
opens a new set of possibilities in the area: either by translating and studying existing calculi with good
properties; or by rethinking old calculi from a different perspective (i.e., with λ r’s concept in mind).

Work is yet to be done in order to get a more suitable theoretical tool for implementation purposes,
for unary closures and equations still make such a task hard. In this direction, a mix of ideas from
λ rex and calculi with n-ary substitutions (i.e., λσ -styled calculi) may lead to the solution of both issues.
Particularly, a swap-based λσ⇑ [7] could be an option. This comes from the following observation: in
λσ⇑, the (Lamb) rule is:

(Lamb) (λa)[s]→ λa[⇑(s)]
where the intuitive semantics of ⇑(s) is: 1 ·(s ◦↑). We observe here that this is not nameless! The reason
is that, even though there are no explicit indexes inside closures, this lift operation resembles closely the
classic definition of the λdB calculus (particularly, leaving lower indexes untouched). Thus, we propose
replacing this rule by one of the form:

(Lamb) (λa)[s]→ λ m(a)[⇑(s)]

with the semantics of ⇑(s) being s ◦↑, and that of m(a) being swapping a’s indexes in concordance with
the substitution s, therefore mimicking λ r’s behavior. This approach is still in its early days, but we feel
it is quite promising.

In a different line of work, the explicitation of meta-operators may also come to mind: we think this
is not a priority, because the main merit of λ rex is evidencing the accessory nature of index updates.

From a different perspective, an attempt to use λ rex in proof assistants or higher order unification [8]
implementations may be taken into account. In such a case, a typed version of λ rex should be developed
as well. Also, adding an η rule to λ rex should be fairly simple using the decrement meta-operator.
Finally, studying the possible relation between these swapping-based formalisms and nominal logic or
nominal rewriting (see e.g. [10, 9]) could be an interesting approach in gathering a deeper understanding
of λ r’s underlying logic.
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A Proofs for the λdB = λr assertion
We first show the auxiliary lemmas that allow us to prove the main theorem of Subsection 2.3.
Lemma 21. For every a ∈ ΛdB, n ∈ N>0, ⇑n−1(a) = Un

0(a)

Proof. Easy induction on n, using that l ≤ k < l + j =⇒ Ui
k(U

j
l (a)) = U j+i−1

l (a) (c.f. [12], lemma 6),
and the fact that ↑0(a) = U2

0(a).

Lemma 22. For every m, i ∈ N>0, n ∈ N :
1. m > n+ i =⇒mn

i (m) = m

2. i≤ m < n+ i =⇒mn
i (m) = m+1

3. mn
i (n+ i) = i

Proof. Easy inductions on n.

Lemma 23. For every a,b ∈ ΛdB, n ∈ N, i ∈ N>0 :
1. mn

i (ab) = mn
i (a) mn

i (b)

2. mn
i (λa) = λ mn

i+1(a)

3. (λ mn
2(a)){⇑n(b)}= λ mn+1

1 (a){⇑n+1(b)}

Proof. Easy inductions on n.

We now restate and prove the main theorem:
Theorem (13). For every a,b ∈ ΛdB, n ∈ N>0 , we have that a{{n← b}}= mn−1

1 (a){⇑n−1(b)}.

Proof. Induction on a.

• a = m ∈ N>0. Then, a{{n← b}}= m{{n← b}}=





m−1 if m > n
Un

0(b) if m = n
m if m < n

We consider each case separately:
1. m > n =⇒mn−1

1 (m){⇑n−1(b)} =
L.22.1

m{⇑n−1(b)} =
m > n≥ 1

m−1

2. m = n =⇒mn−1
1 (n){⇑n−1(b)} =

L.22.3
1{⇑n−1(b)}=

def
⇑n−1(b) =

L.21
Un

0(b)

3. m < n =⇒mn−1
1 (m){⇑n−1(b)} =

L.22.2
m+1{⇑n−1(b)} =

m+1 > 1
m

Then,
m{{n← b}}= mn−1

1 (m){⇑n−1(b)}
• a = cd, c,d ∈ ΛdB. Use inductive hypothesis and Lemma 23.1.

• a = λc, c ∈ ΛdB. Then,

a{{n← b}}= (λc){{n← b}}=
def

λc{{n+1← b}}=
HI

λ mn
1(c){⇑n(b)} =

L.23.3

(λ mn−1
2 (c)){⇑n−1(b)} =

L.23.2
mn−1

1 (λc){⇑n−1(b)}= mn−1
1 (a){⇑n−1(b)}
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B Extension lemmas for the li, ↑i and ↓i meta-operators
Lemma 24. For every a ∈ ΛdB, i, j ∈ N>0, k ∈ N :

1. k < i =⇒li+1(↑k(a)) =↑k(li(a))

2. j ≥ 2 =⇒li+ j(li(a)) = li(li+ j(a))

Proof. Easy induction on a.

Lemma 25. For every a ∈ ΛdB, i ∈ N>0, j ∈ N :

1. i≥ j+2∧ i−1 6∈ FV(a) =⇒↓i(↑ j(a)) =↑ j(↓i−1(a))

2. j ≥ 2∧ i+ j 6∈ FV(a) =⇒↓i+ j(li(a)) = li(↓i+ j(a))

Proof. Easy induction on a.

Lemma 26. For every a,b ∈ ΛdB, i ∈ N>0, li(a{b}) = li+1(a){li(b)}

Proof. Easy induction on a, using Lemma 24.

Lemma 27. For every a,b ∈ ΛdB, i ∈ N, ↑i(a{b}) = ↑i+1(a){↑i(b)}

Proof. Use that Ui
k(a{{1← b}}) = Ui

k+1(a){{1←Ui
k(b)}} (c.f. [12], Lemma 10 with n = 1), the fact that

↑i(a) = U2
i (a) and Corollary 14.

Lemma 28. For every a,b ∈ ΛdB, i ∈ N>0, i+1 6∈ FV(a)∧ i 6∈ FV(b), we have that
↓i(a{b}) = ↓i+1(a){↓i(b)}.

Proof. Easy induction on a, using Lemma 25.

C Correction proofs for translations
We show the lemmas necessary to prove that the translations given (i.e., w[x1,...,xn] and u[x1,...,xn]) are correct
w.r.t. α-equivalence.

Lemma 29. For every t ∈ Λx, n ∈ N such that FV(t)⊆ {x1, . . . ,xn}, we have that ∀y 6∈ {x1, . . . ,xn} ,
z ∈ {x1, . . . ,xn} , w[x1,...,xn](t) = w[x1,...,xk−1,y,xk+1,...,xn](t{z := y}), with k = min

{
j : x j = z

}
.

Proof. Easy induction on t, but using the non-Barendregt-variable-convention definition for the meta-
substitution operation (otherwise, we would be assuming that t =α u =⇒ w[x1,...,xn](t) = w[x1,...,xn](u),
which is what we ultimately want to prove). See e.g. [3] for an expected definition.

Lemma 30. For every t,u ∈ Λx, n ∈ N such that FV(t) ⊆ {x1, . . . ,xn}, we have that t =α u =⇒
w[x1,...,xn](t) = w[x1,...,xn](u). Notice that w[x1,...,xn](u) is well-defined, since t =α u =⇒ FV(t) = FV(u).

Proof. Easy induction on t, using Lemma 29. Once again, the non-Barendregt-variable-convention defi-
nition for the meta-substitution operation must be used here.

Lemma 31. For every a ∈ Λre, n ∈ N, {x1, . . . ,xn} distinct variables such that FV(a) ⊆ {1, . . . ,n}, we
have that ∀y 6∈ {x1, . . . ,xn} , 1≤ k ≤ n : u[x1,...,xn](a){xk := y}=α u[x1,...,xk−1,y,xk+1,...,xn](a).

Proof. Easy induction on a.
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Lemma 32. For every a,b ∈ Λre, n ∈ N, {x1, . . . ,xn} distinct variables, x,y 6∈ {x1, . . . ,xn} such that
FV(a)⊆ {1, . . . ,n}, we have that:

1. λx.u[x,x1,...,xn](a) =α λy.u[y,x1,...,xn](a)

2. u[x,x1,...,xn](a) [x := u[x1,...,xn](b)] =α u[y,x1,...,xn](a) [y := u[x1,...,xn](b)]

Proof. Direct in both cases, using the α-equivalence definition and Lemma 31.

Last, we show two lemmas that assert that adding variables at the end of translation lists does not
affect the result of the translation and, thus, gives the possibility of defining uniform translations that
depend only on a preset ordering of variables.

Lemma 33. For every t ∈ Λx such that FV(t) ⊆ {x1, . . . ,xn}, and for every {y1, . . . ,ym} ⊂ V, we have
that w[x1,...,xn](t) = w[x1,...,xn,y1,...,ym](t).

Proof. Easy induction on t.

Lemma 34. For every a∈Λre, {x1, . . . ,xn} distinct variables such that FV(a)⊆{1, . . . ,n}, and for every
{y1, . . . ,ym} distinct variables such that {x1, . . . ,xn} ∩ {y1, . . . ,ym} = /0, we have that u[x1,...,xn](a) =α
u[x1,...,xn,y1,...,ym](a).

Proof. Easy induction on a.

Last, we show the definitions for uniform translations.

Definition 35 (Uniform translation from Λx to Λre). Given an enumeration [v1,v2, . . .] of V, for every
t ∈ Λx, n ∈ N such that FV(t)⊆ {v1, . . . ,vn}, we define w : Λx→ Λre as: w(t) = w[v1,...,vn](t).

Definition 36 (Uniform translation from Λre to Λx). Given an enumeration [v1,v2, . . .] of V, for every
a ∈ Λre, n ∈ N such that FV(a)⊆ {1, . . . ,n}, we define u : Λre→ Λx as: u(a) = u[v1,...,vn](a).

D Isomorphisms proofs
In order to prove Theorem 18, we must show:

A. w◦u = IdΛre ∧ u◦w = IdΛx

B. ∀t,u ∈ Λx : t→λex(λx,λxgc) u =⇒ w(t)→λ rex(λ re,λ regc) w(u)

C. ∀a,b ∈ Λre : a→λ rex(λ re,λ regc) b =⇒ u(a)→λex(λx,λxgc) u(b)

For Part A, the following two lemmas are needed.

Lemma 37. For every t ∈ Λx, a ∈ Λre, {x1, . . . ,xn} variables, {y1, . . . ,ym} distinct variables:

1. FV(t)⊆ {x1, . . . ,xn} =⇒ FV
(
w[x1,...,xn](t)

)
⊆ {1, . . . ,n}

2. FV(a)⊆ {1, . . . ,m} =⇒ FV
(
u[y1,...,ym](a)

)
⊆ {y1, . . . ,ym}

Proof. Easy inductions on t and a, respectively.

Lemma 38. For every a ∈ Λre, t ∈ Λx:

1. w(u(a)) = a

2. u(w(t)) =α t

Proof. Easy inductions on a and t, respectively, using Lemma 37.
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Next, to prove Part B of the theorem, we need several auxiliary lemmas, that we now state.

Lemma 39. For every {x1, . . . ,xn}, y ∈ {x1, . . . ,xn}, x 6∈ {x1, . . . ,xn}, w[x,x1,...,xn](y) = w[x1,...,xn](y)+1.

Proof. Direct, using w’s definition.

Lemma 40. For every t ∈ Λx, i ∈ N>0 such that FV(t)⊆ {x1, . . . ,xn}∧ i < n∧ xi 6= xi+1,
li(w[x1,...,xi,xi+1,...,xn](t)) = w[x1,...,xi+1,xi,...,xn](t).

Proof. Easy induction on t.

Lemma 41. For every t ∈ Λx, m ∈ N, x ∈ V such that FV(t)⊆ {x1, . . . ,xn}∧m≤ n∧ x 6∈ {x1, . . . ,xn},
w[x1,...,xm,x,xm+1,...,xn](t) = ↑m(w[x1,...,xn](t)).

Proof. Easy induction on t.

Lemma 42. For every t ∈ Λx, m ∈ N, x ∈ V such that FV(t)⊆ {x1, . . . ,xn}∧1≤ m≤ n+1 :
1. x 6∈ {x1, . . . ,xn} =⇒ m 6∈ FV

(
w[x1,...,xm−1,x,xm,...,xn](t)

)

2. x 6∈ {x1, . . . ,xm−1}∧ x ∈ FV(t) =⇒ m ∈ FV
(
w[x1,...,xm−1,x,xm,...,xn](t)

)

3. x 6∈ {x1, . . . ,xn} =⇒ w[x1,...,xn](t) = ↓m(w[x1,...,xm−1,x,xm,...,xn](t))

Proof. Easy inductions on t.

Given the auxiliary lemmas, we proceed to prove Part B of the isomorphism theorem. Item 1 of
the next lemma is enough to prove the reduction preservation under translation w for the λ re and λ regc
calculi. For λ rex, Item 2 – showing the preservation of the equivalence relations under translation w – is
also needed. Then, preservation for λ rex follows immediately from the definition of reduction modulo
an equivalence relation.

Lemma 43. For every t,u ∈ Λx :

1. t→Bx(λx,λxgc) u =⇒ w(t)→λ rexp(λ re,λ regc) w(u)

2. t =C u =⇒ w(t) =D w(u)

Proof. Part 1. Induction on t. The only interesting cases are those of the explicit substitution when the
reduction takes place at the root. The rest of the cases are either trivial or easily shown by using the
inductive hypothesis. We will show the explicit substitution case in which reduction is done by using
the (Comp) rule. The other two relevant cases, (Lamb) and (GC), omitted here for a matter of space,
are proved in a similar fashion. Since we are working in the explicit substitution case, t is of the form
t1[x := t2]. Now, as the (Comp) rule is used, we have that:

t1[x := t2] = t3[y := t4][x := t2]→Bx
(Comp)

t3[x := t2][y := t4[x := t2]] = u

with x ∈ FV(t4). By the variable convention, we assume x 6= y∧ y 6∈ {x1, . . . ,xn}. Thus,

w[x1,...,xn](t3[y := t4][x := t2]) =
def

w[x,x1,...,xn](t3[y := t4])
[
w[x1,...,xn](t2)

]
=
def

w[y,x,x1,...,xn](t3)
[
w[x,x1,...,xn](t4)

][
w[x1,...,xn](t2)

]
→λ rexp

L.42.2, x ∈ FV(t4), (Comp)

l1(w[y,x,x1,...,xn](t3))
[
↑0(w[x1,...,xn](t2))

][
w[x,x1,...,xn](t4)

[
w[x1,...,xn](t2)

]]
=

L.40, x 6= y
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w[x,y,x1,...,xn](t3)
[
↑0(w[x1,...,xn](t2))

][
w[x,x1,...,xn](t4)

[
w[x1,...,xn](t2)

]]
=

L.41, y 6∈ FV(t2)

w[x,y,x1,...,xn](t3)
[
w[y,x1,...,xn](t2)

][
w[x,x1,...,xn](t4)

[
w[x1,...,xn](t2)

]]
=
def

w[x,y,x1,...,xn](t3)
[
w[y,x1,...,xn](t2)

][
w[x1,...,xn](t4[x := t2])

]
=
def

w[y,x1,...,xn](t3[x := t2])
[
w[x1,...,xn](t4[x := t2])

]
=
def

w[x1,...,xn](t3[x := t2][y := t4[x := t2]])

Part 2. Induction on the inference of t =C u. The only interesting case is when the actual equation
is used. Then, t = t1[y := t2][x := t3] =C t1[x := t3][y := t2] = u, with x 6= y∧ x 6∈ FV(t2)∧ y 6∈ FV(t3). By
the variable convention, assume that {x,y}∩{x1, . . . ,xn} = /0. Proceed in a similar way than that of the
proof of Part 1 in the (Comp) case.

Finally, to prove Part C of the isomorphism theorem, we also need several auxiliary lemmas analogue
to those used for Part B. We will now state them.

Lemma 44. For every a ∈ Λre, i ∈ N>0, {x1, . . . ,xn} distinct variables such that FV(a)⊆ {1, . . . ,n}
∧ i < n, we have that u[x1,...,xi,xi+1,...,xn](a) =α u[x1,...,xi+1,xi,...,xn](li(a)).

Proof. Easy induction on a.

Lemma 45. For every a ∈ Λre, m ∈ N, {x1, . . . ,xn} distinct variables, x 6∈ {x1, . . . ,xn} such that
FV(a)⊆ {1, . . . ,n}∧m≤ n, we have that u[x1,...,xm,x,xm+1,...,xn](↑m(a)) =α u[x1,...,xn](a).

Proof. Easy induction on a.

Lemma 46. For every a∈Λre, m∈N, x∈V, {x1, . . . ,xn} distinct variables such that FV(a)⊆{1, . . . ,n}∧
1≤ m≤ n+1∧ x 6∈ {x1, . . . ,xn} :

1. m 6∈ FV(a) =⇒ x 6∈ FV
(
u[x1,...,xm−1,x,xm,...,xn](a)

)

2. m ∈ FV(a) =⇒ x ∈ FV
(
u[x1,...,xm−1,x,xm,...,xn](a)

)

3. m 6∈ FV(a) =⇒ u[x1,...,xm−1,x,xm,...,xn](a) =α u[x1,...,xn](↓m(a))

Proof. Easy inductions on a.

Given, once again, the auxiliary lemmas, we will now state Part C of the isomorphism theorem. As
for Part B, Item 1 of Lemma 47 will be enough to prove preservation for the λx and λxgc calculi, whereas
Item 2 will also be needed for the case of λex, concluding preservation by definition of reduction modulo
an equation.

Lemma 47. For every a,b ∈ Λre :

1. a→λ rexp(λ re,λ regc) b =⇒ u(a)→Bx(λx,λxgc) u(b)

2. a =D b =⇒ u(a) =C u(b)

Proof. For part 1, perform induction on a analogue to that of lemma 43.1. For part 2, perform induction
on the inference of a =D b, analogue to that of lemma 43.2. In both cases, use auxiliary lemmas 44, 45
and 46.
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The evaluation mechanism of pattern matching with dynamic patterns is modelled in the Pure Pattern
Calculus by one single meta-rule. This contribution presents a refinement which narrows the gap
between the abstract calculus and its implementation. A calculus is designed to allow reasoning on
matching algorithms. The new calculus is proved to be confluent, and to simulate the original Pure
Pattern Calculus. A family of new, matching-driven, reduction strategies is proposed.

Introduction: Dynamic Patterns

Pattern matching is a basic mechanism used to deal with algebraic data structures in functional pro-
gramming languages. It allows to define a function by reasoning on the shape of the arguments. For
instance, define a binary tree to be either a single data or a node with two subtrees (code on the left, in
ML-like syntax). Then a function on binary trees may be defined by reasoning on the shapes generated
by these two possibilities (code on the right).

type ’a tree =

| Data ’a

| Node of ’a tree * ’a tree

let f t = match t with

| Data d -> <code1>

| Node (Data d) r -> <code2>

| Node l r -> <code3>

An argument given to the function f is first compared to (or matched against) the shape Data d (called
a pattern). In case of success, the occurrences of d in <code1> are replaced by the corresponding part
of the argument, and <code1> is executed. In case of failure of this first matching (the argument is not a
data) the argument is matched against the second pattern, and so on until a matching succeeds or there is
no pattern left.

One limit of this approach is that patterns are fixed expressions mentioning explicitly the constructors
to which they can apply, which restricts polymorphism and reusability of the code. This can be improved
by allowing patterns to be parametrised: one single function can be specialised in various ways by in-
stantiating the parameters of its patterns by different constructors or even by functions building patterns.
For instance in the following code, the function f would take an additional parameter p which would
then be used to define the first two patterns. In this case, instantiating p with the constructor Data would
yield the same function as before, but any other function building a pattern can be used for p!

let f p t = match t with

| p d -> <code1>

| Node ( p d) r -> <code2>

| Node l r -> <code3>

However, introducing parameters and functions inside patterns deeply modifies their nature: they
become dynamic objects that have to be evaluated. This disrupts the matching algorithms and intro-
duces new evaluation behaviours. This paper intends to give tools to study these extended evaluation
possibilities.
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The Pure Pattern Calculus (PPC) of B. Jay and D. Kesner [JK09, Jay09] models the behaviour of
dynamic patterns by using a meta-level notion of pattern matching. The present contribution analyses the
content of the meta pattern matching of PPC (reviewed in Section 1), and proposes an explicit pattern
matching calculus (Section 2) which is confluent, which simulates PPC, and which allows the descrip-
tion of new reduction strategies (Section 3.1). An extension of the explicit calculus is then discussed
(Section 3.2) before a conclusion is drawn.

1 The Pure Pattern Calculus

This section only reviews some key aspects of PPC. Please refer to [JK09] for a complete story with
more examples. The syntax of PPC is close to the one of λ -calculus. The main difference is the re-
placement of the abstraction over a variable λx.b by an abstraction over a pattern (with a list of matching
variables) written [θ ]p � b. There is also a new distinction between variable occurrences x and match-
able occurrences x̂ of a name x. Variable occurrences are usual variables which may be substituted while
matchable occurrences are immutable and used as matching variables or constructors.

t ::= x | x̂ | tt | [θ ]t � t PPC Terms

where θ is a list of names. Letter a (resp. b, p) is used to indicate a term in position of argument (resp.
function body, pattern).

As pictured below, in the abstraction [θ ]p � b the list of names θ binds matchable occurrences in
the pattern p and variable occurrences in the body b. Substitution of free variables and α-conversion
are deduced (see [JK09] for details on PPC, or Figures 1 and 2 for a formal definition in an extended
setting).

[ x ] x x̂ � x x̂ =α [y ] x ŷ � y x̂

One of the features of PPC is the use of a single syntactic application for two different meanings:
the term t1t2 may represent either the usual functional application of a function t1 to an argument t2 or
the construction of a data structure by structural application of a constructor to one or more arguments.
The latter is invariant: any structural application is forever a data structure, whereas the functional appli-
cation may be evaluated or instantiated someday (and then turn into anything else, including a structural
application).

The simplest notion of pattern matching is syntactic: an argument a matches a pattern p if and only
if there is a substitution σ such that a = pσ . However, with arbitrary patterns, this solution generates
non-confluent calculi [vOo90]. To recover confluence, syntactic matching can be used together with
a restriction on patterns, as for instance the rigid pattern condition of the lambda-calculus with pat-
terns [KvOdV08]. The alternative solution of PPC allows a priori any term to be a pattern, and checks
the validity of patterns only a posteriori, when pattern matching is performed. In particular, the restriction
on patterns applies only once the evaluation of the pattern is completed. This allows a greater freedom
of evaluation and a greater polymorphism of patterns, and hence a greater expressivity.

This is done by a more subtle notion of matching, called compound matching, which tests whether
patterns and arguments are in a so-called matchable form. A matchable form denotes a term which is
understood as a value, or in other words a term whose current form is stable and then allows matching.
Matchable forms are described in PPC at the meta-level by the following grammar:

d ::= x̂ | dt PPC data structures
m ::= d | [θ ]t � t PPC matchable forms
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Compound matching is then defined (still at the meta-level) by the following equations, taken in order.

{{a/θ x̂}} := {x 7→ a} if x ∈ θ
{{x̂/θ x̂}} := {} if x 6∈ θ

{{a1a2 /θ p1 p2}} := {{a1 /θ p1}}]{{a2 /θ p2}} if a1a2 and p1 p2 are matchable forms
{{a/θ p}} := ⊥ if a and p are matchable forms, otherwise
{{a/θ p}} := wait otherwise

Its result, called a match and denoted by ρ , may be a substitution (written σ ), a matching failure
(written ⊥) or the special value wait. The latter case represents undefined cases of matching, when the
pattern or the argument has still to be evaluated or instantiated before being matched.

Decomposition of compound patterns in the equations above is associated with an operation ] of
disjoint union which ensures linearity of patterns: no matching variable should be used twice in the same
pattern, or confluence would be broken [Klo80]. Its formal definition is:

• ] is commutative.

• ⊥]ρ =⊥ for any ρ (even wait).

• wait]ρ = wait for ρ 6=⊥.

• σ1]σ2 =⊥ if domains of σ1 and σ2 overlap.

• σ1]σ2 is the union of σ1 and σ2 otherwise.

Finally, PPC has to deal with a problem related to the dynamics of patterns: a matching variable
may be erased from a pattern during its evaluation. In this case, no part of the argument would be bound
to this matching variable and then no term would be substituted to the corresponding variable. Hence
free variables would not be preserved, which would make reduction ill-defined (see Example 1). This is
avoided in PPC by a last (meta-level) test, called check: the result {a/θ p} of the matching of a against
p is defined as follows.

• if {{a/θ p}}=⊥ then {a/θ p}=⊥.

• if {{a/θ p}}= σ with dom(σ) 6= θ then {a/θ p}=⊥.

• if {{a/θ p}}= σ with dom(σ) = θ then {a/θ p}= σ .

Remark that {a/θ p} is not defined if {{a/θ p}}= wait.
Finally, the reduction −→PPC of PPC is defined by a unique reduction rule (applied in any context):

([θ ]p � b)a −→βm b{a/θ p}

where for any b and σ the expression bσ denotes the application of the substitution σ to the term b, and
b⊥ denotes some fixed closed normal term ⊥.

Example 1. Let t be a PPC term. The redex ([x]ĉx̂� x) (ĉt) reduces to t: the constructor ĉ matches itself
and the matchable x̂ is associated to t. On the other hand, ([x,y]ĉx̂ � xy) (ĉt) reduces to ⊥: whereas
the compound matching is defined and successful, the check fails since there is no match for y and the
result would be ty where y appears as a free variable. The redex ([x]ĉx̂ � x) (ĉ) also reduces to ⊥ since
a constructor will never match a structural application. And last, ([x]yx̂� x) (ĉt) is not a redex since the
pattern yx̂ has to be instantiated.
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2 Explicit Matching

This section defines the Pure Pattern Calculus with Explicit Matching (PPCEM), a calculus which gives
an account of all the steps of a pattern matching process of PPC. The first point discussed is the iden-
tification of structural application (Section 2.1). An explicit calculus is then fully detailed (Section 2.2)
and some of its basic properties are proved (Section 2.3). Explicit formulations of simpler pattern calculi
already appear in [CK04, For02, CFK04].

2.1 Explicit Data Structures

Firstly, a new syntactic construct is introduced to discriminate between functional and structural appli-
cations (as in [FMS06] for the rewriting calculus for instance). Any application is supposed functional a
priori, and two reduction rules propagate structural information. The explicit structural application of t
to u is written t •u.

t ::= x | x̂ | tt | t • t | [θ ]t � t PPC• terms
d ::= x̂ | t • t PPC• data structures

x̂ t −→• x̂• t
(t1 • t2) t3 −→• (t1 • t2)• t3

The identity morphism embeds PPC into PPC•. The subset of PPC• defined by PPC is referred to as
the set of pure terms. On the other hand, a “forgetful” morphism maps PPC• terms back to PPC terms
(or pure terms):

JxK := x
Jx̂K := x̂

Jt1t2K := Jt1KJt2K
Jt1 • t2K := Jt1KJt2K

J[θ ]p � bK := [θ ]JpK � JbK
Some PPC• data structures are not mapped to data structures of PPC, for instance ([θ ]p � b) • a.

However, for any pure term t, if t −→∗• t ′ and t ′ is a PPC• data structure, then t is a PPC data structure
(proof by induction on t). One can also observe that for every PPC data structure t, there exists a
reduction t −→∗• t ′ with t ′ a PPC• data structure. Call well-formed a term t such that JtK −→∗• t.

2.2 Explicit Pattern Matching

Another new syntactic object has to be introduced to represent an ongoing matching operation. The basic
information contained in such an object are: the list of matching variables, a partial result recording what
has already been computed, and a representation of what has still to be solved.

This new object is called matching and is written 〈θ |µ|∆〉 with θ a list of names, µ a decided
match (that means, ⊥ or a substitution), and ∆ the collection of submatchings that have still to be solved
(a multiset of pairs of terms). For now on, we will consider only decided matches, written µ (wait does
not exist as such in PPCEM).

The complete new grammar is:

t ::= x | x̂ | tt | t • t | [θ ]t � t | t 〈θ |µ|∆〉 PPCEM terms
d ::= x̂ | t • t PPCEM data structures
m ::= d | [θ ]t � t PPCEM matchable forms



20 On the Implementation of Dynamic Patterns

The set of free names of a term t is fn(t) = fv(t)∪ fm(t).

Free variables
fv(x) := {x}
fv(x̂) := /0

fv(t1t2) := fv(t1)∪ fv(t2)
fv(t1 • t2) := fv(t1)∪ fv(t2)

fv([θ ]p � b) := fv(p)∪ ( fv(b)\θ)
fv(t 〈θ |µ|∆〉) := ( fv(t)\θ)∪ fv(codom(µ))∪ fv(∆)

Free matchables
fm(x) := /0
fm(x̂) := {x}

fm(t1t2) := fm(t1)∪ fm(t2)
fm(t1 • t2) := fm(t1)∪ fm(t2)

fm([θ ]p � b) := ( fm(p)\θ)∪ fm(b)
fm(t 〈θ |µ|∆〉) := fm(t)∪ fm(codom(µ))∪ fm(π1(∆))∪ ( fm(π2(∆))\θ)

where if ∆ = (a1, p1)...(an, pn) then fm(π1(∆)) =
⋃

i fm(ai) and fm(π2(∆)) =
⋃

i fm(pi).
Figure 1: Free names of a PPCEM term

xσ := σx x ∈ dom(σ)
xσ := x x 6∈ dom(σ)
x̂σ := x̂

(tu)σ := tσ uσ

(t •u)σ := tσ •uσ

([θ ]p � b)σ := ([θ ]pσ � bσ ) θ ∩ (dom(σ)∪ fn(σ)) = /0
(t 〈θ |µ|∆〉)σ := tσ 〈θ |µσ |∆σ 〉 θ ∩ (dom(σ)∪ fn(σ)) = /0

where in ∆σ (resp. µσ ) the substitution propagates in all terms of ∆ (resp. of the codomain of µ).
Figure 2: Substitution in PPCEM
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Initialisation

([θ ]p � b)a −→B b〈θ | /0|(a, p)〉

Structural application

x̂ t −→• x̂• t
(t1 • t2) t3 −→• (t1 • t2)• t3

Matching
Since ∆ has been defined as a multiset of pairs of terms, its elements are not ordered. In the following
rules (a, p)∆ denotes the (multiset) union of ∆ with the singleton {(a, p)}.

The first three matching rules are for successful matching steps.

b〈θ |µ|(a, x̂)∆〉 −→m b〈θ |µ ]{x 7→ a}|∆〉 if x ∈ θ and fn(a)∩θ = /0
b〈θ |µ|(x̂, x̂)∆〉 −→m b〈θ |µ|∆〉 if x 6∈ θ

b〈θ |µ|(a1 •a2, p1 • p2)∆〉 −→m b〈θ |µ|(a1, p1)(a2, p2)∆〉

The last six matching rules are for failure, and could be summed up as “for any other matchable forms a
and p, let b〈θ |µ|(a, p)∆〉 reduce to b〈θ |⊥|∆〉”.

b〈θ |µ|(ŷ, x̂)∆〉 −→m b〈θ |⊥|∆〉 if x 6∈ θ and x 6= y
b〈θ |µ|(a1 •a2, x̂)∆〉 −→m b〈θ |⊥|∆〉 if x 6∈ θ

b〈θ |µ|([θa]pa � ba, x̂)∆〉 −→m b〈θ |⊥|∆〉 if x 6∈ θ
b〈θ |µ|(x̂, p1 • p2)∆〉 −→m b〈θ |⊥|∆〉

b〈θ |µ|([θa]pa � ba, p1 • p2)∆〉 −→m b〈θ |⊥|∆〉
b〈θ |µ|(a, [θp]pp � bp)∆〉 −→m b〈θ |⊥|∆〉

Resolution

b〈θ |σ | /0〉 −→r bσ if dom(σ) = θ (substitution rule)
b〈θ |σ | /0〉 −→r ⊥ if dom(σ) 6= θ
b〈θ |⊥|∆〉 −→r ⊥

Figure 3: Rules of PPCEM
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A pure term of PPCEM is a term without any structural application or matching (that means a PPC
term). As in PPC, the symbol ⊥ used as a term denotes a fixed closed pure normal term.

Free variables and matchables are defined in Figure 1 as a natural extension of PPC mechanisms
to explicit matching. Similarly, a notion of (meta-level) substitution is deduced from this definition
(Figure 2). Finally, a notion of α-conversion is associated, and from now, on it is supposed that all bound
names in a term are different, and disjoint from free names.

New rules for matching are of three kinds: an initialisation rule−→B which triggers a new matching
operation, several matching rules −→m corresponding to all possible elementary matching steps and
three resolution rules −→r that apply the result of a completed matching. The complete set of rules of
PPCEM is given in Figure 3.

Reduction −→EM of PPCEM is defined by application of any rule of −→B, −→•, −→m or −→r in
any context. The subsystem −→p = −→• ∪ −→m ∪ −→r computes (when possible) already existing
pattern matchings but does not create new ones.

2.3 Confluence and Simulation properties

This section states and proves four theorems on basic properties of PPCEM and its links with PPC. The
first one is a result on the normalization of already existing pattern matchings.
Theorem 1. −→p is confluent and strongly normalizing.

Proof.

• We define two well-founded orders ≺N and ≺S , whose lexicographic product contains p←−.
This will enforce strong normalization.

– ≺N sorts terms with respect to the nesting of matchings. It is based on an over-approximation
of the depth of potentially nested matchings (matchings that are syntactically nested or that
may become such after some substitutions). For any lists of names θi, decided matches µi,
and lists of pairs of terms ∆i, the sequence 〈θ1|µ1|∆1〉 ; ...;〈θn|µn|∆n〉 is called a potentially
nested chain of length n if for each i ∈ {1...n−1} one of these conditions holds:
∗ Nesting: 〈θi+1|µi+1|∆i+1〉 appears in ∆i or in the codomain of µi.
∗ Potential nesting: a variable of θi+1 appears in ∆i or in the codomain of µi.

The set of maximal chains of a term t is the set of all potentially nested chains that can be
built using the matchings appearing in t and that can not be extended (neither by the left nor
by the right) using other matchings of t. For this extraction, remember that all bound names
in t are supposed to be different, and disjoint from free names. The depth of t is the multiset
of the lengths of the maximal chains of t.
Example 2. Write t = ĉ

〈
/0 | /0 |(x, ĉ)(x, ĉ)

〉 〈
x |x 7→ y〈y| /0|(ĉ, ŷ)〉 | /0

〉
. The term t contains

three matchings and has one maximal chain of length 3, which is
〈

/0 | /0 |(x, ĉ)(x, ĉ)
〉

;
〈

x |x 7→ y〈y| /0|(ĉ, ŷ)〉 | /0
〉

;
〈

y | /0 |(ĉ, ŷ)
〉

The reduction t −→r t ′ = ĉ
〈

/0 | /0 |(y1 〈y1| /0|(ĉ, ŷ1)〉 , ĉ) (y2 〈y2| /0|(ĉ, ŷ2)〉 , ĉ)
〉

yields a new
term t ′ which still contains three matchings (one was reduced and disappeared but another
one was duplicated) and admits two maximal chains of length 2, namely

〈
/0 | /0 |(y1 〈y1| /0|(ĉ, ŷ1)〉 , ĉ) (y2 〈y2| /0|(ĉ, ŷ2)〉 , ĉ)

〉
;
〈

y1 | /0 |(ĉ, ŷ1)
〉

〈
/0 | /0 |(y1 〈y1| /0|(ĉ, ŷ1)〉 , ĉ) (y2 〈y2| /0|(ĉ, ŷ2)〉 , ĉ)

〉
;
〈

y2 | /0 |(ĉ, ŷ2)
〉
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The usual order on natural integers gives a well-founded order on the lengths of potentially
nested chains. ≺N is defined as the multiset extension of this order, applied to the depths of
terms. It strictly decreases for any reduction by the substitution rule, and is less or equal for
any other reduction.

– ≺S is the natural order on the size of terms, defined as follows:

S (x) := 1
S (x̂) := 1

S (t1t2) := S (t1)+S (t2)+2
S (t1 • t2) := S (t1)+S (t2)+1

S ([θ ]p � b) := S (p)+S (b)
S (b〈θ |µ|∆〉) := S (b)+S (⊥)+∑x∈dom(µ)S (µx)+∑(a,p)∈k∆ k(S (a)+S (p))

where we write e ∈k ∆ when the element e appears in the multiset ∆ with multiplicity k.
≺S strictly decreases for any reduction except by the substitution rule.

• Matching rules generate some critical pairs, most of which are trivially convergent. The most
subtle case is the reduction of a non linear matching:

〈θ |µ ]{x 7→ a1}|(a2, x̂)∆〉 p −→ 〈θ |µ|(a1, x̂)(a2, x̂)∆〉 −→p 〈θ |µ ]{x 7→ a2}|(a1, x̂)∆〉

Since ] is a disjoint union of substitutions, both sides can be reduced to 〈θ |⊥|∆〉.
Finally, −→p is weakly confluent, and then confluent by Newman’s Lemma [Ter03].

The second theorem states the confluence of −→EM. Since the reduction of PPCEM is defined by
several rules, the result does not fall into the modular framework of [JK09]. It is proved here directly by
the Tait and Martin-Löf’s technique. The main construction of the proof is the definition (in Figure 4)
of a parallel reduction relation =⇒ enjoying the diamond property (Lemma 3). The relation =⇒ is first
linked to −→EM in Lemma 1.

Lemma 1. −→EM ⊆ =⇒ ⊆ −→∗EM

Proof.

• −→EM ⊆ =⇒ by induction on the definition of −→EM.

• =⇒ ⊆ −→∗EM by induction on the definition of =⇒.

Lemma 2. If t =⇒ t ′ and σ =⇒ σ ′ then tσ =⇒ t ′σ
′
.

Proof. By induction on the derivation of t =⇒ t ′.

Lemma 3. ⇐==⇒ ⊆ =⇒⇐=

Proof. Suppose t1⇐= t =⇒ t2. Induction on the derivations of t =⇒ t1 and t =⇒ t2:

• If one of the reductions is by “Id”, the conclusion is immediate.

• If one reduction is by a “Cgr” rule, and the other by a “Cgr”, “Init”, “Struct”, or “Match” rule, then
the induction hypothesis applies straightforwardly.
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Id.

t =⇒ t

Cgr.
t1 =⇒ t ′1 t2 =⇒ t ′2

t1t2 =⇒ t ′1t ′2

t1 =⇒ t ′1 t2 =⇒ t ′2
t1 • t2 =⇒ t ′1 • t ′2

p =⇒ p′ b =⇒ b′

[θ ]p � b =⇒ [θ ]p′ � b′

b =⇒ b′ µ =⇒ µ ′ ∆ =⇒ ∆′

b〈θ |µ|∆〉=⇒ b′ 〈θ |µ ′|∆′〉
Init.

p =⇒ p′ b =⇒ b′ a =⇒ a′

([θ ]p � b)a =⇒ b′ 〈θ | /0|(a′, p′)〉
Struct.

t =⇒ t ′

x̂ t =⇒ x̂• t ′
t1 =⇒ t ′1 t2 =⇒ t ′2 t3 =⇒ t ′3

(t1 • t2) t3 =⇒ (t ′1 • t ′2)• t ′3
Match.

b =⇒ b′ µ =⇒ µ ′ a =⇒ a′ ∆ =⇒ ∆′
x ∈ θ , fn(a)∩θ = /0

b〈θ |µ|(a, x̂)∆〉=⇒ b′ 〈θ |µ ′]{x 7→ a′}|∆′〉

b =⇒ b′ µ =⇒ µ ′ ∆ =⇒ ∆′
x 6∈ θ

b〈θ |µ|(x̂, x̂)∆〉=⇒ b′ 〈θ |µ ′|∆′〉

b =⇒ b′ µ =⇒ µ ′ ∆ =⇒ ∆′ ai =⇒ a′i pi =⇒ p′i
b〈θ |µ|(a1 •a2, p1 • p2)∆〉=⇒ b′ 〈θ |µ ′|(a′1, p′1)(a

′
2, p′2)∆′〉

b =⇒ b′ ∆ =⇒ ∆′ a and p other matchable forms
b〈θ |µ|(a, p)∆〉=⇒ b′ 〈θ |⊥|∆′〉

Res.
b =⇒ b′ σ =⇒ σ ′ dom(σ) = θ
b〈θ |σ | /0〉=⇒ (b′)σ ′

dom(σ) 6= θ
b〈θ |σ | /0〉=⇒⊥ b〈θ |⊥|∆〉=⇒⊥

As in Figure 3, the last “Match” rule could be explicited in six fail rules.
Parallel reduction is straightforwardly extended:

• to decided matches (µ) by applying =⇒ to all terms in the codomain of a substitution (with more-
over ⊥=⇒⊥).

• to multisets of pairs of terms (∆) by applying =⇒ to all terms.

Figure 4: Definition of parallel reduction relation =⇒
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• If one reduction is by a “Cgr” rule and the other by a “Res” rule, there is one non trivial case:
suppose t1 〈θ |σ1| /0〉 ⇐= t 〈θ |σ | /0〉 =⇒ tσ2

2 . By induction hypothesis there are t3 and σ3 such that
t1 =⇒ t3⇐= t2 and σ1 =⇒σ3⇐=σ2. Then we can derive t1 〈θ |σ1| /0〉=⇒ tσ3

3 . Finally, by Lemma 2
we conclude that tσ2

2 =⇒ tσ3
3 .

• If both reductions are by a “Init” rule, then the induction hypotheses apply straightforwardly.

• Idem for two “Struct” or two “Match” rules.

• Case where both reductions are by a “Res” rule. Reductions to ⊥ are straightforward. Then
consider the following case: tσ1

1 ⇐= t 〈θ |σ | /0〉 =⇒ tσ2
2 . By induction hypotheses t1 =⇒ t3 ⇐= t2

and σ1 =⇒ σ3⇐= σ2. By Lemma 2 tσ1
1 =⇒ tσ3

3 ⇐= tσ2
2 .

Theorem 2. PPCEM is confluent.

Proof. Since =⇒ has the diamond property (Lemma 3), its transitive closure =⇒∗ also enjoys the di-
amond property ([Ter03]). Moreover Lemma 1 implies −→∗EM = =⇒∗, and then −→∗EM enjoys the
diamond property. Finally, −→EM is confluent.

The last two theorems establish a link between the calculus with explicit matching PPCEM and the
original implicit PPC.

Lemma 4. If {{a/θ p}} = µ with µ a decided match, then for any µ0 and ∆ there are µ ′ with Jµ ′K = µ
and a reduction

〈θ |µ0|(a, p)∆〉 (−→• ∪ −→m)
∗ 〈θ |µ0]µ ′|∆

〉

Proof. Induction on {{a/θ p}}.

• {{a/θ x̂}} with x ∈ θ or {{x̂/θ x̂}} with x 6∈ θ : immediate.

• {{aa0 /θ pp0}} with aa0 and pp0 matchable forms. Hence a = an...a1 and p = pm...p1 with an

and pm constructors. Then an...a1a0 −→∗• an • ... • a1 • a0 and pm...p1 p0 −→∗• pm • ... • p1 • p0.
Suppose n ≥ m, then {{aa0 /θ pp0}} = {{am...an /θ pn}}] {{an−1 /θ pn−1}}] ...]{{a0 /θ p0}} and
〈θ |µ0|(an • ...•a0, pm • ...• p0)∆〉 −→∗m 〈θ |µ0|(am • ...•an, pn)(an−1, pn−1)...(a0, p0)∆〉. Case on
pn = x̂:

– If x ∈ θ then the matching reduces to 〈θ |µ0]{x 7→ am • ...•an}|(an−1, pn−1)...(a0, p0)∆〉.
– If x 6∈ θ then the matching reduces to 〈θ |µ ′0|(an−1, pn−1)...(a0, p0)∆〉with µ ′0 = µ0 or µ ′0 =⊥.

In any of these two cases, the induction hypothesis gives the conclusion. In the case where m > n,
the same method allows to derive a reduction to ⊥.

• Cases of matching failure: for instance {{x̂/θ ŷt}}. The following reduction gives the conclusion:
〈θ |µ0|(x̂, ŷt)∆〉 −→• 〈θ |µ0|(x̂, ŷ• t)∆〉 −→m 〈θ |⊥|∆〉.

Theorem 3. For any terms t and t ′ of PPC, if t −→PPC t ′ then t −→∗EM t ′.

Proof. Suppose t −→PPC t ′. There is a context C[] such that t =C[([θ ]p � b)a] −→PPC C[b′] = t ′ and
{{a/θ p}}= µ with µ a decided match.
By Lemma 4 ([θ ]p � b)a −→B b〈θ | /0|(a, p)〉 (−→• ∪ −→m)

∗ b〈θ |µ| /0〉.
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Case on µ:

• If µ =⊥ then b′ =⊥ and b〈θ |⊥| /0〉 −→r ⊥.

• Else µ = σ and:

– If dom(σ) = θ then b′ = bσ and b〈θ |σ | /0〉 −→r bσ .
– Else b′ =⊥ and b〈θ |⊥| /0〉 −→r ⊥.

The map J·K is naturally extended to any PPCEM term, set of PPCEM terms and decided match, as well
as the notion of well-formedness. Then, for any µ and ∆ not containing any explicit matching, define the
semantics of the matching 〈θ |µ|∆〉 by:

Jθ |µ|∆K= JµK]


 ⊎

(a,p)∈∆
{{JaK/θ JpK}}




Note that the semantics can be wait.

Lemma 5. For any well-formed µ , µ ′, ∆ and ∆′ which do not contain any explicit matching,
if 〈θ |µ|∆〉 −→m 〈θ |µ ′|∆′〉 or 〈θ |µ|∆〉 −→• 〈θ |µ ′|∆′〉 then Jθ |µ|∆K= Jθ |µ ′|∆′K.

Proof. Case on the reduction rules.

Lemma 6 ([JK09]). If t −→PPC t ′, then tσ −→PPC t ′σ .

Let t be a PPCEM term, and t ′ the unique normal form of t by −→p. Write t↓ and call purification of t
the term Jt ′K. Note that the purification may not be a pure term if there is an unsolvable matching in it.

Theorem 4. For any well-formed terms t and t ′ of PPCEM,
if t −→EM t ′ and t↓ and t ′↓ are pure, then t↓= t ′↓ or t↓ −→PPC t ′↓ .

Proof. Induction on t −→EM t ′.

• Case t = ([θ ]p � b)a −→B b〈θ | /0|(p,a)〉 = t ′. The term t ′↓ is pure, then there is a sequence
b↓ 〈θ | /0|(p↓ ,a↓)〉 (−→• ∪−→m)

∗ b↓ 〈θ |µ|∆〉 −→r t ′′ where Jt ′′K= t ′↓ and where ∆= /0 or µ =⊥.
By Lemma 5, JµK= {{a↓ /θ p↓}}. Then, by case on matching resolution, t↓−→PPC Jt ′′K= t ′↓ .

• Other base cases: if t −→p t ′, then t↓ = t ′↓ .

• Case t = b〈θ |µ|∆〉 −→EM b′ 〈θ |µ|∆〉 = t ′. The term t↓ is pure. Then 〈θ |µ|∆〉 −→∗p 〈θ |µ ′|∆′〉
where ∆′ = /0 or µ ′ =⊥. If µ ′ =⊥ or dom(µ ′) 6= θ , then t↓= t ′↓=⊥. Suppose ∆′ = /0 and µ ′ = σ
with dom(σ) = θ . Hence t↓= (b↓)σ and t ′↓= (b′↓)σ . By induction hypothesis b↓−→PPC b′↓ ,
and then by Lemma 6 t↓−→PPC t ′↓ .

• Other inductive cases are straightforward.

This section introduced the new calculus PPCEM for explicit matching with dynamic patterns, and
proved its confluence. It also expressed a bidirectional simulation between PPC and PPCEM: first any
reduction of PPC is reflected in PPCEM by a sequence. On the other hand, a reduction of PPCEM can
be mapped on zero or one step of PPC if and only if its source and its target are well-formed and can be
purified. Next section discusses how this new calculus can be used.
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3 Discussion

3.1 Reduction Strategies

Pattern matching raises at least two new issues concerning reduction strategies (i.e. the evaluation order
of programs). One is related to the order in which pattern matching steps are performed, the other
concerns the amount of evaluation of the pattern and of the argument performed before pattern matching
is solved.

Some remarks about the order of pattern matching steps.
PPCEM uses a multiset as the third component of a matching 〈θ |µ|∆〉 to represent all the remaining work.
The calculus is thus able to cover all the possible orders of pattern matching steps. A particular strategy
may be enforced by giving more structure to the multiset ∆ and by adapting the matching reduction rules.
Example 3. Suppose that ∆ is now a list of pairs of terms, and (a, p)∆ denotes the usual “cons”: it
builds the list whose head is (a, p) and whose tail is ∆. Then the rules of Figure 3 implement a depth-
first, left-to-right pattern matching algorithm.
Example 4. Now assume the list structure of Example 3 and replace the right member of the reduction
rule 〈θ |µ|(a1 •a2, p1 • p2)∆〉 −→m 〈θ |µ|(a1, p1)(a2, p2)∆〉 by 〈θ |µ|∆(a1, p1)(a2, p2)〉. Then pattern
matching is done in a completely different order!
More generally, if some permutations of the elements of ∆ are allowed, lots of richer matching behaviours
may be described in PPCEM.

Pattern and argument evaluation: what is needed?
In PPC, a naive evaluation strategy for a term ([θ ]p � b)a could be: evaluate the pattern p and the
argument a, then solve the matching (atomically). As the usual call-by-value, this solution may perform
unneeded evaluation of the argument, for instance in parts that are not reused in the body b of the
function. The most basic solution to this problem, call-by-name, allows the substitution of non-evaluated
arguments. But how can such a solution be described in a pattern calculus?

In the context of pattern matching, some evaluation of the argument has to be done before pattern
matching is solved. However the exact amount of needed evaluation depends on the pattern. Hence
pattern matching enforces some kind of call-by-value where the notion of value is context-sensitive.
Moreover, even the evaluation of the pattern may depend on the argument!

This makes the description of a strategy performing a minimal evaluation of the dynamic pattern
and the argument rather difficult. One may keep for the object-level a compact formalism like PPC
by defining complex meta-level operations finely parametrised by terms. This is done in [KLR10] to
describe standard reductions in a simpler pattern calculus. In contrast to this solution, we want to show
here how the richer syntax of PPCEM allows a simple description of such a reduction strategy.

Indeed PPCEM allows to interleave pattern and argument reduction with pattern matching steps.
This finer control allows for instance an easy definition of a “matching-driven” reduction, as pictured in
Figure 5.

The idea here is to trigger pattern matchings as soon as possible. Then the pattern and the argument
are evaluated until they become matchable, and one or more pattern matching steps are performed be-
fore the story goes on. A formal definition of a strategy implementing this picture is by restricting the
reduction under a context to the only four rules given in Figure 6.

Moreover, it can be checked that the list structure of Example 3 associated with the rules of Figure 3
and the context rules of Figure 6 gives a deterministic reduction strategy for PPCEM (which means that
any term has at most one authorised redex).
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Reduce pattern
to matchable form

Reduce argument to
matchable form

Perform pattern
matching steps

Select next pair

if matching variable

or abstraction

if datastructure

Figure 5: Matching-driven reduction strategy

t1 −→ t ′1
t1t2 −→ t ′1t2

p −→ p′

b〈θ |µ|(a, p)∆〉 −→ b〈θ |µ|(a, p′)∆〉

a −→ a′ x 6∈ θ
b〈θ |µ|(a, x̂)∆〉 −→ b〈θ |µ|(a′, x̂)∆〉

a −→ a′

b〈θ |µ|(a, p1 • p2)∆〉 −→ b〈θ |µ|(a′, p1 • p2)∆〉

Figure 6: Context rules for matching-driven reduction

b〈θ |τ|(a, x̂)∆〉 −→r b{x 7→a} 〈θ |τ ∪{x}|∆〉 if x ∈ θ , x 6∈ τ and fn(a)∩θ = /0

b〈θ |θ | /0〉 −→r bσ

b〈θ |τ| /0〉 −→r ⊥ if τ 6= θ
b〈θ |⊥|∆〉 −→r ⊥

Figure 7: Partial substitution rules



T. Balabonski 29

3.2 An Extension: Partial Substitution

Relaxing the matching procedure generates new possibilities of evaluation, which may bring more partial
evaluation, more sharing or more parallelism. We explore here an extension of PPCEM where the partial
result of a matching can be applied to the function body before the matching process is completed.

Example 5. Consider the following reduction:

([x]x̂z � (([ /0]x � b)ĉ))(ĉt)

−→B ([x]x̂z � (b〈 /0| /0|(ĉ,x)〉))(ĉt)

The matching 〈 /0| /0|(ĉ,x)〉 is blocked because of the presence of the variable x in the pattern. Still, the
external application can be evaluated:

−→B (b〈 /0| /0|(ĉ,x)〉) 〈x| /0|(ĉt, x̂z)〉
−→2

• (b〈 /0| /0|(ĉ,x)〉) 〈x| /0|(ĉ• t, x̂• z)〉
−→m (b〈 /0| /0|(ĉ,x)〉) 〈x| /0|(ĉ, x̂)(t,z)〉
−→m (b〈 /0| /0|(ĉ,x)〉) 〈x|{x 7→ ĉ}|(t,z)〉

Now, the external matching 〈x|{x 7→ ĉ}|(t,z)〉 is also blocked because of the variable z. However, its
partial result is a substitution for x which, if applied, may unlock the internal matching. Indeed, allowing
this partial substitution could lead to a reduction like:

−→ (b〈 /0| /0|(ĉ, ĉ)〉) 〈x|{x 7→ ĉ}|(t,z)〉
−→m (b〈 /0| /0| /0〉) 〈x|{x 7→ ĉ}|(t,z)〉
−→r b〈x|{x 7→ ĉ}|(t,z)〉

where the internal matching is finally solved!

This kind of power may be of interest in two situations:

• By allowing more reduction in open terms, we gain more partial evaluation capabilities. This may
be interesting for greater sharing and efficient evaluation [HG91].

• Suppose now that z is replaced in the example by a possibly big term. In a parallel implementation
we could complete the external matching and evaluate the internal one in parallel. As pointed out
in [FMS06], this might represent another gain in efficiency.

A light variation on PPCEM gives this new power to our formalism. The principle of this variant is to
systematically apply partial results (substitutions) as soon as they are obtained. Hence they do not need
to be remembered in the object representing ongoing matching operations. Only a list of used variables
is remembered for linearity verification.

The object representing a matching is now 〈θ |τ|∆〉 where τ is either ⊥ or the list of the names of
the matching variables that have already been used. Now the test of disjoint union of substitutions is
replaced by a simple test against τ , while the final check compares θ and τ .

Initialisation, structural application, and most matching rules are the same in this variant. The only
differences are for the first matching rule and the resolution rules, which are now as in Figure 7.

Any PPCEM term can be translated into a term of this new calculus by applying the following trans-
formation: turn any b〈θ |σ |∆〉 into bσ 〈θ |dom(σ)|∆〉 (there is nothing to change in a failed matching).

The simulation between PPCEM and this extension is only one way: any reduction of PPCEM is
mapped by the previous morphism to a reduction sequence, but the converse is not true. Indeed the
calculus with partial substitution allows new reductions, as pictured in Example 5. Confluence for this
variant seems to be provable using the same technique as for plain PPCEM.
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Conclusion

The Pure Pattern Calculus is a compact framework modelling pattern matching with dynamic patterns.
However, the conciseness of PPC is due to the use of several meta-level notions which deepens the
gap between the calculus and implementation-related problems. This contribution defines the Pure Pat-
tern Calculus with Explicit Matching, a refinement which is confluent and simulates PPC, and allows
reasoning on the pattern matching mechanisms.

This enables a very simple definition of new reduction strategies in the spirit of call-by-name, which
is new in this kind of framework since the reduction of the argument of a function depends on the pattern
of the function, pattern which is itself a dynamic object. In the same direction, it would be interesting to
express standardisation in pattern calculi (as presented for example in [KLR10]) using explicit matching.
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In this paper we outline how a simple compiler can be completely specified using higher order rewrit-
ing in all stages: parsing, analysis/optimization, and code emission, specifically using thecrsx.sf.net
system for a small declarative language called “X” inspiredby XQuery (for which we are building a
production quality compiler in the same way).

1 Introduction

A compiler typically consists of a parser generating an abstract syntax tree (AST) for some source lan-
guage (SL), a “normalization” to a canonical form in an intermediate language (IL), some rewrites in-
serting analysis results into and performing simplifications of the IL, and finally code emission to the
target language (TL).

SL AST
Parse

IL
Normalize

Rewrite

TL
Emit

Each arrow in the diagram can be understood as a rewriting:
1. parsing to an AST is a rewriting from the string of characters in the input file to a term representing

the source program, usually formalized and implemented using some variation of context free
grammars [12];

2. normalization of the AST into the IL involves rewrite rules to eliminate “syntactic sugar” and other
redundant aspects of the source language;

3. rewriting of the IL involves adding annotations, simplifications, and sometimes using parts of the
program itself like rewrite rules (for example for inliningdefined functions); often some rewrites
depend on the result of other rewrites (like an optimizationdepending on an analysis); finally,

4. code emission is usually a direct expansion of the “finished” IL program into sequences (or tem-
plates) of instructions that are directly executable by a computer.

We’ll show how each of these steps is specified using the CRSX system [18, 19], an implementation of
a variation of Combinatory Reduction Systems [11]. The actual samples we’ll present below are mere
toys, of course, but they do illustrate the ideas in a manner that is consistent with a production compiler
that we are building for XQuery [2].

We first summarize the CRSX system notation, including the extensions, in Section2, before we
introduce the parser specification in Section3 followed by the normalizer rules in Section4. Section5
then explains a few simple sample rewrites, and Section6 presents code emission rules. Finally, we
conclude and discuss some related work in Section7.



32 Higher-order Rewriting for Compilers

2 CRSX Summary

Our setting isCombinatory Reduction Systems[11] as realized by the “CRSX” system [19]. Here we
briefly summarize the used notation and where it differs fromreference CRS.

Terms are constructed from the basic grammar

t ::= v | {e}C[s, . . . ,s] | {e}M[t, . . . , t] (Terms)

s ::=~v.t | t (Scope)

e ::= M | e; v : t | e; C : t (Environment)

where variables,v, are written with a lower case letter (including composite units like v"$x"), meta-
variables,M, must include a hash mark (#) in the name, and all other units (including literal constants)
are constructors,C.

Term formation is as shown, where constructions{e}C[s, . . . ,s] are non-standard in two ways:

• Each subterm of a construction is ascope, which may include a vector of distinct variable “binders”
(~v denotesv1v2 . . .vn for n> 0), which can then occur as variables inside the scope (with the usual
caveat that the innermost possible scope is used for each particular variable name; this is the only
location where the formalism accepts abstraction).

• Each construction has an associatedenvironmentcomponent, which is a collection of mappings
from constructors and variables to terms (in addition to permitting meta-variables for pattern
matching against environments).

Meta-applications{e}M[t, . . . , t] are used in rewrite rules of the form

name[options] : pattern→ contraction

with the following extended version of the CRS conventions:

• Thenamebecomes the name of the rule; it can be replaced with “-” to use a default name.

• Theoptions is a comma-separated list of instructions to relax the requirement that all used meta-
variables occur exactly once on each side of the rule, that all variables are explicitly scoped, and
that all pattern meta-applications permit all in-scope variables (to avoid accidentalη-style rules).

• Thepattern is a term that must be a construction wherein contained meta-applications are applied
exclusively to distinct bound variables. The pattern defines what the rule willmatch: specifically
the rule will match any subterm where the top constructor matches including have the same number
of parameters and binders on the parameter scopes, matchingall required environment members,
and matching the shape of each parameter term recursively with the addition that pattern meta-
applications match any corresponding parameter term provided only the included bound variables
occur in the matched term (as usual for CRS; we give examples later). The mapping from the meta-
variables with the parameter bound variables to the real term and its bound variables is called
a valuation; CRSX extends valuations to also mapwhole environment meta-variablesand free
variablesto parts of the matched term.

• The→ is the Unicode U2192 character.

• Thecontractionexplains what the matched subterm should be replaced with bythe rewrite step.
Constructions stand for themselves. Meta-applications stand for copies of what the meta-variable
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matched where in turn the matched bound variables aresubstitutedby the corresponding argu-
ments provided in the contraction meta-application, in usual CRS fashion. Variables bound in the
contraction just stand for themselves but free variables either stand for occurrences of the variable
they matched or, as a special feature can be declared “fresh,” which means a new globally unique
fresh variable is created [17]. Environments in the contraction can reference matched environment
meta-variables extended with additional bindings.

Finally, the CRSX parser permits the following abbreviations borrowed fromλ calculus and program-
ming languages:

• Parenthesis are allowed around every term, so(t) is the same ast;

• c~v.t abbreviatesc[v1.c[v2. · · · c[vn.t] · · · ]] (think λxyz.t);

• t1t2 abbreviates@[t1,t2] and is left recursive sot1t2t3 is the same as(t1t2)t3;

• t1;t2 abbreviates$Cons[t1,t2] and is right recursive with the addition that omitted segments cor-
respond to$Nil, so(t1;t2;) corresponds to the term$Cons[t1,$Cons[t2,$Nil]]; and

• empty brackets[] can be omitted.

3 Parser

The first component of our X compiler is the parsing from X syntax to the AST, which are terms in
a higher-order abstract syntax representation [16] of X. Thus the parser has to be instructed for every
production in the language how the AST subterm for that production must look, including what binders
should be introduced and how they can occur. Figure1 shows the actual file used to achieve this with
the CRSX system’s PG parser generator. (Note that like all files used by the CRSX system, the parser
generator file is a Unicode text file which permits us to use special characters.)

The grammar itself is specified as follows:

• // introduces comments.

• The first line declares the external “class” name we’ll use for the parser as well as the default and
other externally visible non-terminals that the parser canbe explicitly requested to parse.

• The rest of the file consists of units that start with a name or some special keyword and end with a
period.

• The unit starting withmeta gives the special notation used for meta-variables when writing rules
involving parsed expressions; we’ll return to this in the following section and here just remark that
we use a notation for meta-variables inside parsed text which is a subset of the CRSX meta-variable
notation, and the unit starting withskip declares the white space convention.

• In general, non-terminals are written in angle brackets, like <P>, terminals (or defined tokens) are
written as simple identifiers, likev, and literal tokens are written as strings like",".

• Units starting with a non-terminal name are the proper productions. In productions, non-terminals
and terminals stand for themselves, we use parenthesis() for grouping, and vertical bar| for
choice—all else is annotations, explained below. So the first two productions could have been
written as

<P> ::= <E> .

<E> ::= <S> ("," <E> |) .
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// Grammar for X (simple XQuery-like language).

class net.sf.crsx.samples.x.X : <P>, <E>, <S>, <Q>

meta[<E>] ::= "#<PRODUCTION_NAME>" i?, "[", "]" . // Meta-applications over AST.

skip ::= " " | "\r" | "\n" | "\t" . // White space.

<P> ::= {program} <E> . // Program.

<E> ::= <S>:#S (","_$ J#SK <E> | J#SK) . // Expression.

<S> ::= "(" (<E> | {empty}) ")" // Simple expression.

| "element"_$ <N> "{" <E> "}"

| {query} <Q>

| "if"_$ <S> "then" <S> "else" <S>

| {call} <N> "(" (<E> | {empty}) ")"

| v_?

| {literal} <L>

.

<Q> ::= "for"_$ v_x "in" <S> <Q>[x] // Query.

| "let"_$ v_x ":=" <S> <Q>[x]

| "where"_$ <S> <Q>

| "return"_$ <S>

.

token v ::= "$" n . // Variable tokens.

<N> ::= n_$ . // Names.

token n ::= [A-Za-z_] [A-Za-z0-9_-]* .

<L> ::= l_$ . // Literals.

token l ::= i | s .

token i ::= [0-9]+ .

token s ::= "’" (¬[\’] | "’’")* "’" .

Figure 1:x.pg—parsing X to AST.
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// for $x in child(doc()) for $y in child(doc()) where eq($x,$y) return plus($x,$y)

"program"[

"query"[

"for"[

"call"["child", "call"["doc", "empty"]],

v"$x" .

"for"[

"call"["child", "call"["doc", "empty"]],

v"$y" .

"where"[

"call"["eq", ","[v"$x", v"$y"]],

"return"["call"["plus", ","[v"$x", v"$y"]]]]]]]]

Figure 2: Example parse from X program to AST.

if we were not interested in generating an AST term.

• Units starting withtoken give the regular expression for the defined token. We use conventional
regular expression syntax with character classes written in []s (negated by a preceding¬ and
including ranges), choice with|, optionality and repetition with?+*, and literal characters as
strings.

The purpose of the parsing, however, is to build an AST for theparsed X program. This is achieved by
the annotations in the productions.

• The default behaviour is that tokens are (parsed but) ignored and non-terminals are parsed and
submitted as subterms to the current context.

• When a production includes a name in braces, like{program} in the<P> production, this specifies
that the production generates an AST term with the tagprogram with all following subtrees as
children (specifically up to the end of the current choice).

• When a token is followed by$ then this specifies that an AST term using the token as the tag
with all following subtrees as children (up to the end of the surrounding choice). So in the<N>
production, then token is directly used as the tag (with no children since there are no following
parsed non-terminals).

• When a generated subterm is followed by a colon (:) and a meta-variable name starting with a hash
#, then this means that the subtree generated from the non-terminal is not echoed to the context but
stored with that name for later use in an inserted term in double bracketsJ. . .K. So, for example,
we can read the<E> production as follows:

1. Parse the<S> subterm and remember it as#S instead of including it in the context.

2. If the next token is a comma then the result is a term rooted by a comma-tag and with two
subtems: the one stored as#S generated byJ#SK and the one generated by the following<E>.

3. Otherwise, the result is just what was stored as#S generated by (the second)J#SK without
any additional tag.

(The fact that a tag can be omitted is a powerful feature that permits us to confuse the<E> and<S>
non-terminals in the normalization rules, as we shall see.)
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• An annotation of x, wherex can be any lower case variable name identifier, promotes the token
value to ascoped identifier definitionand makes[x] after a single non-terminal in the same pro-
duction indicate that the scope ofx is that non-terminal. So, for example, in the first choice of the
<Q> production, thev token is used as a variable name which is scoped in the<Q> subterm.

• Finally, ? after a token indicates that the token must be anoccurrenceof a bound variable.

In summary, the parser specification looks like many other abstract syntax tree generation notations,
such as MetaPRL [9] or ANTLR Tree Grammars [15], except for the additional direct support for higher
order abstract syntax by explicitly specifying the scopingand a pleasantly compact way to generate terms
where tokens are used directly as constructors, which reduces the size of large parsers considerably.

Figure2 shows a sample AST printed by the CRSX engine for the term shown in the comment. The
generated tags are quoted because they would otherwise be mistaken for other CRSX syntax; similarly,
actual CRSX variables that do not start with a lower case letter are written asv"$x", etc., which allows
us to retain the original X names in the AST. Notice how the ASTterm binds two variables, one for
each"for" construct, following the CRSX constraint that binders are only permitted on construction
subterms.

4 Normalization

Our sample intermediate language is a variant of nested-relational algebra [21, 5] modified to make the
binders of dependent operators explicit so we can exploit the higher-order rewriting capabilities,e.g., we
write the map operator as

Map[Dep[id.p2], p1]

with an explicitDep dependency abstraction to scope the “context tuple” (usually denoted by a context
sensitive symbol likeID in relational algebra).

The actual normalization rules are shown in Figure3, and exercise most of the features of CRSX:

• We first check that we have the grammar from Section3 loaded. The grammar enables two nota-
tions:

1. In CRSX syntax,%PJ...K denotesinline parsingof the . . . text using the<P> production of
some grammar (that must have been loaded in advance).

2. Inside parsed text,#P denotesany subterm where a<P> subterm is allowed; for disam-
biguation, such subterms further permit a numeric marker like #P2. (This is what themeta
declaration in Figure1 is for.)

The first rule then expresses that a<P>-program containing an<E> subterm (they all do) rewrites to
the shownAlgebraic-term, where theN-subterm is the one representing the compilation scheme
that will lead to the entire AST being normalized recursively.

• Notice that the right hand side of the first rule introduces a binder: id is bound in the invocation
of N. In all the rules forN we shall explicitly refer to this variable, however, in those cases it will
(locally) be afreevariable where we do not know the binder.

Thus all the following rules include theoptionFree[id] to indicate that the pattern can useid to
match a free variable. (This is otherwise not permitted as itis likely to be the result of mistyping.)

Matching of free variables in this way is inherently problematic for confluence, because it breaks
the confluence of developments: if the variable is substituted by something then the rule no longer
applies! Thus we need an assurance thatvariables that are matched against and substitued are
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// N: Normalization scheme: compile from X AST to nested relational algebra IL.

N[(

$CheckGrammar[’net.sf.crsx.samples.x.X’] ; // we need to parse X fragments

// Program.

N[%PJ #E K] → Algebraic[Dep[id.N[#E, id]]] ;

// Expressions: N[expression, input-tuple] rewrites to operator.

-[Free[id]] : N[%EJ ( #S , #E ) K, id] → Concat[N[#S, id], N[#E, id]] ;

-[Free[id]] : N[%SJ () K, id] → Empty ;

-[Free[id]] : N[%SJ #L K, id] → Literal[#L] ;

-[Free[id]] : N[%SJ element #N {#E} K, id] → Element[Literal[#N], N[#E, id]] ;

-[Free[id]] : N[%SJ #N(#E) K, id] → Call[#N, N[#E, id]] ;

-[Free[id]] : N[%SJ if #S then #S1 else #S2 K, id]

→ Conditional[N[#S, id], N[#S1, id], N[#S2, id]] ;

-[Free[f,id]] : N[f, id] → Extract[id, f] ;

// Queries.

-[Free[id]] : N[%SJ #Q K, id] → NQ[#Q, id, t.t] ;

// NQ[query source, input-variable, t.prefix-operator[t]]

-[Free[id],Fresh[f]] :

NQ[%QJ for $v in #S #Q[$v] K, id, t.#op[t]]

→ NQ[#Q[f], id, id3.MapConcat[Dep[id2.

Map[Dep[id1.Tuple[ACons[f id1, ANil]]], N[#S, id2]]], #op[id3]]] ;

-[Free[id],Fresh[f]] :

NQ[%QJ let $v := #S #Q[$v] K, id, t.#op[t]]

→ NQ[#Q[f], id, id2.MapConcat[Dep[id1.Tuple[(f N[#S, id1];)]], #op[id2]]] ;

-[Free[id]] :

NQ[%QJ where #S #Q K, id, t.#op[t]]

→ NQ[#Q, id, id2.Select[Dep[id1.N[#S, id1]], #op[id2]]] ;

-[Free[id]] :

NQ[%QJ return #S K, id, t.#op[t]]

→ Map[Dep[id1.N[#S, id1]], #op[id]] ;

)]

Figure 3:N.crs—normalizing X terms to nested-relational algebra.
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Algebraic[

(Dep id .

Map[

(Dep id1 . Call["plus", Concat[Extract[id1, v"$x"], Extract[id1, v"$y"]]]),

Select[

(Dep id1_1 . Call["eq", Concat[Extract[id1_1, v"$x"], Extract[id1_1, v"$y"]]]),

MapConcat[

(Dep id2 .

Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANil]]), Call["child", Call["doc", Empty]]]),

MapConcat[

(Dep id2_1 .

Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANil]]), Call["child", Call["doc", Empty]]]),

id]]]])]

Figure 4: Normalized version of sample query.

disjoint. For the present system this is ensured by the AST data structures being pure input data in
the sense that no rule produces an AST construction, and no AST data is allowed to escape from
theN wrapper. (The other way to ensure non-substitution is to create globally fresh free variables
since only bound variables can be substituted.)

• The next block of rules defines all the easy cases of normalization of sequences, literals, element
creation, function calls, conditional, and finally field extraction, which does not involve any X
syntax because all fields are converted to free field tag variables, as we shall see.

• Finally, queries are translated backwards [8] using an “operator accumulator” third argument with
theNQ helper compilation scheme. The first two rules of theNQ scheme involve replacing a bound
variable with a globally fresh one, which is achieved by the use of higher-order matching and
rewriting:

1. the pattern of the rules includes the fragment#Q[$v], which establishes that the<Q> subterm
should be matched with “tracking” of all occurrences of the variable bound by thefor or let
construct, respectively (the notation used here is determined by themeta declaration in the
parser description file);

2. the rules include the optionFresh[f], which makes the usedf variable in the rules denote
a fresh variable instance for each rewrite;

3. the replacement (orcontraction) of the rules includes the fragment#Q[f], which substitutes
the variable matched in that position with the new fresh variablef.

If we try to normalize the same term as before, CRSX outputs what is shown in Figure4. Notice how
the bound variables from the X program are now converted to field tags, which are free variables in the
CRSX representation of the nested-relational algebra.

5 Rewriting

The purpose of using a relational algebra intermediate language is usually to rewrite queries to a more
optimized form. Figure5 contains a few such standard optimizations:

• The rules are not related to a compilation scheme and can thus“fire” at any time. This means that
implementations should do some kind of completion procedure [13] to ensure that the rules are



K.H. Rose 39

// R scheme: basic traditional relational optimizations.

R[(

RemoveDepMap[Weak[#dop]] : Dep[id1.MapConcat[#dop[], id1]] → #dop ;

Productize[Weak[#op1]] : MapConcat[Dep[id.#op1[]], #op2] → Product[#op1, #op2] ;

)]

Figure 5:R.crs—simple relational optimizations.

Algebraic[

(Dep id .

Map[

(Dep id1 . Call["plus", Concat[Extract[id1, v"$x"], Extract[id1, v"$y"]]]),

Select[

(Dep id1_1 . Call["eq", Concat[Extract[id1_1, v"$x"], Extract[id1_1, v"$y"]]]),

Product[

Map[(Dep id1_2 . Tuple[ACons[(v"$y" id1_2), ANil]]), Call["child", Call["doc", Empty]]],

Product[

Map[(Dep id1_3 . Tuple[ACons[(v"$x" id1_3), ANil]]), Call["child", Call["doc", Empty]]],

id]]]])]

Figure 6: Rewritten version of sample query.

applied properly, for example inserting a check for the application of these rules when aDep term
in one of the involved constructors is created.

• The RemoveDepMap rule includes the specialWeak[#dop] option. This option states that the
pattern for the#dop meta-variablemay have an incomplete list of binders to indicate that the
missing binders do not occur (free) in matching subterms. Weexploit this in the pattern by not
listing the one bound variable,id1, as an argument to the meta-application of#dop to ensure that
the subterm matching the meta-application does not containid1, which permits us to use it in
the replacement without providing a substitution forid1. Thus the rule states that nesting of a
dependent operator can be ignored if the dependent operatordoes not in fact depend on the nested
tuple.

• Similarly, theProductize rule states that if the dependent operator of nesting is independent of
the dependency then the two can be rewritten to a simple product. The final rewrite here merely
permits delaying tests, which allows combining the tests.

We shall not show any specific rules that perform annotation but just mention that they typically take the
form of an “annotation scheme” like

{id:#cType}Type[id] → #cType

where an environment in{}s is used to pass the types of variables to the individual subterms and construct
their type (for the specifics of the CRSX environment notation see the appendix). For more complex
analyses, inference rules like

ρ ⊢ p2 : t2 ρ +(i : t2) ⊢ p1 : t
ρ ⊢ Map[Dep i.p1, p2] : t

are encoded with generated rule schemes that rewrite terms like {ρ}⊢?[p] to ⊢![t] when the rules can
proveρ ⊢ p : t, which is encoded for the above rule as follows (shown without options):
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{#rho}"⊢?"[Map[Dep i.#p1[i], #p2]]

→ {#rho}"⊢??"[∀ i."⊢?1"[i, #p1[i], #p2, {#rho}"⊢?"[#p2]]] ;

{#rho}"⊢?1"[i, #p1, #p2, "⊢!"[#t2]]
→ {#rho}"⊢?2"[i, #p1, #p2, #t2, {#rho;i:#t2}"⊢?"[#p1]] ;

{#rho}"⊢?2"[i, #p1, #p2, #t2, "⊢!"[#t]] → "⊢!!"[i, #p1, #p2, #t2, #t] ;

{#rho}"⊢??"[∀ i."⊢!!"[i, #p1[i], #p2, #t2, #t]] → "⊢!"[#t] ;

that introduce helper translation schemes to build the proof of the inference rules in a strictly deterministic
left to right fashion. (This is automated by a CRSX meta-rewrite system in the real compiler.)

6 Code Emission

The generated code will use data flow macros, as is established practice for such compilers, but using
higher-order terms. The rules for code emission are shown inFigure7, and correspond closely to the
usual operational semantics of the nested-relational operators:

• The top level emission translation scheme isE, which creates a “main” target program with explicit
binders for the input and output channels.

• The body of the main program is a “pipe,” which connects the input to the program and the program
to the output. It is implemented byTPipe, the workhorse that creates a pair of a handler and a
cursor, where the cursor is iterated over once for each valuereceived by the handler: this iteration
is what enables the identification of “tuple” with the usual “frame” because a tuple of values sent
to a handler is the same as the frame of registers received by the iteration code through the cursor.

• The subscehemeE2 translates each algebraic construct to an explicit data flow. Concatenation, for
example, is achieved by doing the code in sequence with output to the same handler.

• Function call is interesting as the data flow architecture dictate that the way to instantiate a new
frame for executing the function is to create a handler to send the function’s arguments to and then
invoke the function including the handler to which the result should be sent.

• Records (in relational algebra called “tuples”) are represented as terms by recursive lists with a
member per field.

• We use CRSX variables as “data flow register” represented by field tags, cursors representing the
current value of an iteration, and handlers that can receivevalues for iteration; one can say that we
use free CRSX variables similar to the way traditional code generation uses an “infinite register
model.”

• Control instructions combine existing pieces of code; theTSwitch code generator is the only
branch construct that receives a single value on a handler and delegates to the branch marked with
that value (or, for elements, the tag of the value).

• The data manipulation macros correspond to usual register lookup, frame copy, and frame merge
operations.

• The last rules show how relational algebraic operators are translated into pipes and merges.

Running our example through code emission gives the result shown in Figure8.1

1The mechanisms used are rather crude. Notice for example howtheProduct operators result in the code building element
containers to cache the columns.
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// E scheme: emit executable "pipeline code" from nested-relational algebra.

E[(

// Main program is a pipe from input cursor to output handler.

E[Algebraic[Dep id.#op[id]]] → TMain[in out.TPipe[h.TCopy[in, h], c.E2[#op[c], out]]] ;

// E2[ operator, handler ] generates code for operator to send the result value to the handler.

-[Free[h]] : E2[Concat[#1, #2] , h] → TSeq[E2[#1, h], E2[#2, h]] ;

-[Free[h]] : E2[Empty , h] → TNoop ;

-[Free[h]] : E2[Literal[#N] , h] → TLiteral[#N, h] ;

-[Free[h]] : E2[Element[#1, #2] , h]

→ TMakeElement[labelh.E2[#1, labelh], contenth.E2[#2, contenth], h] ;

-[Free[h]] : E2[Call[#fun, #args], h] → TCall[#fun, argsh . E2[#args, argsh], h] ;

-[Free[c,f,h]] : E2[Extract[c,f] , h] → TPick[c, f, h] ;

-[Free[h]] : E2[Tuple[#fs] , h] → MkT[#fs, TDNil, vh.TNoop, h] ;

// Helper to generate tuples.

-[Free[f,h]] : MkT[ACons[f #, #fs], #td, vh.#e[vh], h]

→ MkT[#fs, TDCons[f, #td], vh.TSeq[E2[#,vh], #e[vh]], h] ;

-[Free[h]] : MkT[ANil , #td, vh.#e[vh], h] → TMakeTuple[#td, vh.#e[vh], h] ;

-[Free[h]] : E2[Conditional[#,#1,#2], h]

→ TSwitch[caseh . E2[#, caseh], TCase[True, E2[#1, h], TOtherwise[E2[#2, h]]]] ;

// Basic queries.

-[Free[h]] : E2[Map[Dep id.#dop[id], #], h] → TPipe[h1.E2[#, h1], c1.E2[#dop[c1], h]] ;

-[Free[h]] : E2[Select[Dep id.#dop[id], #], h]

→ TPipe[h1.E2[#, h1],

c1.TSwitch[caseh . E2[#dop[c1], caseh], TCase[True, TCopy[c1, h], TOtherwise[TEmpty]]]] ;

-[Free[h]] : E2[MapConcat[Dep id.#dop[id], #], h]

→ TPipe[h1.E2[#, h1], c1.TPipe[h2.E2[#dop[c1], h2], c2.TMerge[c1, c2, h]]] ;

-[Free[h]] : E2[Product[#1, #2], h]

→ TPipe[h2.TMakeElement[lh.TLiteral[’Columns’, lh], ch.E2[#2,ch],

c2.TPipe[h1.E2[#1, h1], c1.TPipe[h2.TCall["child", nh.TCopy[c2,nh]], c3.TMerge[c1, c3, h]]]]] ;

)]

Figure 7:E.crs—emit code.
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TMain[

in out .

TPipe[

h. TCopy[in, h],

id .

TPipe[

h1 .

TPipe[

h1_1 .

TPipe[

h2 .

TMakeElement[

lh. TLiteral[Columns, lh],

ch .

TPipe[

h2_1. TMakeElement[lh_1. TLiteral[Columns, lh_1], ch_1. TCopy[id, ch_1]],

c2 .

TPipe[

h1_2 .

TPipe[

h1_3. TCall["child", argsh. TCall["doc", argsh_1. TNoop, argsh], h1_3],

id1. TMakeTuple[TDCons[v"$x", TDNil], vh. TSeq[TCopy[id1, vh], TNoop], h1_2]],

c1. TPipe[h2_2. TCall["child", nh. TCopy[c2, nh]], c3. TMerge[c1, c3, ch]]]]],

c2_1 .

TPipe[

h1_4 .

TPipe[

h1_5. TCall["child", argsh_2. TCall["doc", argsh_3. TNoop, argsh_2], h1_5],

id1_1. TMakeTuple[TDCons[v"$y", TDNil], vh_1. TSeq[TCopy[id1_1, vh_1], TNoop], h1_4]],

c1_1. TPipe[h2_3. TCall["child", nh_1. TCopy[c2_1, nh_1]], c3_1. TMerge[c1_1, c3_1, h1_1]]]],

id1_2 .

TSwitch[

caseh .

TCall["eq", argsh_4. TSeq[TPick[id1_2, v"$x", argsh_4], TPick[id1_2, v"$y", argsh_4]], caseh],

TCase[True, TCopy[id1_2, h1], TOtherwise[TEmpty]]]],

id1_3 .

TCall["plus", argsh_5. TSeq[TPick[id1_3, v"$x", argsh_5], TPick[id1_3, v"$y", argsh_5]], out]]]]

Figure 8: Sample emitted code.

One important issue that we have to resolve in practice is to get all the optimizations to be applied
beforecode generation. This requires a study of the critical pairsof the system. The system as presented
here, for example, has an overlap between theRemoveDepMap optimization rule and theE2 MapConcat
rule. The solution in this case isnot traditional completion as that will effectively mean that all optimiza-
tions have to be equivalently implemented in the IL and TL butrather we simple block the cases for code
generation that can be handled by an optimization rule. So the actualE2 MapConcat rule looks like this:

-[Free[h]] : E2[MapConcat[Dep id.$[NotMatch,#dop[],#dop[id]], #], h]

→ TPipe[h1.E2[#, h1], c1.TPipe[h2.E2[#dop[c1], h2], c2.TMerge[c1, c2, h]]] ;

(In practice, such choices are delegated to an analysis phase which drops cookies of some kind into the
term to serve as enablers of the overlapping rewrite steps.)

7 Discussion

At the end what remains is to put all the pieces together. The driver is the top-level X symbol introduced
by parsing. We add a small “driver file” that essentially rewritesE[N[q]] for queriesq.
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I have found that this kind of architecture is quite consistent with what compiler development teams
expect even if the notations used are of a more formal nature than most developers usually work with.
The support for traditional “compiler block diagrams” likethe one in the introduction, where the fact
that each analysis and translation is specified independently makes using a structured approach realistic.
The chaotic nature of the resulting execution of the specification comes out as an advantage and our im-
plementation using a standard functional innermost-needed strategy often ends up interleaving the stages
of the compilation in interesting ways, for example eliminating dead code before type checking, usually
making mistakes in dependencies blatantly obvious. (Indeed, rewriting permits tweaking the reduction
order or using tricks such as completion to discover bad dependencies early.) However, debugging of
rule systems is very different from usual debugging in that mistakes show up as “unsimplified blobs or
term,” which is different from actual crashes (and requiresstrict discipline in naming the various modular
components in a globally identifyable way, something we have side-stepped in this brief presentation).

Although we have not covered it here, we have observed that the rewrite systems obtained can even
themselves be translated mechanically to low-level code, making it feasible to implement the actual
production compiler direclty from the rewrite rules. Important factors in this has been the disciplined
use of systems that can be transformed into orthogonal constructor systems, for which a table-driven
normalizing strategy can be used in almost all cases (there is a performance penalty for some substitution
cases).

The CRSX system implements higher order rewriting fully in the form of CRS, thus can handle full
substitution and thus express transformations such as inlining. However, it turns out that many specific
systems share with the small ones presented here the property that they use only “explicit substitution”
style rewrites, which only permits observing variables [1]. Indeed it seems that the fact that the approach
is not functional or a full logical framework is an advantage: the expressive power of explicit substitution
is strictly smaller (in a complexity sense) than general functions.

Finally, a crucial component in using rewriting for specifying large rule sets as is the case in the real
compiler is the strict shape requirements on rules: basically every aspect of a rule that is not strictly
linear and only substitutes bound variables for bound variables without any constraints is an error unless
it is explicitly requested: this purely syntactic approachcatches numerous errors early.

Related Work. The area of verifying a compiler specification is well established using both hand-
written and mechanical proofs [6]. Work has also been done on linking correct compiler specification
and implementations using generic proof theoretic tools [14]. Tools supporting mechanical generation
of compilers from specifications, such as SDF+ASF [3] and Stratego [4], have focused on compilers
restricted to first-order representations of intermediatelanguages used by the compiler and on using
explicit rewriting strategies to guide compilation. Our goal is the opposite: to only specify dependencies
between components of the compiler and leave the actual rewriting strategy to the system (in practice
using analysis-guided rule transformations coupled with ageneric normalizing strategy).

We are only aware of one published work that uses higher orderfeatures with compiler construc-
tion, namely the work by Hickey and Nogin on specifying compilers using logical frameworks [9]. The
resulting specification looks very similar to ours, and indeed one can see the code synthesis that could
be done for their logic system as similar to the code generation we are employing. Also, both systems
employ embedded source language syntax and higher-order abstract syntax. However, there are differ-
ences as well. First, CRSX is explicitly designed to implement just the kind of rewrite systems that we
have described, and is tuned to generate code that drives transformation through lookup tables. Second,
variables are first class in CRSX and not linked to meta-levelabstraction, thus closer to the approach
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used by explicit substitution for CRS [1] and “nominal” rewriting [7]. This permits us, for example, to
use an assembly language with mutable registers. Third, we find that the focus on local rewriting rules is
easier to explain to compiler writers, and the inclusion of environments and inference rules in the basic
notation further helps. Finally, the CRSX engine has no assumed strategy so we find the notion of local
correctness easier to grasp.

What’s Next? With CRSX we continue to experiment with pushing the envelope for supporting more
higher-order features without sacrificing efficiency.

An important direction is to connect with nominal rewritingand understand the relationship between
what the two formalisms can express.

Another interesting direction for both performance and analysis is to introduce explicitweakening
operators that “unbind” a given bound variable in a part of its scope. While used in this way with explicit
substitution [20, 10], the interaction with higher-order rewriting is not yet clear.

In companion papers we explain the details of the translation from the supported three forms of
rules, “recursive compilation scheme,” “chaotic annotation rules,” and “deterministic inference rules,”
into effective native executables, and we explain annotations that make it feasible to avoid rewriting-
specific static mistakes.

Acknowledgements. The author is grateful for insightful comments by the anonymous referees in-
cluding being made aware of the work in logical frameworks.
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with side-effects. In: DBPL’07: Proceedings of the 11th international conferenceon Database programming
languages. Springer-Verlag, Berlin, Heidelberg, pp. 81–96, doi:10.1007/978-3-540-75987-4_6.

[9] Jason Hickey & Aleksey Nogin (2006):Formal Compiler Construction in a Logical Framework. Higher-
Order and Symb. Comp.19(2-3), pp. 197–230, doi:10.1007/s10990-006-8746-6.



K.H. Rose 45

[10] Delia Kesner & Fabien Renaud (2009):The Prismoid of Resources. In: 34th International Symposium on
Mathematical Foundations of Computer Science (MFCS). LNCS 5734, Springer-Verlag, Novy Smokovec,
High Tatras, Slovakia, pp. 464–476, doi:10.1007/978-3-642-03816-7_40.

[11] Jan Willem Klop, Vincent van Oostrom & Femke van Raamsdonk (1993): Combinatory Reduction
Systems: Introduction and Survey. Theoretical Computer Science121, pp. 279–308, doi:10.1016/
0304-3975(93)90091-7.

[12] Donald E. Knuth (1968):Semantics of Context-Free Languages. Mathematical Systems Theory2(2), pp.
127–145.

[13] Donald E. Knuth & P. Bendix (1970):Simple Word Problems in Universal Algebras. In J. Leech, editor:
Computational Problems in Abstract Algebra. Pergamon Press, Elmsford, N.Y., pp. 263–297.

[14] Koji Okuma & Yasuhiko Minamide (2003):Executing Verified Compiler Specification. In Atsushi Ohori,
editor: APLAS 2003—First Asian Symposium on Programming Languagesand Systems. Lecture Notes in
Computer Science2895, Springer, Beijing, China, pp. 178–194, doi:10.1007/978-3-540-40018-9_13.

[15] Terence Parr (2008):ANTLR v3 Tree Grammars. Available athttp://www.antlr.org/wiki/display/
ANTLR3/Tree+construction.

[16] Frank Pfenning, & Conal Elliot (1988):Higher-Order Abstract Syntax. SIGPLAN Notices23(7), pp. 199–
208, doi:10.1145/960116.54010.

[17] Kristoffer H. Rose (1996):Operational Reduction Models for Functional Programming Languages. Ph.D.
thesis, DIKU, University of Copenhagen, Universitetsparken 1, DK-2100 København Ø. http://
krisrose.net/thesis.pdf.

[18] Kristoffer H. Rose (2007):CRSX – An Open Source Platform for Experimenting with HigherOrder Rewrit-
ing. Presented in absentia at HOR 2007—http://kristoffer.rose.name/papers.

[19] Kristoffer H. Rose (2010):Combinatory Reduction Systems with Extensions. http://crsx.sourceforge.
net.

[20] Kristoffer H. Rose, Roel Bloo & Frédéric Lang (2009):On Explicit Substitution with Names. IBM Research
Report RC24909, IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598,
USA. Available at http://domino.research.ibm.com/library/cyberdig.nsf/reportnumber/
rc24909. To appear in Journal of Automated Reasoning.

[21] Mark A. Roth, Herry F. Korth & Abraham Silberschatz (1988): Extended algebra and calculus for nested
relational databases. ACM Trans. Database Syst.13(4), pp. 389–417, doi:10.1145/49346.49347.



E. Bonelli (Ed.): 5th International Workshop
on Higher-Order Rewriting (HOR’10)
EPTCS 49, 2011, pp. 46–57, doi:10.4204/EPTCS.49.4

c© H. Zankl, N. Hirokawa & A. Middeldorp
This work is licensed under the
Creative Commons Attribution License.

Uncurrying for Innermost Termination and Derivational
Complexity∗

Harald Zankl,1 Nao Hirokawa,2 and Aart Middeldorp1

1 Institute of Computer Science, University of Innsbruck, Austria
{harald.zankl,aart.middeldorp}@uibk.ac.at

2 School of Information Science, Japan Advanced Institute of Science and Technology, Japan
hirokawa@jaist.ac.jp

First-order applicative term rewriting systems provide a natural framework for modeling higher-order
aspects. In earlier work we introduced an uncurrying transformation which is termination preserving
and reflecting. In this paper we investigate how this transformation behaves for innermost termina-
tion and (innermost) derivational complexity. We prove that it reflects innermost termination and
innermost derivational complexity and that it preserves and reflects polynomial derivational com-
plexity. For the preservation of innermost termination and innermost derivational complexity we
give counterexamples. Hence uncurrying may be used as a preprocessing transformation for inner-
most termination proofs and establishing polynomial upper and lower bounds on the derivational
complexity. Additionally it may be used to establish upper bounds on the innermost derivational
complexity while it neither is sound for proving innermost non-termination nor for obtaining lower
bounds on the innermost derivational complexity.

1 Introduction

Proving termination of first-order applicative term rewrite systems is challenging since the rules lack
sufficient structure. But these systems are important since they provide a natural framework for modeling
higher-order aspects found in functional programming languages. Since proving termination is easier
for innermost than for full rewriting we lift some of the recent results from [8] from full to innermost
termination. For the properties that do not transfer to the innermost setting we provide counterexamples.
Furthermore we show that the uncurrying transformation is suitable for proving upper bounds on the
(innermost) derivational complexity.

We remark that our approach on proving innermost termination also is beneficial for functional pro-
gramming languages that adopt a lazy evaluation strategy since applicative term rewrite systems mod-
eling functional programs are left-linear and non-overlapping. It is well known that for this class of
systems termination and innermost termination coincide (see [5] for a more general result).

The remainder of this paper is organized as follows. After recalling preliminaries in Section 2, we
show that uncurrying preserves innermost non-termination (but not innermost termination) in Section 3.
In Section 4 we show that it preserves and reflects derivational complexity of rewrite systems while
it only reflects innermost derivational complexity. Section 5 reports on experimental results and we
conclude in Section 6.

∗This research is supported by FWF (Austrian Science Fund) project P18763 and the Grant-in-Aid for Young Scientists
Nos. 20800022 and 22700009 of the Japan Society for the Promotion of Science.
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2 Preliminaries

In this section we fix preliminaries on rewriting, complexity and uncurrying.

2.1 Term Rewriting

We assume familiarity with term rewriting [1, 17]. Let F be a signature and V a set of variables disjoint
from F . By T (F ,V) we denote the set of terms over F and V . The size of a term t is denoted |t|. A
rewrite rule is a pair of terms (`,r), written `→ r, such that ` is not a variable and all variables in r occur
in `. A term rewrite system (TRS for short) is a set of rewrite rules. A TRSR is said to be duplicating if
there exist a rewrite rule `→ r ∈R and a variable x that occurs more often in r than in `.

Contexts are terms over the signature F ∪{�} with exactly one occurrence of the fresh constant
� (called hole). The expression C[t] denotes the result of replacing the hole in C by the term t. A
substitution σ is a mapping from variables to terms and tσ denotes the result of replacing the variables
in t according to σ. Substitutions may change only finitely many variables (and are thus written as
{x1 7→ t1, . . . ,xn 7→ tn}). The set of positions of a term t is defined as Pos(t) = {ε} if t is a variable and
as Pos(t) = {ε}∪{iq | q ∈ Pos(ti)} if t = f(t1, . . . , tn). Positions are used to address occurrences of
subterms. The subterm of t at position p ∈ Pos(t) is defined as t|p = t if p= ε and as t|p = ti|q if p= iq.
We say a position p is to the right of a position q if p= p1ip2 and q = q1jq2 with p1 = q1 and i > j. For
a term t and positions p,q ∈ Pos(t) we say t|p is to the right of t|q if p is to the right of q.

A rewrite relation is a binary relation on terms that is closed under contexts and substitutions. For a
TRSR we define→R to be the smallest rewrite relation that containsR. We call s→R t a rewrite step if
there exist a context C, a rewrite rule `→ r ∈R, and a substitution σ such that s=C[`σ] and t=C[rσ].
In this case we call `σ a redex and say that `σ has been contracted. A root rewrite step, denoted by
s→ε

R t, has the shape s= `σ→R rσ= t for some `→ r ∈R. A rewrite sequence is a sequence of rewrite
steps. The set of normal forms of a TRSR is defined as NF(R) = {t∈ T (F ,V) | t contains no redexes}.
A redex `σ in a term t is called innermost if proper subterms of `σ are normal forms, and rightmost
innermost if in addition `σ is to the right of any other redex in t. A rewrite step is called innermost
(rightmost innermost) if an innermost (rightmost innermost) redex is contracted, written i→ and ri→,
respectively.

If the TRS R is not essential or clear from the context the subscript R is omitted in →R and its
derivatives. As usual,→+ (→∗) denotes the transitive (reflexive and transitive) closure of→ and→m its
m-th iterate. A TRS is terminating (innermost terminating) if→+ ( i→+) is well-founded.

Let P be a property of TRSs and let Φ be a transformation on TRSs with Φ(R) = R′. We say Φ
preserves P if P(R) implies P(R′) and Φ reflects P if P(R′) implies P(R). Sometimes we call Φ P
preserving if Φ preserves P and P reflecting if Φ reflects P , respectively.

2.2 Derivational Complexity

For complexity analysis we assume TRSs to be finite and (innermost) terminating.

Hofbauer and Lautemann [10] introduced the concept of derivational complexity for terminating
TRSs. The idea is to measure the maximal length of rewrite sequences (derivations) depending on the size
of the starting term. Formally, the derivation height of a term t (with respect to a finitely branching and
well-founded order→) is defined on natural numbers as dh(t,→) = max{m ∈ N | t→m u for some u}.
The derivational complexity dcR(n) of a TRSR is then defined as dcR(n) = max{dh(t,→R) | |t|6 n}.
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Similarly we define the innermost derivational complexity as idcR(n)=max{dh(t, i→R) | |t|6n}. Since
we regard finite TRSs only, these functions are well-defined if R is (innermost) terminating. If dcR(n)
is bounded by a linear, quadratic, cubic, . . . function or polynomial, R is said to have linear, quadratic,
cubic, . . . or polynomial derivational complexity. A similar convention applies to idcR(n).

For functions f,g : N→ N we write f(n) ∈ O(g(n)) if there are constants M,N ∈ N such that
f(n)6M ·g(n)+N for all n ∈ N.

One popular method to prove polynomial upper bounds on the derivational complexity is via trian-
gular matrix interpretations [13], which are a special instance of monotone algebras. An F-algebra A
consists of a non-empty carrier A and a set of interpretations fA for every f ∈ F . By [α]A(·) we denote
the usual evaluation function of A according to an assignment α which maps variables to values in A.
An F-algebra A together with a well-founded order � on A is called a monotone algebra if every fA
is monotone with respect to �. Any monotone algebra (A,�) induces a well-founded order on terms:
s �A t if for any assignment α the condition [α]A(s) � [α]A(t) holds. A TRS R is compatible with a
monotone algebra (A,�A) if l �A r for all l→ r ∈R.

Matrix interpretations (M,�) (often just denotedM) are a special form of monotone algebras. Here
the carrier is Nd for some fixed dimension d ∈ N\{0}. The order � is defined on Nd as (u1, . . . ,ud) �
(v1, . . . ,vd) if u1 >N v1 and ui >N vi for all 2 6 i 6 d. If every f ∈ F of arity n is interpreted as
fM( ~x1, . . . , ~xn)=F1 ~x1+ · · ·+Fn ~xn+ ~f where Fi ∈Nd×d for all 16 i6n and ~f ∈Nd then monotonicity
of � is achieved by demanding Fi(1,1) > 1 for any 16 i6 n. Such interpretations have been introduced
in [2].

A matrix interpretation where for every f ∈ F all Fi (16 i6 n where n is the arity of f ) are upper
triangular is called triangular (abbreviated by TMI). A square matrix A of dimension d is of upper
triangular shape if A(i,i) 6 1 and A(i,j) = 0 if i > j for all 16 i, j 6 d. The next theorem is from [13].

Theorem 1. If a TRSR is compatible with a TMIM of dimension d then dcR(n) ∈ O(nd).

Recent generalizations of this theorem are reported in [14, 18].

2.3 Uncurrying

This section recalls definitions and results from [8].

An applicative term rewrite system (ATRS for short) is a TRS over a signature that consists of
constants and a single binary function symbol called application which is denoted by the infix and left-
associative symbol ◦. In examples we often use juxtaposition instead of ◦. Every ordinary TRS can be
transformed into an ATRS by currying. Let F be a signature. The currying system C(F) consists of the
rewrite rules

fi+1(x1, . . . ,xi,y)→ fi(x1, . . . ,xi)◦y

for every n-ary function symbol f ∈ F and every 06 i < n. Here fn = f and, for every 06 i < n, fi is
a fresh function symbol of arity i. The currying system C(F) is confluent and terminating. Hence every
term t has a unique normal form t↓C(F). For instance, f(a,b) is transformed into f a b. Note that we
write f for f0.

Next we recall the uncurrying transformation from [8]. Let R be an ATRS over a signature F . The
applicative arity aa(f) of a constant f ∈ F is defined as the maximum n such that f ◦ t1 ◦ · · · ◦ tn is
a subterm in the left- or right-hand side of a rule in R. This notion is extended to terms as follows:
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R U(R) R↓U(R) Rη Rη↓U(R)

id x→ x id◦x→ id1(x) id1(x)→ x id x→ x id1(x)→ x

f x→ id f x id1(x)◦y→ id2(x,y) f1(x)→ id2(f,x) f x→ id f x f1(x)→ id2(f,x)

f ◦x→ f1(x) id x y→ x y id2(x,y)→ x◦y

Table 1: Some (transformed) TRSs

aa(t) = aa(f) if t is a constant f and aa(t1)− 1 if t = t1 ◦ t2. Note that aa(t) is undefined if the head
symbol of t is a variable. The uncurrying system U(R) consists of the rewrite rules

fi(x1, . . . ,xi)◦y→ fi+1(x1, . . . ,xi,y)

for every constant f ∈ F and every 0 6 i < aa(f). Here f0 = f and, for every i > 0, fi is a fresh
function symbol of arity i. We say that R is left head variable free if aa(t) is defined for every non-
variable subterm t of a left-hand side of a rule in R. This means that no subterm of a left-hand side in
R is of the form t1 ◦ t2 where t1 is a variable. The uncurrying system U(R), or simply U , is confluent
and terminating. Hence every term t has a unique normal form t↓U . The uncurried system R↓U is
the TRS consisting of the rules `↓U → r↓U for every `→ r ∈ R. However the rules of R↓U are not
enough to simulate an arbitrary rewrite sequence in R. The natural idea is now to add U(R), but still
R↓U(R)∪U(R) is not enough as shown in the next example from [8].
Example 2. Consider the TRS R in Table 1. Based on aa(id) = 2 and aa(f) = 1 we get three rules in
U(R) and can computeR↓U(R). The TRSR is non-terminating butR↓U(R)∪U(R) is terminating.

Let R be a left head variable free ATRS. The η-saturated ATRS Rη is the smallest extension of R
such that ` ◦x→ r ◦x ∈ Rη whenever `→ r ∈ Rη and aa(`) > 0. Here x is a variable that does not
appear in `→ r. In the following we write U+

η(R) forRη↓U(R)∪U(R). Note that applicative arities are
computed before η-saturation.
Example 3. Consider again Table 1. Since aa(id) = 2 but aa(id x) = 1 for the rule id x→ x in R this
explains the rule id x y→ x y inRη. Note that U+

η(R) is non-terminating.

For a term t over the signature of the TRS U+
η(R), we denote by t↓C′ the result of identifying different

function symbols in t↓C that originate from the same function symbol inF . For a substitution σ, we write
σ↓U for the substitution {x 7→ σ(x)↓U | x ∈ V}.

From now on we assume that every ATRS is left-head variable free.

We conclude this preliminary section by recalling some results from [8].

Lemma 4 ([8, Lemma 20]). Let σ be a substitution. If t is head variable free then t↓Uσ↓U = (tσ)↓U .

Lemma 5 ([8, Lemma 15]). IfR is an ATRS then→R =→Rη .

Lemma 6 ([8, Lemmata 26 and 27]). LetR be an ATRS. If s and t are terms over the signature of U+
η (R)

then (1) s→R↓U t if and only if s↓C′ →R t↓C′ and (2) s→U t implies s↓C′ = t↓C′ .
Lemma 7 ([8, Proof of Theorem 16]). LetR be an ATRS. If s→R t then s↓U →+

U+
η (R) t↓U .

Consequently our transformation is shown to be termination preserving and reflecting.
Theorem 8 ([8, Theorems 16 and 28]). LetR be an ATRS. The ATRSR is terminating if and only if the
TRS U+

η (R) is terminating.
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3 Innermost Uncurrying

Before showing that our transformation reflects innermost termination we show that it does not pre-
serve innermost termination. Hence uncurrying may not be used as a preprocessing transformation for
innermost non-termination proofs.

Example 9. Consider the ATRSR consisting of the rules

f x→ f x f→ g

In an innermost sequence the first rule is never applied and hence R is innermost terminating. The TRS
U+
η(R) consists of the rules

f1(x)→ f1(x) f→ g f1(x)→ g ◦x f ◦x→ f1(x)

and is not innermost terminating due to the rule f1(x)→ f1(x).

The next example shows that s i→R t does not imply s↓U i→+
U+
η (R) t↓U . This is not a counterexample

to soundness of uncurrying for innermost termination, but it shows that the proof for the “if-direction” of
Theorem 8 (which is based on Lemma 7) cannot be adopted for the innermost case without further ado.

Example 10. Consider the ATRSR consisting of the rules

f→ g a→ b g x→ h

and the innermost step s = f a i→R g a = t. We have s↓U = f ◦ a and t↓U = g1(a). The TRS U+
η(R)

consists of the rules

f→ g a→ b g1(x)→ h g ◦x→ g1(x)

We have s↓U i→U+
η (R) g ◦a but the step from g ◦a to t↓U is not innermost.

The above problems can be solved if we consider terms that are not completely uncurried. The next
lemmata prepare for the proof. Below we write sB t if t is a proper subterm of s.

Lemma 11. Let R be an ATRS. If s is a term over the signature of R, s ∈ NF(R), and s→∗U t then
t ∈ NF(Rη↓U ).

Proof. From Lemma 6(2) we obtain s↓C′ = t↓C′ . Note that s↓C′ = s because s is a term over the signature
of R. If t /∈ NF(Rη↓U ) then t→Rη↓U u for some term u. Lemma 6(1) yields t↓C′ →Rη u↓C′ and
Lemma 5 yields s→R u↓C′ . Hence s /∈ NF(R), contradicting the assumption. The proof is summarized
in the following diagram:

s t u

s↓C′ t↓C′ u↓C′

∗
U Rη↓U

Lemma 6(2)
= Rη

Lemma 6(1)

R
Lemma 5

=
∗C′ ∗C′
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Lemma 12. →∗U ·B⊆B · →∗U
Proof. Assume s→∗U tB u. We show that sB · →∗U u by induction on s. If s is a variable or a constant
then there is nothing to show. So let s= s1 ◦s2. We consider two cases.

• If the outermost ◦ has not been uncurried then t = t1 ◦ t2 with s1 →∗U t1 and s2 →∗U t2. Without
loss of generality assume that t1 D u. If t1 = u then s B s1 →∗U t1. If t1 B u then the induction
hypothesis yields s1 B · →∗U u and hence also sB · →∗U u.

• If the outermost ◦ has been uncurried in the sequence from s to t then the head symbol of s1 cannot
be a variable and aa(s1) > 0. Hence we may write s1 = f ◦ t1 ◦ · · · ◦ ti and t = fi+1(t

′
1, . . . , t

′
i,s
′
2)

with tj →∗U t′j for all 16 j 6 i and s2→∗U s′2. Clearly, t′j D u for some 16 j 6 i or s′2 D t. In all
cases the result follows with the same reasoning as in the first case.

The next lemma states (a slightly more general result than) that an innermost root rewrite step in an
ATRSR can be simulated by an innermost rewrite sequence in U+

η(R).

Lemma 13. For every ATRSR the inclusion ∗
U← · i→ε

R ⊆ i→+
U+
η (R) · ∗U← holds.

Proof. We prove that s i→+
U+
η (R) r↓Uσ↓U ∗U← rσ whenever s ∗U← `σ i→ε

R rσ for some rewrite rule `→ r

inR. By Lemma 4 and the confluence of U ,

s i→∗U (`σ)↓U = `↓Uσ↓U →U+
η (R) r↓Uσ↓U ∗U← rσ

It remains to show that the sequence s i→∗U (`σ)↓U and the step `↓Uσ↓U →U+
η (R) r↓Uσ↓U are innermost

with respect to U+
η(R). For the former, let s i→∗U C[u] i→U C[u′] i→∗U (`σ)↓U with u i→ε

U u
′ and let t be

a proper subterm of u. Obviously `σ→∗U C[u] B t. According to Lemma 12, `σ B v→∗U t for some
term v. Since `σ i→ε

R rσ, the term v is a normal form ofR. Hence t ∈ NF(Rη↓U ) by Lemma 11. Since
u i→ε

U u
′, t is also a normal form of U . Hence t ∈ NF(U+

η(R)) as desired. For the latter, let t be a proper
subterm of (`σ)↓U . According to Lemma 12, `σ B u→∗U t. The term u is a normal form of R. Hence
t ∈ NF(Rη↓U ) by Lemma 11. Obviously, t ∈ NF(U) and thus also t ∈ NF(U+

η(R)).

The next example shows that it is not sound to replace i→ε
R by i→R in Lemma 13.

Example 14. Consider the ATRSR consisting of the rules

f→ g f x→ g x a→ b

Consequently the TRS U+
η(R) consists of the rules

f→ g f1(x)→ g1(x) a→ b f ◦x→ f1(x) g ◦x→ g1(x)

We have f1(a)
∗
U← f ◦ a i→R g ◦ a but f1(a)

i→+
U+
η (R) · ∗U← g ◦ a does not hold. To see that the latter

does not hold, consider the two reducts of g ◦ a with respect to →∗U : g1(a) and g ◦ a. We have neither
f1(a)

i→+
U+
η (R) g1(a) nor f1(a)

i→+
U+
η (R) g ◦a.

In order to extend Lemma 13 to non-root positions, we have to use rightmost innermost evaluation.
This avoids the situation in the above example where parallel redexes become nested by uncurrying.

Lemma 15. For every ATRSR the inclusion ∗
U← · ri→R ⊆ i→+

U+
η (R) · ∗U← holds.
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Proof. Let s ∗U← t = C[`σ] ri→R C[rσ] = u with `σ i→ε
R rσ. We use induction on C. If C = � then

s ∗U← t i→ε
R u. Lemma 13 yields s i→+

U+
η (R) · ∗U← u. For the induction step we consider two cases.

• Suppose C = � ◦ s1 ◦ · · · ◦ sn and n > 0. Since R is left head variable free, aa(`) is defined.
If aa(`) = 0 then s = t′ ◦ s′1 ◦ · · · ◦ s′n ∗U← `σ ◦ s1 ◦ · · · ◦ sn i→R rσ ◦ s1 ◦ · · · ◦ sn with t′ ∗U← `σ
and s′j

∗
U← sj for 1 6 j 6 n. The claim follows using Lemma 13 and the fact that innermost

rewriting is closed under contexts. If aa(`) > 0 we have to consider two cases. In the case where
the leftmost ◦ symbol in C has not been uncurried we proceed as when aa(`) = 0. If the leftmost
◦ symbol of C has been uncurried, we reason as follows. We may write `σ = f ◦ u1 ◦ · · · ◦ uk
where k < aa(f). We have t= f ◦u1 ◦ · · · ◦uk ◦s1 ◦ · · · ◦sn and u= rσ ◦s1 ◦ · · · ◦sn. There exists
an i with 1 6 i 6 min{aa(f),k+n} such that s = fi(u

′
1, . . . ,u

′
k,s
′
1, . . . ,s

′
i−k) ◦ s′i−k+1 ◦ · · · ◦ s′n

with u′j
∗
U← uj for 1 6 j 6 k and s′j

∗
U← sj for 1 6 j 6 n. Because of rightmost innermost

rewriting, the terms u1, . . . ,uk,s1, . . . ,sn are normal forms of R. According to Lemma 11 the
terms u′1, . . . ,u

′
k,s
′
1, . . . ,s

′
n are normal forms of Rη↓U . Since i−k 6 aa(`), Rη contains the rule

`◦x1◦· · ·◦xi−k→ r◦x1◦· · ·◦xi−k where x1, . . . ,xi−k are pairwise distinct variables not occurring
in `. Therefore τ = σ∪{x1 7→ s1, . . . ,xi−k 7→ si−k} is a well-defined substitution. We obtain

s i→∗U+
η (R) fi(u1↓U , . . . ,uk↓U ,s1↓U , . . . ,si−k↓U )◦s′i−k+1 ◦ · · · ◦s′n

i→U+
η (R) (r ◦x1 ◦ · · · ◦xi−k)↓Uτ↓U ◦s′i−k+1 ◦ · · · ◦s′n
∗
U← (r ◦x1 ◦ · · · ◦xi−k)τ ◦si−k+1 ◦ · · · ◦sn = rσ ◦s1 ◦ · · · ◦sn = t

where we use the confluence of U in the first sequence.

• In the second case we have C = s1 ◦C ′. Clearly C ′[`σ] ri→R C ′[rσ]. If aa(s1) 6 0 or if aa(s1)
is undefined or if aa(s1) > 0 and the outermost ◦ has not been uncurried in the sequence from
t to s then s = s′1 ◦ s′ ∗U← s1 ◦C ′[`σ] ri→R s1 ◦C ′[rσ] = u with s′1

∗
U← s1 and s′ ∗U← C ′[`σ].

If aa(s1) > 0 and the outermost ◦ has been uncurried in the sequence from t to s then we may
write s1 = f ◦u1 ◦ · · · ◦uk where k < aa(f). We have s = fk+1(u

′
1, . . . ,u

′
k,s
′) for some term s′

with s′ ∗U← C ′[`σ] and u′i
∗
U← ui for 1 6 i 6 k. In both cases we obtain s′ i→+

U+
η (R) · ∗U← C ′[rσ]

from the induction hypothesis. Since innermost rewriting is closed under contexts, the desired
s i→+

U+
η (R) · ∗U← u follows.

By Lemma 15 and the equivalence of rightmost innermost and innermost termination [16] we obtain
the main result of this section.

Theorem 16. An ATRSR is innermost terminating if U+
η (R) is innermost terminating.

4 Derivational Complexity

In this section we investigate how the uncurrying transformation affects derivational complexity for full
and innermost rewriting.

4.1 Full Rewriting

It is sound to use uncurrying as a preprocessor for proofs of upper bounds on the derivational complexity:
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Theorem 17. IfR is a terminating ATRS then dcR(n) ∈ O(dcU+
η (R)(n)).

Proof. Consider an arbitrary maximal rewrite sequence t0→R t1→R t2→R · · · →R tm which we can
transform into the sequence

t0↓U →+
U+
η (R) t1↓U →+

U+
η (R) t2↓U →+

U+
η (R) · · · →+

U+
η (R) tm↓U

using Lemma 7. Moreover, t0 →∗U+
η (R) t0↓U holds. Therefore, dh(t0,→R) 6 dh(t0,→U+

η (R)). Hence
dcR(n)6 dcU+

η (R)(n) holds for all n ∈ N.

Next we show that uncurrying preserves polynomial complexity. Hence we disregard duplicating
(exponential complexity, cf. [9]) and empty (constant complexity) ATRSs. A TRS R is called length-
reducing if R is non-duplicating and |`| > |r| for all rules `→ r ∈ R. The following lemma is an easy
consequence of [9, Theorem 23]. Here for a relative TRS R/S the derivational complexity dcR/S(n) is
based on the rewrite relation→R/S which is defined as→∗S · →R · →∗S .

Lemma 18. LetR be a non-empty non-duplicating TRS over a signature containing at least one symbol
of arity at least two and let S be a length-reducing TRS. If R∪S is terminating then dcR∪S(n) ∈
O(dcR/S(n)).

Note that the above lemma does not hold if the TRSR is empty.

Theorem 19. LetR be a non-empty ATRS. If dcR(n) is inO(nk) then dcRη↓U/U (n) and dcU+
η (R)(n) are

in O(nk).

Proof. Let dcR(n) be in O(nk) and consider a maximal rewrite sequence of→Rη↓U/U starting from an
arbitrary term t0:

t0→Rη↓U/U t1→Rη↓U/U · · · →Rη↓U/U tm

By Lemma 6 we obtain the sequence t0↓C′ →R t1↓C′ →R · · · →R tm↓C′ . Thus, dh(t0,→Rη↓U/U ) 6
dh(t0↓C′ ,→R). Because |t0↓C′ | 6 2|t0|, we obtain dcRη↓U/U (n) 6 dcR(2n). From the assumption the
right-hand side is in O(nk), hence dcRη↓U/U (n) is in O(nk). Since dcR(n) is in O(nk), R must be
non-duplicating and terminating. Because U is length-reducing, Lemma 18 yields that dcU+

η (R)(n) also
is in O(nk).

In practice it is recommendable to investigate dcRη↓U/U (n) instead of dcU+
η (R)(n), see [19]. The next

example shows that uncurrying might be useful to enable criteria for polynomial complexity.

Example 20. Consider the ATRSR consisting of the two rules

add x 0→ x add x (s y)→ s (add x y)

The system U+
η(R) consists of the rules

add2(x,0)→ x add2(x,s1(y))→ s1(add2(x,y))

add1(x)◦y→ add2(x,y) add◦x→ add1(x) s◦x→ s1(x)
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The 2-dimensional TMIM

add2M(~x,~y) = ◦M(~x,~y) =

(
11
01

)
~x+

(
11
01

)
~y add1M(~x) = s1M(~x) =

(
10
01

)
~x+

(
0
1

)

addM = sM = 0M =

(
0
1

)

orients all rules in U+
η(R) strictly, inducing a quadratic upper bound on the derivational complexity of

U+
η(R) according to Theorem 1 and by Theorem 17 also of R. In contrast, the TRS R itself does

not admit such an interpretation of dimension 2. To see this, we encoded the required condition as a
satisfaction problem in non-linear arithmetic over the integers. MiniSmt [20]1 can prove this problem
unsatisfiable by simplifying it into a trivially unsatisfiable constraint. Details can be inferred from the
website mentioned in Footnote 4.

4.2 Innermost Rewriting

Next we consider innermost derivational complexity. Let R be an innermost terminating TRS. From a
result by Krishna Rao [16, Section 5.1] which has been generalized by van Oostrom [15, Theorems 2
and 3] we infer that dh(t, i→R) = dh(t, ri→R) holds for all terms t.

Theorem 21. IfR is an innermost terminating ATRS then idcR(n) ∈ O(idcU+
η (R)(n)).

Proof. Consider a maximal rightmost innermost rewrite sequence t0
ri→R t1

ri→R t2
ri→R · · · ri→R tm.

Using Lemma 15 we obtain a sequence

t0
i→+
U+
η (R) t

′
1

i→+
U+
η (R) t

′
2

i→+
U+
η (R) · · ·

i→+
U+
η (R) t

′
m

for terms t′1, t
′
2, . . . , t

′
m such that ti→∗U t′i for all 16 i6m. It follows that dh(t0,

i→R) = dh(t0,
ri→R)6

dh(t0,
i→U+

η (R)) and we conclude idcR(n) ∈ O(idcU+
η (R)(n)).

As Example 9 showed, uncurrying does not preserve innermost termination. Similarly, it does not
preserve innermost polynomial complexity even if the original ATRS has linear innermost derivational
complexity.

Example 22. Consider the non-duplicating ATRSR consisting of the two rules

f→ s f (s x)→ s (s (f x))

Since the second rule is never used in innermost rewriting, idcR(n) ∈O(n) is easily shown by induction
on n. We show that the innermost derivational complexity of U+

η(R) is at least exponential. The TRS
U+
η(R) consists of the rules

f→ s f1(x)→ s1(x) f1(s1(x))→ s1(s1(f1(x))) f ◦x→ f1(x) s◦x→ s1(x)

and one can verify that dh(fn1 (s1(x)),
i→U+

η (R)) > 2n for all n > 1. Hence, idcU+
η (R)(n+3) > 2n for all

n> 0.

1http://cl-informatik.uibk.ac.at/software/minismt/
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Table 2: Innermost termination for 213 ATRSs.

subterm matrix (1) matrix (2) matrix (3) matrix (4)
− /+ − /+ − /+ − /+ − /+
42 / 55 67 / 102 111 / 142 113 / 144 114 / 145

Table 3: (Innermost) derivational complexity for 195 (213) ATRSs.

TMI (1) TMI (2) TMI (3) TMI (4)
− /+ − /+ − /+ − /+

dc 3 / 4 10 / 14 12 / 26 12 / 28
idc 3 / 4 10 / 14 12 / 26 12 / 28

5 Experimental Results

The results from this paper are implemented in the termination prover TTT2 [12].2 Version 7.0.2 of
the termination problem data base (TPDB)3 contains 195 ATRSs for full rewriting and 18 ATRSs for
innermost rewriting. All tests have been performed on a single core of a server equipped with eight dual-
core AMD Opteron R© processors 885 running at a clock rate of 2.6 GHz and 64 GB of main memory.

Experiments4 give evidence that uncurrying allows to handle significantly more systems. For proving
innermost termination we considered two popular termination methods, namely the subterm criterion [7]
and matrix interpretations [2] of dimensions one to four. The implementation of the latter is based on
SAT solving (cf. [2]). For a matrix interpretation of dimension d we used 5−d bits to represent natural
numbers in matrix coefficients. An additional bit was used for intermediate results. Both methods are
integrated within the dependency pair framework using dependency graph reasoning and usable rules as
proposed in [3, 4, 6].

Table 2 shows the number of systems that could be proved innermost terminating. In the table + (−)
indicates that uncurrying has (not) been used as preprocessing step, e.g., for the subterm criterion the
number of successful proofs increases from 42 to 55 if uncurrying is used as a preprocessing transforma-
tion. For the setting based on matrix interpretations the gains are even larger. In the table, the numbers
in parentheses denote the dimensions of the matrices.

Table 3 shows how uncurrying improves the performance of TTT2 for derivational complexity. In this
table we used TMIs as presented in Theorem 1. Coefficients of TMIs are represented with max{2,5−d}
bits; again an additional bit is allowed for intermediate results. If uncurrying is used as preprocessing
transformation, TMIs can, e.g., show 14 systems to have at most quadratic derivational complexity while
without uncurrying the method only applies to 10 systems. Since TTT2 has no special methods for
proving innermost derivational complexity, the numbers in rows dc and idc coincide.

2http://cl-informatik.uibk.ac.at/software/ttt2/
3http://termination-portal.org/wiki/TPDB
4http://cl-informatik.uibk.ac.at/software/ttt2/10hor/
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6 Conclusion

In this paper we studied properties of the uncurrying transformation from [8] for innermost rewriting and
(innermost) derivational complexity. The significance of these results has been confirmed empirically.

For proving (innermost) termination of applicative systems we mention transformation A [3] as
related work. The main benefit of the approach in [3] is that in contrast to our setting no auxiliary
uncurrying rules are necessary. However, transformation A only works for proper ATRSs without head
variables in the (left- and) right-hand sides of rewrite rules. Here proper means that any constant always
appears with the same applicative arity.

We are not aware of other investigations dedicated to (derivational) complexity analysis of ATRSs.
However, we remark that transformation A preserves derivational complexity.This is straightforward
from [11, Lemma 2.1(3)].

As future work we plan to incorporate the results for innermost termination into the dependency pair
processors presented in [8].
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This work gives some insights and results on standardisation for call-by-name pattern calculi. More
precisely, we define standard reductions for a pattern calculus with constructor-based data terms and
patterns. This notion is based on reduction steps that are needed to match an argument with respect
to a given pattern. We prove the Standardisation Theorem by using the technique developed by
Takahashi [14] and Crary [2] forλ -calculus. The proof is based on the fact that any development can
be specified as a sequence of head steps followed by internal reductions, i.e. reductions in which no
head steps are involved.

1 Introduction

Pattern Calculi: Several calculi, calledpattern calculi, have been proposed in order to give a formal
description of pattern matching; i.e. the ability to analyse the different possible forms of the argument of
a function in order to decide among different alternative definition clauses.

The pattern matchingoperation is the kernel of the evaluation mechanism of all these formalisms,
basically because reduction can only be fired when the argument passed to a given function matches its
pattern specification. An analysis of various pattern calculi based on different notions of pattern matching
operations and different sets of allowed patterns can be found in [8].

Standardisation: A fundamental result in theλ -calculus is theStandardisation Theorem, which states
that if a termM β -reduces to a termN, then there is astandardβ -reduction sequence fromM to N
which can be seen as a canonical way to reduce terms. This result has several applications, e.g. it is
used to prove the non-existence of reduction between given terms. One of its main corollaries is the
quasi-leftmost-reduction theorem, which in turn is used toprove the non-existence of a normal form for
a given term.

A first study on standardisation for call-by-nameλ -calculus appears in [3]. Subsequently, several
standardisation methods have been devised, for example [1]Section 11.4, [14], [9] and [13].

While leftmost-outermost reduction gives a standard strategy for call-by-nameλ -calculus, more re-
fined notions of reductions are necessary to define standard strategies for call-by-valueλ -calculus [13],
first-order term rewriting systems [6, 15], Proof-Nets [4],etc.

All standard reduction strategies require the definition ofsomeselectedredex by means of a partial
function from terms to redexes; they all give priority to theselected step, if possible. This selected redex
is sometimes calledexternal[11], but we will refer here to it as thehead redexof a term.

It is also worth mentioning a generic standardisation proof[12] that can uniformly treat cal-by-name
and call-by-valueλ -calculus. It is parameterized over the set of values that allow to fire the beta-reduction
rule. However, the set of values are defined there in a global sense, while in pattern calculi being a value
strongly depends on the form of the given pattern.

Standardisation in Pattern Calculi: For call-by-nameλ -calculus, any term of the form(λx.M)N is
a redex, and the head redex for such a term is the whole term. Inpattern calculi any term of the form
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(λ p.M)N is a redex candidate, but not necessarily a redex. The parameter p in such terms can be more
complex than a single variable, and the whole term is not a redex if the argumentN does not matchp,
i.e., if N does not verify the structural conditions imposed byp. In this case we will choose as head
a reduction step lying insideN (or even insidep) which makesp andN be closer to a possible match.
While this situation bears some resemblance withcall-by-valueλ -calculus [13], there is an important
difference: both the fact of(λ p.M)N being a redex, and whether a redex insideN could be useful to get
p andN closer to a possible match, depend onboth N and p.

The aim of this contribution is to analyse the existence of a standardisation procedure for pattern
calculi in a direct way, i.e. without using any complicated encoding of such calculi into some general
computational framework [10]. This direct approach aims toput to evidence the fine interaction between
reduction and pattern matching, and gives a standardisation algorithm which is specified in terms of
the combination of computations of independent terms with partial computations of terms depending
on some pattern. We hope to be able to extend this algorithmicapproach to more sophisticated pattern
calculi handling open and dynamic patterns [7].

The paper is organized as follows. Section 2 introduces the calculus, Section 3 gives the main
concepts needed for the standardisation proof and the main results, Section 4 presents some lemmas
used in the main proofs, Sections 5 and 6 show the main resultsused in the Standardisation Theorem
proof and then the theorem itself; finally, Section 7 concludes and gives future research directions.

2 The calculus

We will study a very simple form of pattern calculus, consisting of the extension of standardλ -calculus
with a set of constructors and allowing constructed patterns. This calculus appears for example in Section
4.1 in [8].

Definition 2.1 (Syntax) The calculus is built upon two different enumerable sets of symbols, the vari-
ables x,y,z,w and the constants c,a,b; its syntactical categories are:

Terms M,N,Q,R ::= x | c | λ p.M | MM DataTerms D ::= c | DM
Patterns p,q ::= x | d DataPatterns d ::= c | dp

Free and bound variables of terms are defined as expected as well as α-conversion.

Definition 2.2 (Substitution) A susbsitutionθ is a function from variables to terms with finite domain,
wheredom(θ) = {x : θ(x) 6= x}. The extension ofθ to terms is defined as expected. We denote
θ ::= {x1/M1, . . . ,xn/Mn} whereverdom(θ)⊆ {x1, . . . ,xn}. Moreover, forθ ,ν substitutions, X a set of
variables, we define

var(θ) ::= dom(θ)
⋃ (

∪x∈dom(θ ) fv(θx)
)

νθ ::=
(
∪x∈dom(θ ) {x/ν(θx)}

) ⋃ (
∪x∈(dom(ν)−dom(θ )) {x/νx}

)

θ |X ::= ∪x∈X∩dom(θ ){x/θx}

Definition 2.3 (Matching) Let p be a pattern and M a term which do not share common variables.
Matching on p and M is a partial function yielding a substitution and defined by the following rules
(⊎ on substitutions denotes disjoint union with respect to their domains, being undefined if the domains
have a non-empty intersection):
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x≪{x/N} N c≪ /0 c
d ≪θ1 D p≪θ2 N θ1⊎θ2 defined

dp≪θ1⊎θ2 DN

We write p≪ M iff ∃θ p≪θ M. Remark that p≪ M implies that p is linear.

Definition 2.4 (Reduction step)We consider the following reduction steps moduloα-conversion:

M → M′
SAppL

M N → M′N

N → N′
SAppR

M N → M N′
p≪θ N

SBeta
(λ p.M)N → θM

M → M′
SAbs

λ p.M → λ p.M′

By working moduloα-conversion we can always assume in rule (SBeta) that p andN do not share
common variables in order to compute matching.

Lemma 2.5 (Basic facts about the calculus)

a. (data pattern/term structure) Let d∈ DataPatterns (resp. D∈ DataTerms), then d= cp1 . . . pn (resp.
D = cM1 . . .Mn) for some n≥ 0.

b. (data patterns only match data terms) Let d∈ DataPatterns, M a term, such that d≪ M. Then
M ∈ DataTerms.

c. (minimal matches) If p≪θ M thendom(θ) = fv(p).

d. (uniqueness of match) If p≪θ1 M and p≪θ2 M, thenθ1 = θ2.

Crucial to the standardisation proof is the concept of development, we formalize it through the rela-
tion ⊲ , meaningM ⊲N iff there is a development (not necessarily complete) with sourceM and targetN.

Definition 2.6 (Term and substitution development)We define the relation⊲ on terms and a corre-
sponding relation◮ on substitutions. The relation⊲ is defined by the following rules:

DRefl
M ⊲M

M ⊲M′
DAbs

λ p.M ⊲λ p.M′

M ⊲M′ N⊲N′
DApp

M N⊲M′N′
M ⊲M′ θ ◮ θ ′ p≪θ N

DBeta
(λ p.M)N⊲θ ′M′

and◮ is defined as follows:θ ◮ θ ′ iff dom(θ) = dom(θ ′) and∀x∈ dom(θ) . θx⊲θ ′x

2.1 Head step

The definition of head step will take into account the terms(λ p.M)N even if p 6≪ N. In such cases, the
head redex will be insideN as the patterns in this calculus are always normal forms (this will not be the
case for more complex pattern calculi).

The selection of the head redex insideN depends on bothN and p. This differs from standard
call-by-valueλ -calculus, where the selection depends only onN.

We show this phenomenon with a simple example. Leta,b,c be constants andN = (aR1)R2, where
R1 andR2 are redexes. The redexes inN needed to achieve a match with a certain patternp, and thus the
selection of the head redex, depend on the patternp.

Take for example different patternsp1 = (ax)(by), p2 = (abx)y, p3 = (abx)(cy), p4 = (ax)y, and con-
sider the termQ= (λ p.M)N. If p= p1, then it is not necessary to reduceR1 (because it already matches
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x) but it is necessary to reduceR2, because no redex can match the patternby; henceR2 will be the head
redex in this case. Analogously, forp2 it is necessary to reduceR1 but notR2, for p3 both are needed (in
this case we will choose the leftmost one) andp4 does matchN, hence the wholeQ is the head redex.
This observation motivates the following definition.

Definition 2.7 (Head step) The relations→
h

(head step) and 
p

(preferred needed step to match pattern

p) are defined as follows:

M →
h

M′

HApp1
M N →

h
M′N

p≪θ N
HBeta

(λ p.M)N →
h

θM

N 
p

N′

HPat
(λ p.M)N →

h
(λ p.M)N′

M →
h

M′

PatHead
M 

d
M′

D 
d

D′

Pat1
DM 

dp
D′M

M 
p

M′ d ≪ D
Pat2

DM 
dp

DM′

The rulePatHead is intended for data patterns only, not being valid for variable patterns; we point this
by writing ad (data pattern) instead of ap (any pattern) in the arrow subscript inside the conclusion.

We observe that the rule analogous toHPat in the presentation of standard reduction sequences for
call-by-valueλ -calculus in both [13] and [2] reads

N →
h

N′

(λ p.M)N →
h
(λ p.M)N′

reflecting theN-only-dependency feature aforementioned.
We see also that a head step in a term like(λ p.M)N determined by ruleHPat will lie inside N, but

the same step will not necessarily be considered head if we analyseN alone.
It is easy to check that ifM 

p
M′ thenp 6≪ M, avoiding any overlap betweenHBeta andHPat and

also betweenPat1 andPat2. This in turn implies that all terms have at most one head redex. We remark
also that the head step depends not only on the pattern structure but also on the match or lack of match
between pattern and argument.

Lemma 2.8 (Basic facts about head steps)

a. (head reduction only if abstraction in head) Let M be a termsuch that M→
h

M′ for some M′. Then

M = (λ p.M01)M1 . . .Mn with n≥ 1.

b. (head reduction only if no match) Let M be a term such that M→
h

M′ for some M′, d∈ DataPatterns.

Then d6≪ M.

c. ( 
p

only if →
h

or data term) Let p be a pattern and let M be a term such that M 
p

M′ for some M′.

Then either M∈ DataTerms or M →
h

M′.

Proof Item (a) is trivial. Item (b) uses Item (a) and L. 2.5:(b). Item (c) is trival by definition of 
p

. �
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3 Main concepts and ideas needed for the standardisation proof

In order to build a standardisation proof for constructor based pattern calculi we chose to adapt the one
in [14] for the call-by-nameλ -calculus, later adapted to call-by-valueλ -calculus in [2], over the classical
presentation of [13].

The proof method relies on ah-developmentproperty stating that any development can be split into
a leading sequence of head steps followed by a development inwhich no head steps are performed; this
is our Corollary 5.4 which corresponds to the so-called “main lemma” in the presentations by Takahashi
and Crary.

Even for a simple form of pattern calculus such as the one presented in this contribution, both the
definitions (as we already mentioned when defining head steps) and the proofs are non-trivial extensions
of the corresponding ones for standardλ -calculus, even in the framework of call-by-value. As mentioned
before, the reason is the need to take into account, for termsinvolving the application of a function to
an argument, the pattern of the function parameter when deciding whether a redex inside the argument
should be considered as a head redex.

In order to formalize the notion of “development without occurrences of head steps”, aninternal
developmentrelation will be defined. The dependency on bothN and p when analysing the reduction
steps from a term like(λ p.M)N is shown in the ruleIApp2.

Definition 3.1 (Internal development) The relations
int
⊲ (internal development) and

int
⊲ p (internal devel-

opment with respect to the pattern p) are defined as follows:

IRefl

M
int
⊲ M

M ⊲M′
IAbs

λ p.M
int
⊲ λ p.M′

M 6= λ p.M1 M
int
⊲ M′ N⊲N′

IApp1

M N
int
⊲ M′N′

M ⊲M′ N
int
⊲ p N′

IApp2

(λ p.M)N
int
⊲ (λ p.M′)N′

N⊲N′ p≪ N
PMatch

N
int
⊲ p N′

N
int
⊲ N′

PConst

N
int
⊲ c N′

N /∈ DataTerms N
int
⊲ N′

PNoCData

N
int
⊲ dp N′

D
int
⊲ d D′ M ⊲M′ d 6≪ D

PCDataNo1

DM
int
⊲ dp D′M′

D⊲D′ M
int
⊲ p M′ d ≪ D p 6≪ M

PCDataNo2

DM
int
⊲ dp D′M′

D⊲D′ M ⊲M′ d ≪ D p≪ M dp 6≪ DM
PCDataNo3

DM
int
⊲ dp D′M′

Remark that rulePCDataNo3 is useful to deal with non-linear patterns.

Thus for example,ab((λy.y)c)
int
⊲ axx abc sinceab⊲ ab, (λy.y)c⊲ c, ax≪ ab, x ≪ (λy.y)c but axx 6≪

ab((λy.y)c).

We observe also that ifN
int
⊲ N′ or N

int
⊲ p N′ thenN⊲N′.

The following lemma analyses data / non-data preservation



D.Kesner, C.Lombardi & A.Rı́os 63

Lemma 3.2 (Development and data)

a. (internal development cannot create data terms) Let M/∈ DataTerms, N such that M
int
⊲ N. Then

N /∈ DataTerms

b. (development from data produces always data) Let M∈ DataTerms, N such that M⊲N. Then N∈
DataTerms

The formal description of the h-development condition takes a form of an additional binary relation.
This relation corresponds to the one calledstrong parallel reductionin [2].

Definition 3.3 (H-development) We define the relations⊲
h

and◮
h

. Let M,N be terms;ν ,θ substitutions.

a. M⊲
h

N iff (i) M ⊲N, (ii) ∃∃∃Q s.t. M →
h

∗ Q
int
⊲ N, (iii) ∀∀∀p . ∃∃∃Qp s.t. M

∗ 
p

Qp
int
⊲ p N.

b. ν ◮
h

θ iff (i) Dom(ν) = Dom(θ), (ii) ∀∀∀x∈ Dom(ν) . νx⊲
h

θx.

The clause(iii) in the definition of⊲
h

shows the dependency on the patterns that was already noted in

the definitions of head step and internal development.
This clause is needed when proving that all developments areh-developments; let’s grasp the reason

through a brief argument. Suppose we want to prove that a development insideN in a term like(λ p.M)N
is an h-development. The rules to be used in this case areHPat (Def. 2.7) andIApp2 (Def. 3.1). Therefore
we need to perform an analysisrelative to the pattern p; and this is exactly expressed by clause(iii) .
Consequently the proof of clause(ii) for a term needs to consider clause(iii) (instantiated to a certain
pattern) for a subterm; this is achieved by including clause(iii) in the definition and by performing an
inductive reasoning on terms.

4 Auxiliary results

We collect in this section some results needed to complete the main proofs in this article.

Lemma 4.1 (pattern-head reduction only if there is no match)
Let M,N be terms, p a pattern, such that M 

p
N. Then p6≪ M.

Proof Using L. 2.8:(b). �

Lemma 4.2 (development cannot lose matches)
Let M,N be terms, p a pattern, such that M⊲N and p≪ν M. Then p≪θ N for someθ such thatν ◮ θ .

Proof Induction onp ≪ν M. The axioms can be checked trivially. For the rule, letM = M1M2, N =
N1N2, p= p1p2 andν = ν1⊎ν2 ; p is linear since it matches a term . The only rules applicable for M ⊲N
areDRefl or DApp; DBeta is not applicable becauseM1 ∈ DataTerms. If DRefl was used, the lemma
holds trivially takingθ = ν . If DApp was used, we apply the IH on both hypotheses obtainingpi ≪θi Ni

with νi ◮ θi ; by L. 2.5:(c) and the linearity ofp we knowθ = θ1⊎θ2 is well-defined; it is easy to check
thatθ satisfies the lemma conditions. �

Lemma 4.3 (
int
⊲ p cannot create match)

Let M,N be terms, p a pattern, such that M
int
⊲ p N. Then p6≪ M implies p6≪ N.
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Proof Induction onM
int
⊲ p N by rule analysis

PMatch not applicable asp 6≪ M.

PConst in this case the conditionp 6≪ M implies p 6≪ N equates toM 6= p implies N 6= p, as p is a
constant.
The rule premise readsM

int
⊲ N: if rule IRefl was used thenN 6= p by hypothesis, else the

int
⊲ rule

conclusions exclude the possibility ofN being a constant.

PNoCData M /∈ DataTermsandM
int
⊲ N by rule hyp., thenN /∈ DataTermsby L. 3.2:(a), finallyp 6≪ N

by L. 2.5:(b).

PCDataNo1 By the IH, as rule hyp. includes bothD
int
⊲ d D′ andd 6≪ D beingM = DT andp= dp′.

PCDataNo2 Similar to the former consideringp= dp′ and usingT
int
⊲ p′ T ′ andp′ 6≪ T.

PCDataNo3 In this caseM = DM′, p= dp′, d ≪θ D, p′ ≪θ ′
M′ anddp′ 6≪ DM′. We necessarily have

thatθ ⊎θ ′ is not defined hencep is not linear so thatp 6≪ N also holds.

�

Lemma 4.4 (left-pattern-head implies whole-pattern-head)
Let p1, p2 be patterns and M1,N1,M2 be terms such that M1 

p1
N1. Then M1M2  

p1p2
N1M2.

Proof It is clear thatp1 /∈Var, because there is noN1 such thatM1 
x

N1 if x∈Var.

If PatHead applied inM1 
p1

N1, thenM1 →
h

N1, byHApp1 M1M2 →
h

N1M2, and finally byPatHead

M1M2  
p1p2

N1M2.

If eitherPat1 or Pat2 applied inM1 
p1

N1, thenM1 is clearly a data term, ThenM1M2  
p1p2

N1M2 by

Pat1. �

Lemma 4.5 (matching is compatible with substitution)
Let M be a term, p a pattern andθ a substitution such that p≪θ M. Then for any substitutionν , the

following holds: p≪γ νM whereγ = νθ |fv(p).

Proof By induction on the match. The axioms can be checked trivially given L. 2.5:(c).
We analyze the rule applied in this context

d ≪θ1 M1 p′ ≪θ2 M2

dp′ = p≪θ=θ1⊎θ2 M = M1M2

Applying the IH on both hypotheses and then using the rule givesdp′ ≪(νθ1)|fv(d)⊎(νθ2)|fv(p) M1M2; an
easy check of(νθ1) |fv(d) ⊎(νθ2) |fv(p′)= (ν(θ1⊎θ2)) |fv(dp′) concludes the proof. �

Lemma 4.6 (development is compatible with substitution)
Let M,N be terms andν ,θ substitutions, such that M⊲N andν ◮ θ . ThenνM ⊲θN

Proof By induction onM ⊲N by rule analysis.
ForDRefl the thesis amounts toνM ⊲θM, which can be checked by a simple induction onM. DAbs

andDApp can be simply verified by the IH.
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ForDBeta first we mention a technical result which will be used. Letθ , τ be substitutions such that
dom(τ)∩var(θ) = /0, then (

(θτ) |dom(τ)
)

θ = θτ (1)

this can be easily checked comparing the effect of applying both substitutions to an arbitrary variable.
Let’s analyze the rule premises and conclusion applied in this context

M1⊲M′
1 τ ◮ τ ′ p≪τ M2

M = (λ p.M1)M2⊲ τ ′M′
1 = N

As we can freely choose the variables appearing inp, we assumefv(p)∩ (var(ν)∪ var(θ)) = /0. By
L. 2.5:(c) we knowdom(τ) = dom(τ ′) = fv(p).

We apply the IH onM1 ⊲M′
1 and also onτx⊲ τ ′x for eachx ∈ dom(τ) to concludeνM1 ⊲ θM′

1 and
(ντ) |dom(τ)◮ (θτ ′) |dom(τ) respectively. Furthermore, fromp≪τ M2 and L. 4.5 we concludep≪(ντ |dom(τ))

νM2.
We useDBeta from the three conclusions above to obtain

νM = (λ p.νM1)(νM2)⊲
(
(θτ ′) |dom(τ)

)
(θM′

1)

To checkθN = θ(τ ′M′
1) =

(
(θτ ′) |dom(τ)

)
(θM′

1) it is enough to verify
θτ ′ =

(
(θτ ′) |dom(τ)

)
θ , the latter can be easily checked by (1).

�

Lemma 4.7 (head reduction is compatible with substitution)

(i) Let M,N be terms andν a substitution such that M→
h

N. ThenνM →
h

νN.

(ii) Let M,N be terms, p a pattern andν a substitution such that M 
p

N. ThenνM 
p

νN.

Proof (sketch)
Both items are proved by simultaneous induction onM →

h
N andM 

p
N.

We use L. 4.5 for caseHBeta, the IH and L. 4.5 for casePat2, and just the IH for the remaining
cases. �

5 H-developments

The aim of this section is to prove that all developments are h-developments.
We found easier to prove separately that the h-development condition is compatible with the language

constructs, diverging from the structure of the proofs in [2].

Lemma 5.1 (⊲
h

is compatible with abstraction)

Let M,N be terms such that M⊲
h

N. Thenλq.M ⊲
h

λq.N for any pattern q.

Proof Part(i) trivially holds by hyp.(i) andDAbs.

Part(ii) : by hyp. (i) andIAbs we getλq.M
int
⊲ λq.N. ThenQ= λq.M.

Part(iii) : if p∈Var thenPMatch applies, ifp is a constant or a compound data pattern thenPConst

or PNoCData apply respectively as(λq.M)
int
⊲ (λq.N). In all cases we obtain(λq.M)

int
⊲ p (λq.N). Then

Q= λq.M. �
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Lemma 5.2 (⊲
h

is compatible with application)

Let M1,M2,N1,N2 be terms such that M1⊲
h

N1 and M2⊲
h

N2. Then M1M2⊲
h

N1N2.

Proof Part(i) is immediate by the hypotheses(i) andDApp.
Let’s prove part(ii) .

We first use hypothesis(ii) on M1 ⊲
h

N1 to obtainM1 →
h

∗ Q1
int
⊲ N1 and subsequently applyHApp1 to

M1 →
h

∗ Q1 to get

M1M2 →
h

∗ Q1M2 (2)

EitherQ1 is an abstraction or not.

AssumeQ1 is not an abstraction. SinceQ1
int
⊲ N1 andM2⊲N2, we applyIApp1 so thatQ1M2

int
⊲ N1N2;

this together with (2) gives the desired result.

Now assumeQ1 = λ p.Q12. We use the hyp.(iii) on M2 ⊲
h

N2, obtainingM2 
p
∗ Q2

int
⊲ p N2 and then

we applyHPat to get

Q1M2 →
h

∗ Q1Q2 (3)

Moreover, asQ1 = λ p.Q12
int
⊲ N1, the only applicable rules areIRefl or IAbs, and in both casesN1 =

λ p.N12 andQ12⊲N12.

We now useIApp2 with premisesQ12⊲N12 andQ2
int
⊲ p N2 to get

Q1Q2 = (λ p.Q12)Q2
int
⊲ (λ p.N12)N2 = N1N2 (4)

The desired result is obtained by (2), (3) and (4).

Let’s prove part(iii) .

If p∈Var we are done by(i) andPMatch; we thus getM1M2
int
⊲ p N1N2 so thatQ= M1M2.

If p= c then using(ii) we obtainM1M2 →
h

∗ Q
int
⊲ N1N2 for someQ ; we applyPatHead andPConst

to getM1M2
∗ 
c

Q andQ
int
⊲ c N1N2 respectively, concluding the proof for this case.

Considerp= p1p2 with p1 a data pattern andp2 a pattern.

We use the hyp.(iii) on M1 ⊲
h

N1, gettingM1
∗ 
p1

Q1
int
⊲ p1 N1. Let us defineR1 as follows: if there

is a data term in the sequenceM1
∗ 
p1

Q1 thenR1 is the first of such terms; otherwiseR1 is Q1. In both

casesM1
∗ 
p1

R1
∗ 
p1

Q1. We necessarily haveM1 →
h

∗ R1 by PatHead, thenM1M2 →
h

∗ R1M2 byHApp1 and

subsequentlyM1M2 
p

R1M2 by PatHead.

We concludeM1M2
∗ 
p

Q1M2, trivially if Q1 = R1, and applyingPat1 to R1
∗ 
p1

Q1 to obtainR1M2
∗ 
p

Q1M2 otherwise.
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If Q1 = (λq.Q′
1) then we use the hyp.(iii) on M2⊲

h
N2 gettingM2

∗ 
q

Q2
int
⊲ q N2.

We applyHPat to M2  
q
∗ Q2 getting Q1M2 →

h

∗ Q1Q2; therefore we obtainQ1M2
∗ 
p

Q1Q2 by

PatHead.
In the other sideQ1 = (λq.Q′

1)⊲N1, thereforeN1 = (λq.N′
1) andQ′

1⊲N′
1.

We apply IApp2 to Q′
1 ⊲N′

1 and Q2
int
⊲ q N2 to obtainQ1Q2

int
⊲ N1N2, thereforeQ1Q2

int
⊲ p N1N2 by

PNoCData. We thus get the desired result takingQp = Q1Q2.

If Q1 is not an abstraction andQ1 /∈ DataTerms, then onlyPConst orPNoCData can justifyQ1
int
⊲ p1

N1, thus implyingQ1
int
⊲ N1; this together with the hypothesis(i) M2⊲N2 givesQ1M2

int
⊲ N1N2 by IApp1,

henceQ1M2
int
⊲ p N1N2 by PNoCData. We get the desired result by takingQp = Q1M2.

If Q1 ∈ DataTermswe anaylise the different alternatives for the matching betweenp1p2 andQ1M2.

Assumep1 6≪ Q1. In this case we applyPCDataNo1 to Q1
int
⊲ p1 N1 andM2⊲N2 to obtainQ1M2

int
⊲ p

N1N2 and thus the desired result holds by takingQp = Q1M2.

Assumep1 ≪ Q1 andp2 6≪ M2. In this case we use the hyp.(iii) onM2⊲
h
N2 to getM2

∗ 
p2

Q2
int
⊲ p2 N2,

then applyPat2 to getQ1M2
∗ 
p

Q1Q2. Finally fromQ1
int
⊲ p1 N1 andQ2

int
⊲ p2 N2 we obtainQ1Q2

int
⊲ p N1N2

by eitherPCDataNo2, PCDataNo3 or PMatch. We get the desired result by takingQp = Q1Q2.
Finally assumep1 ≪ Q1 and p2 ≪ Q2. In this case the hypotheses imply in particularQ1 ⊲N1 and

M2⊲N2. We thus concludeQ1M2
int
⊲ p N1N2 using eitherPMatch or PCDataNo3 (depending on whether

p≪ Q1M2 or not), getting the desired result by takingQp = Q1M2.
�

Now we proceed with the proof of the h-development property.The generalization of the statement
involving ◮

h
is needed to conclude the proof1, as can be seen in theDBeta case below.

Lemma 5.3 (Generalized h-developments property)
Let M,N be terms andν ,θ substitutions, such that M⊲N andν ◮

h
θ .

ThenνM ⊲
h

θN

Proof By induction onM ⊲N analyzing the rule used in the last step of the derivation.

DRefl in this caseN = M, we proceed by induction onM

• M = x∈ Dom(ν), in this caseνM = νx ⊲
h

θx= θN by hypothesis.

• M = x /∈ Dom(ν), in this caseνM = x ⊲
h

x= θN.

• M = M1M2, in this caseνM1 ⊲
h

θM1 and νM2 ⊲
h

θM2 hold by the IH. The desired result is

obtained by L. 5.2.

• M = λ p.M1, in this caseνM1⊲
h

θM1 holds by the IH. The desired result is obtained by L. 5.1.

1In [2] the compatibility of h-development with substitutions is stated as a separate lemma; for pattern calculi we couldnot
find a proof of compatibility with substitution independentof the main h-development result.
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DAbs in this caseM = λ p.M1,N = λ p.N1,M1⊲N1.

Using the IH onM1⊲N1 we obtainνM1⊲
h

θN1, the desired result is obtained by L. 5.1.

DApp in this caseM = M1M2,N = N1N2,Mi ⊲Ni.

Using the IH on both rule premises we obtainνMi ⊲
h

θNi , the desired result is obtained by L. 5.2.

DBeta Let’s write down the rule instantiation
M12⊲N12 τ ◮ τ ′ q≪τ M2

M = (λq.M12)M2 ⊲ τ ′N12 = N
(i) can be obtained by hypothesesM ⊲N andν ◮

h
θ , and then L. 4.6.

For [ (iii) if p∈Var ] we are done by(i) andPMatch.

For [ (iii) if p= d ] and also for(ii) : we know bothM →
h

τM12 andM 
p

τM12, then by L. 4.7

νM →
h

ν(τM12) and νM 
p

ν(τM12) (5)

We apply the IH on eachτx⊲τ ′x, obtaining(ντ)x= ν(τx) ⊲
h

θ(τ ′x) = (θτ ′)x for all x∈ Dom(τ).
Moreover, ifx∈ Dom(ν)−Dom(τ) then(ντ)x= νx ⊲

h
θx= (θτ ′)x by hypothesis.

Consequently,ντ ◮
h

θτ ′. Now we use the IH onM12⊲N12 takingντ ◮
h

θτ ′ as second hypothesis

to obtain
ν(τM12) = (ντ)M12 ⊲

h
(θτ ′)N12 = θ(τ ′N12) = θN

This result along with (5) concludes the proof for both parts.

�

Corollary 5.4 (H-development property)
Let M,N be terms such that M⊲N. Then M⊲

h
N.

6 Standardisation

The part of the standardisation proof following the proof ofthe h-development property coincides in
structure with the proof given in [2].

First we will prove that we can get, for any reduction involving head steps that follows an internal
development, another reduction in which the head steps are at the beginning. The name given to the
Lemma 6.1 was taken from [2].

This proof needs again to consider explicitly the relationsrelative to patterns, for similar reasons to
those described when introducing h-development in section3.

Lemma 6.1 (Postponement)

(i) if M
int
⊲ N →

h
R then there exists some term N′ such that M→

h
N′ ⊲R

(ii) for any pattern p, if M
int
⊲ p N 

p
R then there exists some term N′

p such that M 
p

N′
p⊲R
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Proof For (i), if the rule used inM
int
⊲ N is IRefl, then the result is immediate takingN′ = R. Therefore,

in the following we will ignore this case.
We prove(i) and(ii) by simultaneous induction onM taking into account the previous observation.

variable in this case it must beN = M for both(i) and(ii) and neitherM →
h

Rnor M 
p

R for any p,R.

abstraction in this caseN must also be an abstraction for both(i) and(ii) and neitherN →
h

RnorN 
p

R

for any p,R.

application in this caseM = M1M2

We prove(i) first, analysing the possible forms ofM1

• AssumeM1 is not an abstraction

In this caseIApp1 applies, so we knowN = N1N2, M1
int
⊲ N1, andM2⊲N2.

SinceM1
int
⊲ N1, N1 is not an abstraction, then the only applicable rule forN →

h
R is HApp1,

henceR= R1N2 andN1 →
h

R1.

Now we use the IH onM1
int
⊲ N1 →

h
R1 to getM1 →

h
N′

1 ⊲R1, then we obtainM = M1M2 →
h

N′
1M2 byHApp1.

Finally we applyDApp to N′
1⊲R1 andM2⊲N2 to getN′

1M2⊲R1N2 = R, which concludes the
proof for this case.

• Now assumeM1 = λ p.M12 andp 6≪ M2

SinceM = (λ p.M12)M2
int
⊲ N, the only rule that applies isIApp2, thenN = (λ p.N12)N2,

M12⊲N12, andM2
int
⊲ p N2. By L. 4.3 we obtainp 6≪ N2, so the only applicable rule inN =

(λ p.N12)N2 →
h

R isHPat, thenR= (λ p.N12)R2 andN2 
p

R2.

Now we use the IH(ii) onM2
int
⊲ p N2 

p
R2, to getM2 

p
N′

2⊲R2.

We obtainM = (λ p.M12)M2 →
h
(λ p.M12)N′

2 by HPat, then we get(λ p.M12) ⊲ (λ p.N12)

by DAbs on M12⊲N12, finally we applyDApp to the previous result andN′
2 ⊲R2 to obtain

(λ p.M12)N′
2⊲ (λ p.N12)R2 = Rwhich concludes the proof for this case.

• Finally, assumeM1 = λ p.M12 andp≪ν M2

Again, the only rule that applies inM = (λ p.M12)M2
int
⊲ N is IApp2, thenN = (λ p.N12)N2,

M12⊲N12, andM2
int
⊲ p N2. Now, by L. 4.2 we obtainp≪θ N2 for some substitutionθ such

thatν ◮ θ , then the applied rule inN→
h

R isHBeta (the caseHPat being excluded by L. 4.1),

henceR= θN12

It is clear thatM →
h

νM12. By L. 4.6 we obtainνM12⊲θN12 = R, which concludes the proof

for this case.

For (ii) we proceed by a case analysis ofp

If p∈Var then there is noRsuch thatN 
p

R for any termN.

If p≪ M then by L. 4.2p≪ N, and therefore by L. 4.1 there can be noRsuch thatN 
p

R.
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If p= c then p 6≪ M, henceM
int
⊲ p N 

p
R implies M

int
⊲ N →

h
R asPConst andPatHead are the

only possibilities for this case respectively. We use part(i) to obtainM →
h

N′ ⊲R, andM 
p

N′ by

PatHead which concludes the proof for this case.

If p= d p2 andM /∈ DataTerms, then the only possibilities forM
int
⊲ p N 

p
R arePNoCData and

PatHead respectively, thenM
int
⊲ N →

h
R. We use part(i) to obtainM →

h
N′ ⊲R, andM 

p
N′ by

PatHead which concludes the proof for this case.

Now assumep= d p2, M ∈ DataTerms, andp 6≪ M. We must analyse three possibilities

• d 6≪ M1.

In this case onlyPCDataNo1 applies forM
int
⊲ p N, thereforeN = N1N2 with M1

int
⊲ d N1 and

M2⊲N2. By L. 4.3 we knowd 6≪N1 and moreoverN1 is a data term (as can be seen by L. 3.2)
thus not having head redexes, so the only possible rule forN 

p
R is Pat1, thenR= R1N2

with N1 
d

R1.

Now we use the IH on the derivationM1
int
⊲ d N1 

d
R1 to getM1 

d
N′

1 ⊲R1, thereforeM =

M1M2 
p

N′
1M2 by Pat1.

Moreover asN′
1⊲R1 andM2⊲N2 henceN′

1M2⊲R1N2 = R, which concludes the proof for this
case.

• d ≪ M1 andp2 6≪ M2.

In this case onlyPCDataNo2 applies forM
int
⊲ p N, thereforeN = N1N2 with M1 ⊲N1 and

M2
int
⊲ p2 N2. By L. 4.2 and L. 4.3 respectively, we obtain bothd≪ N1 andp2 6≪N2. Moreover

N is a data term (as can be seen by L. 3.2) thus not having head redexes. Hence the only
possibility forN 

p
R is Pat2, thenR= N1R2 with N2 

p2
R2

We now use the IH onM2
int
⊲ p2 N2 

p2
R2 to getM2 

p2
N′

2⊲R2, and byPat2M =M1M2 
p

M1N′
2

We also useDApp onM1⊲N1 andN′
2⊲R2 to getM1N′

2⊲N1R2 = R, which concludes the proof
for this case.

• d ≪ M1, p2 ≪ M2 anddp2 6≪ M1M2.

d ≪ M1 implies (L 2.5:(b))M1 ∈ DataTerms so that fromM = M1M2
int
⊲ p N we can only

haveN = N1N2 with M1⊲N1 andM2⊲N2. L. 4.2 givesd ≪ N1 andp2 ≪ N2. L. 3.2:(b) gives
N ∈ DataTerms. To showN 

p
R we have three possibilities:PatHead is not possible since

N ∈ DataTerms (c.f. L 2.8:(a)),Pat1 is not possible sinced ≪ M1 (c.f. L 4.1),Pat2 is not
possible sincep2 ≪ N2 (c.f. L 4.1).

�

Corollary 6.2

Let M,N,R be terms such that M
int
⊲ N →

h
R. Then∃∃∃N′ s.t. M →

h

∗ N′ int
⊲ R.

Proof Immediate by L. 6.1 and Corollary 5.4. �
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Now we generalize the h-development concept to a sequence ofdevelopments. The name given to
Lemma 6.3 was taken from [2].

Lemma 6.3 (Bifurcation)

Let M,N be terms such that M⊲∗ N. Then M→
h

∗ R
int
⊲∗ N for some term R.

Proof Induction on the length ofM ⊲∗ N. If M = N the result holds trivially.

AssumeM ⊲Q⊲∗ N. By C. 5.4 and IH respectively, we obtainM →
h

∗ S
int
⊲ Q andQ →

h

∗ T
int
⊲∗ N for

some termsSandT. Now we use Corollary 6.2 (many times) onS
int
⊲ Q→

h

∗ T to getS→
h

∗ R
int
⊲ T.

ThereforeM →
h

∗ S→
h

∗ R
int
⊲ T

int
⊲∗ N as we desired. �

Using the previous results, the standardisation theorem admits a very simple proof.

Definition 6.4 (Standard reduction sequence)The standard reduction sequences are the sequences of
terms M1; . . . ;Mn which can be generated using the following rules.

M2; . . . ;Mk M1 →
h

M2
StdHead

M1; . . . ;Mk

M1; . . . ;Mk
StdAbs

(λ p.M1); . . . ;(λ p.Mk)

M1; . . . ;M j N1; . . . ;Nk
StdApp

(M1N1); . . . (M j N1);(M j N2); . . . ;(M j Nk)
StdVar

x

Theorem 6.5 (Standardisation)
Let M,N be terms such that M⊲∗ N. Then there exists a standard reduction sequence M; . . . ;N.

Proof By L. 6.3 we haveM →
h

∗ R
int
⊲∗ N; we observe that it is enough to obtain a standard reduction

sequenceR; . . . ;N, because we subsequently applyStdHead many times.
Now we proceed by induction onN

• N ∈Var; in this caseR= N and we are done.

• N = λ p.N1; in this caseR= λ p.R1 andR1⊲
∗ N1. By IH we obtain a standard reduction sequence

R1; . . . ;N1, then byStdAbs so isR= λ p.R1; . . . ;λ p.N1 = N.

• N = N1N2, so R= R1R2 and Ni ⊲
∗ Ri. We use the IH on both reductions to get two standard

reduction sequencesNi; . . . ;Ri , then we join them usingStdApp.

�

7 Conclusion and further work

We have presented an elegant proof of the Standardisation Theorem for constructor-based pattern calculi.
We aim to generalize both the concept of standard reduction and the structure of the Standardisation

Theorem proof presented here to a large class of pattern calculi, including both open and closed variants
as the Pure Pattern Calculus [7]. It would be interesting to have sufficient conditions for a pattern calculus



72 Standardisation for constructor based pattern calculi

to enjoy the standardisation property. This will be close inspirit with [8] where an abstract confluence
proof for pattern calculi is developed.

The kind of calculi we want to deal with imposes challenges that are currently not handled in the
present contribution, such as open patterns, reducible (dynamic) patterns, and the possibility of having
fail as a decided result of matching. Furthermore, the possibility of decidedfail combined with
compound patterns leads to the convenience of studying forms of inherently parallelstandard reduction
strategies.

The abstract axiomatic Standardisation Theorem developedin [5] could be useful for our purpose.
However, while the axioms of the abstract formulation of standardisation are assumed to hold in the proof
of the standardisation result, they need to be defined and verified for each language to be standardised.
This could be nontrivial, as in the case of TRS [6, 15], where ameta-level matching operation is involved
in the definition of the rewriting framework. We leave this topic as further work.
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